
Projet informatique ING1 semestre 2
2016-2017

Ececraft

Warcraft 1 Warcraft 2

Warcraft 3 Starcraft 2

→ Principe du jeu

Le jeu qui vous est demandé est un jeu de « stratégie en temps réel » ou « Real Time Strategy » (RTS).
Si vous ne connaissez pas ce genre vidéo-ludique nous vous invitons à voir (avec modération)
quelques extraits de parties sur les canaux usuels de diffusions (Youtube & co) qui illustreront mieux
que des images fixes ce genre d'univers et les mécanismes d'interaction. Si vous ne savez pas par où
commencer jetez un œil sur l'introduction d'un passionné sur un des monuments du genre :
Warcraft 2. Dans un registre similaire on trouve du coté du jeu sur mobile le populaire Clash of Clans.

Le type de jeu attendu n'a rien à voir avec « World of Warcraft », ce n'est pas une aventure à la 1ère
personne : le joueur doit gérer des troupes sur un territoire qu'il colonise et défend...

http://rimaimbeur.be/Page_110.html

Projet informatique ING1 semestre 2
2016-2017

On ne va bien sûr pas vous demander ni de développer au niveau ni de produire la masse de travail,
tant en terme de contenu graphique et sonore qu'en programmation, que demande un jeu Blizzard.

ECEcraft, votre projet, sera donc une version « allégée » de ce genre de jeu. On imagine que personne
avant vous n'avait eu l'idée de ce genre de jeu. Vous êtes une équipe de 3 (ou 2) ingénieurs innovants
et vous devez, en 1 mois ouvrable, tout en continuant votre job (n'oubliez pas les autres matières !)
produire une maquette qui saurait convaincre un éditeur de jeu ou des investisseurs de la viabilité du
concept.

Afin de vous laissez toute liberté quant à l'univers, à son histoire, au style, aux réglages de « game-
play », la description des aspects attendus est volontairement abstraite. Par exemple quand on dit
« ennemi » il ne faut pas forcément comprendre Orcs/Gobelins etc. Les ennemis peuvent être des
lapins blancs, ou des men in black, ou des microbes... respectivement dans un univers où vous jouez
des légumes qui essaient de s'installer dans un champs en style cartoon, ou un univers où vous jouez
des envahisseurs extraterrestres genre space-invader, ou un univers où vous êtes les globules blancs
défendant les amygdales et les sinus d'un bébé. Votre jeu peut être réglé plus vers l'attaque (les
envahisseurs) ou plus vers la défense (les globules blancs) ou plus vers la simulation d'écosystème (les
légumes... ont-ils assez d'eau, de soleil, de minéraux ?). Je me permets de bien insister : les
mécanismes sont imposés (pour garantir un certain niveau d'investissement en programmation) mais
la nature guerrière des exemples historiques (Warcraft/Starcraft etc...) n'est pas requise, il n'y a pas
forcément du sang, du jus de carotte fait aussi bien l'affaire. Il faut quand même qu'il y ait un
challenge, une difficulté à surmonter : il faut jouer bien pour « gagner », sinon on perd (d'une façon
ou d'une autre).

Il ne vous est pas demandé de fournir une copie conforme du jeu Warcraft ni même d'essayer.

→ Cahier des charges de base : 15 points

Le jeu se déroule dans un univers en 2 dimensions vu de dessus (facultativement en fausse
perspective ou en perspective isométrique). A l'échelle des déplacements des personnages, le terrain
est plus grand que l'écran. On dispose soit
- d'une zone radar ou vue satellite qui montre l'ensemble du terrain en tout petit, chaque personnage
représenté par un seul pixel, et un cadre principal de jeu représentant une partie du terrain, on peut
scroller (barre de défilement ou autre...) ce cadre pour jouer sur une autre zone du terrain
- d'un seul cadre de jeu avec possibilité à la fois de scroller (barre de défilement ou autre...) et de
dézoomer (prendre de la distance, de l'altitude) pour voir la totalité du terrain, et rezoomer pour se
rapprocher de l'action dans une zone particulière du terrain.

Sur ce terrain évoluent des « personnages » (des globules blancs, des men in black, des carottes...).
Les personnages du joueur (ses troupes) doivent atteindre un certain objectif, par exemple s'étendre
et conquérir, ou juste survivre un certain temps. Le joueur peut sélectionner un ou plusieurs
personnages, par exemple avec un cadre souris (zone de sélection) pour leur donner un ordre, aller à
un endroit, exploiter une ressource, construire, attaquer, défendre. Il n'est pas demandé de prévoir
tous ces ordres : on peut doter les personnages du joueur d'une autonomie suffisante pour qu'ils
prennent des initiatives, il suffit alors d'une seule catégorie d'ordre : aller vers un endroit.

Projet informatique ING1 semestre 2
2016-2017

Dans notre cahier des charges simplifié il n'est demandé que 2 classes de personnages du joueur. Par
exemple dans un univers médiéval « traditionnel » on pourrait imaginer une classe d'artisans et une
classe de guerriers. Chaque classe dispose de caractéristiques spécifiques : chaque guerrier aura à sa
création le même nombre de points de vie, le même nombre de points d'attaques, les mêmes
aptitudes que tous les autres guerriers (par exemple tuer des Orcs). Chaque artisan aura à sa création
le même nombre de points de vie, les mêmes aptitudes que tous les autres artisans (par exemple
chercher des ressources et construire des bâtiments avec ces ressources).

Les personnages du joueur ont une mémoire (élémentaire) : ils se souviennent du dernier ordre
qu'on leur à donné. Le joueur n'a pas a prendre le contrôle d'un personnage et de le diriger dans les
détails (haut/bas/gauche/droite), un personnage qui a reçu l'ordre d'aller à un endroit y va. Si il se
fait attaquer en cours de route il peut éventuellement décider d'engager le combat et oublier sa
« mission » de départ. Tout dépend des réglages de votre jeu : des personnages plutôt obéissants
mais qui manquent d'initiative, qui se laissent taper dessus tant qu'on ne leur donne pas l'ordre de se
défendre, ou des personnages très autonomes mais difficiles à commander ou qu'il faut souvent
rappeler à l'ordre. A votre niveau on ne vous demande pas d'algorithme de recherche de chemin : si
un personnage a reçu l'ordre d'aller à un endroit il essaye d'y aller en ligne droite, si il rencontre un
obstacle infranchissable (voir plus loin types de terrain) il n'est pas demandé de le rendre assez
intelligent pour le contourner. Il peut décider de s'arrêter, ou de reprendre une direction au hasard,
ou de patrouiller en restant dans la zone, de même pour un personnage arrivé à destination : à vous
de trouver le réglage le plus intéressant.

De nouveaux personnages peuvent naître et venir compléter les troupes du joueur. Les nouveaux
personnages ne peuvent apparaître que dans une construction (ou bâtiment). Chaque naissance d'un
certain type requiert une certaine quantité de ressources (par exemple un guerrier demandera plus
de ressources en métal qu'un artisan...) et mobilise un bâtiment pendant un certain temps. La
construction d'un bâtiment requiert une certaine quantité de ressources et mobilise un ou des
constructeurs pendant un certain temps. Les ressources sont donc dépensées quand on créé des
bâtiments et quand on créé de nouveaux personnages dans les bâtiments. Pour re-gagner des
ressources il faut aller les chercher sur le terrain à des emplacements spécifiques, par exemple la
ressource en bois se trouve dans les forêts, la ressource en métal dans les mines...

Pour simplifier, la gestion des ressources sera globale (on n'a pas dit avec des variables globales) : il n'y a
pas à gérer des transports de marchandises d'un endroit à un autre, le joueur dispose d'une certaine
quantité de bois, cette quantité augmente quelque soit l'endroit ou un de ses personnages coupe du
bois, et il peut utiliser cette quantité de bois aussitôt pour construire un bâtiment ou faire naître des
personnages où bon lui semble. Les quantités de ressources disponibles à un moment données
seront indiquées au joueur d'une façon ou d'une autre à l'écran (valeurs numériques, jauges...). Dans
la version minimale il est demandé de prévoir 2 types de constructions (par exemple des casernes
pour faire naître des guerriers et des écoles pour faire naître des artisans) et 2 types de ressources
naturelles (par exemple du bois et du métal).

Des personnages (troupes ennemies) viennent introduire de l'adversité dans le jeu. Les personnages
ennemis sont totalement autonomes. Contrairement à la plupart des jeux de stratégie temps réel où
l'ennemi est doté de la même structure hiérarchique et des même contraintes que nous (jeu à
égalité), et est joué par un ou plusieurs autre joueur humain adversaire (ou une IA assez évoluée),

Projet informatique ING1 semestre 2
2016-2017

notre projet se limitera, dans sa version de base, à une seule classe ennemie. Les ennemis n'ont pas
à se structurer en villages, n'ont pas besoin de construire des bâtiments pour naître, ne disposent pas
d'une intelligence artificielle avancée. Dans la version de base ont peut les considérer comme de
simples monstres errants, qui apparaissent au hasard dans le monde (ou dans des zones spécifiques,
par exemple des marais) marchent au hasard et attaquent tout ce qui bouge (vos troupes!). Leur
fréquence d'apparition doit être soigneusement réglée de telle sorte que le joueur est obligé de se
défendre (ou d'attaquer), mais a ses chances (il n'est pas submergé). Les ennemis peuvent tuer ou
faire disparaître les persos du joueur, quelle que soit la forme plus ou moins violente de la disparition.

Les « combats » peuvent être gérés au contact (collision) ou à distance (projectiles) ou encore ne pas
ressembler du tout à des combats. On peut imaginer par exemple un jeu où le but est uniquement de
construire des fortifications assez rapidement pour se mettre à l'abri d'une vague de loups garous. La
fréquence d'apparition des loups garous augmente en cours de partie, la partie est minutée, et pour
survivre 5 minutes il faut fortifier le village aussi vite que possible, les ennemis sont immortels, il faut
juste les bloquer.

Enfin votre terrain doit proposer des zones spécifique avec au moins 4 types de terrains par exemple
des zones inaccessibles (ronces, montagnes, eau) aussi bien aux troupes du joueur qu'aux ennemis,
des zone neutres accessibles et constructibles (plaines) des zones avec la 1ère ressource (forêt) et des
zones avec la 2ème ressource (mines). Ce n'est qu'un exemple, on peut imaginer que les ennemis ne
sont pas bloqués par la forêt et les troupes du joueur savent nager...

Au démarrage d'une partie, le joueur dispose de personnages initiaux, en quantité et à des endroits
bien précis (toujours les mêmes) du terrain, éventuellement autour de quelques constructions
initiales. Le but du jeu est alors, en général, de se développer, par exemple partir avec 3 artisans
perdus au milieu de la forêt et terminer avec 10 casernes et une armée de 100 guerriers. Mais
comme nous encourageons l'originalité il est possible de renverser cette logique : partir avec 100
citadins dans un centre commercial et arriver à en sauver au moins 3 après 5 minutes d'une attaque
de zombis... Dans tout les cas le CDC de base impose de voir à un moment donné au moins 100
personnages gérés simultanément, répartis selon les diverses classes (classe 1, classe 2, ennemis). Et
bien sûr pour des raisons évidente de difficulté (donc d'intérêt) de programmation, il est
indispensable que ce nombre soit variable (des personnages apparaissent, des personnages
disparaissent)

Enfin dans ce CDC de base il y a la possibilité de disposer d'un menu d'accueil, de pouvoir choisir un
terrain parmi 3, de pouvoir retourner au menu à tout moment soit sur un game-over soit sur un
abandon soit sur une victoire, et de pouvoir relancer une partie soit sur le même terrain soit sur un
des 2 autres terrains proposé. En résumé on veut pouvoir rejouer, indéfiniment, sur les 3 terrains de
jeu, sans avoir à quitter/relancer le programme, et sans appels récursifs au main (demandez...)
Compte tenu des impératifs de la présentation lors de la soutenance un terrain doit pouvoir être joué
en à peu près 6 minutes, ce qui est très court pour ce genre de jeu. Il ne sera sans doute pas possible
de voir en intégralité les 3 terrains, mais les 3 terrains doivent être jouables. Dans le CDC de base il
n'est pas demandé de proposer 3 thèmes graphiques distincts : les 3 terrains peuvent avoir les même
dessins (d'arbres, de plaine, de personnages...) c'est juste la cartographie qui change.

Le CDC de base étant assez ouvert, n'hésitez pas à nous faire part de vos idées : si c'est intéressant à
programmer nous sommes partant. Si c'est pour diminuer l'exigence de programmation, non...

Projet informatique ING1 semestre 2
2016-2017

→ Résumé du CDC de base :

2 types de personnages dans les armées du joueur (apparence, coût et caractéristiques spécifiques)
2 types de constructions dans les villages du joueur (apparence, coût et caractéristiques spécifiques)
2 types de ressources naturelles (apparence/lieux spécifiques du territoire) Gestion « globale »
4 types de terrains (reconnaissables et avec des caractéristiques spécifiques)
1 type d'ennemi (qui arrive par les frontière du territoire ou naît aléatoirement ici ou là)

→ Extensions : 4 points

Le jury évaluera le CDC de base sur tous les points sus-mentionnés, tout manquement ou réalisation
trop approximative sera pénalisé au barème de 15 points prévu. Par exemple si par commodité pour
gérer différents types de terrain votre territoire de jeu est découpé en cases grossières et que les
personnages se déplacent de case en case comme des pions au jeu d'échec au lieu de translater en
douceur en s'orientant du bon coté, l'aspect déplacement sera considéré comme imparfaitement
maîtrisé. Le barème des extensions sur 4 points est séparé : vous ne pouvez pas compenser des
manquements au CDC de base en collectionnant les extensions au delà de 4 points. Il y a une note sur
15 d'une part et une note sur 4 d'autre part. Le jury se réserve le droit de ne pas considérer du tout
les extensions si le CDC de base est trop déficient.

La liste suivante n'est pas exhaustive, il n'est pas nécessaire de réaliser toutes ces idées pour obtenir
les 4 points d'extension, discutez avec votre chargé de TP des autres idées que vous pourriez avoir !
Les points (ou ½ points) accordés par le jury dépendront de la difficulté et de la qualité de réalisation.

Animations : les personnages sont animés (séquences d'images, au moins rudimentaires)

Animations spécifiques : les personnages ont des aspects/animations différents selon leur activité

Carte à zones inconnues : seules les parties du territoire visitées (par un personnage du joueur)
apparaissent sur la carte, les autres zones restent blanches ou noires : terra incognita !

Carte radar à visibilité limité : seuls les ennemis dans le champ de vision d'un personnage du joueur
apparaissent sur le radar, les autres n'apparaissent pas (ce qui ne les empêche pas d'exister!)

Attaques à distance, projectiles : les personnages du joueur et/ou les ennemis se battent à distance,
on voit voler des flèches ou des boulets ou des rayons lasers... Bonus pour la modélisation de
trajectoires balistiques, comme la parabole d'un projectile de catapulte vu en pseudo-3D...

Effets visuels évolués, effets de particules : dans Warcraft et plus encore dans Starcraft un soin
particulier est donné à la représentation des zones d'attaque, flammes, auras, explosions…

Trajectoires avancées : Les personnages et/ou ennemis savent contourner les obstacles par le plus
court chemin (ou presque)

Autonomie avancée : L'intelligence artificielle des ennemis et/ou personnage du joueur mérite son
nom, il y a des réglages fins entre le hasard et le déterminisme rendant les comportement plus
intéressant, moins prévisibles, plus riches, tout le monde prend des initiatives, il y a des
comportement collectifs, des heuristiques...

Projet informatique ING1 semestre 2
2016-2017

Ressources avancées : l'exploitation des ressources conduit à une altération irréversible du terrain,
par exemple là où on a coupé du bois on voit que les arbres sont coupés (et on ne peut plus en
couper là)

Types supplémentaires : vous pouvez ajouter d'autres types de personnages ou d'ennemis, de
bâtiments, de ressources, de terrain. Discutez avec votre chargé de TP de la valorisation en fonction
de ces ajouts (ce n'est pas forcément un point de gagné par classe de guerrier en plus !)

Ennemi structuré : l'ennemi n'est pas juste une bande de monstres errants sortant des marais, c'est
une armée comme vous ! Avec plusieurs classes de personnages, des constructions etc... (Warcraft...)

Pseudo 3D ou perspective isométrique : plutôt que d'avoir une vue strictement plongeante (verticale)
on peut essayer dans les graphismes d'avoir un effet de vision inclinée. Sans aller jusqu'à la "vraie 3D"
avec lignes de fuite (rétrécissement des objets éloignés) on peut assez facilement faire de la
perspective de style isométrique ou suggérer une vue non verticale. Veuillez consulter l'exemple 4 du
cours 0 (dans le .zip du cours 0) pour avoir un exemple de construction isométrique, et l'exemple 4_3
du cours 0 pour avoir un exemple de vue « plongeante non verticale » à la Zelda génération GBA

 Clash of Clans (Supercell): un exemple de perspective isométrique

Effets sonores interactifs : des bims, des boums, des arghh ! Bien synchronisés avec l'action bien sûr.
Il est aussi possible d'ajouter une musique de fond (voir format .ogg avec Allegro 4.4.2) mais
n'espérez pas avoir beaucoup de points pour juste un seul load_sample et play_sample...

Projet informatique ING1 semestre 2
2016-2017

→ Originalité et cohérence : 1 point (+1 point bonus exceptionnel)

Le jury appréciera l'originalité de votre proposition. Essayez de déplacer la mécanique de jeu imposée
dans un univers différent, adaptez le récit et le gameplay à cet univers pour en faire un tout cohérent
et harmonieux. Dans le point d'originalité est aussi compté (sans caractère obligatoire) un travail de
design graphique personnel, valorisé par rapport à la simple utilisation de graphismes empruntés
(voir ci-dessous).
Très exceptionnellement 1 point supplémentaire de bonus est laissé à l'appréciation du jury (talent
prodigieux à la palette, images de synthèse sensationnelles...) Attention ceci ne doit pas vous faire
oublier qu'il s'agit avant tout d'un projet de programmation : chaque membre de l'équipe doit
participer au code, pouvoir expliquer en détail les parties sous sa responsabilité et de façon
synthétique le reste du code source, sans se retrouver perdu.

→ Consignes générales :

- Il est autorisé d'utiliser des graphismes tiers trouvés sur Internet, si possible libres de droits
(Creative commons...) ou avec Copyright, dans ce dernier cas votre logiciel doit rester strictement
dans le cadre scolaire (citation dans un travail d'étude) et ne doit pas être publié. Dans tous les cas les
sources tierces doivent être rigoureusement citées dans un fichier licence.txt dans votre archive.

- Il est autorisé d'utiliser/adapter les codes sources publiés sur le site principal du cours, ainsi que
des extraits de code source libre de droit (public domain, GPL, LGPL …) en précisant ces emprunts.
Les commentaires initiaux de ces codes sources empruntés doivent être mis à jour par vos soins
pour refléter leur utilisation dans votre contexte (appropriation correcte des codes tiers utilisés).
En soutenance vous devez être capable d'expliquer chaque ligne de code de votre projet déposé.

- Il n'est pas autorisé d'utiliser une librairie complète ou un « framework » en dehors des versions
proposées de Allegro sur le site principal du cours (4.2.2 ou 4.4.2) et des bibliothèques standard
du C (stdio, stdlib etc...). Il n'est pas autorisé de copier massivement un code tiers : l'objectif est de
réaliser votre moteur de jeu, pas de se brancher sur un moteur de jeu pré-existant.
En dehors des exemples du cours, toute détection de copie massive de code tiers sera considéré
comme plagiat et très sévèrement sanctionné, avec circonstances aggravantes si
- l'emprunt n'est pas cité
- l'emprunt vient du travail d'une autre équipe d'étudiants de l'ECE pour ce même projet
- il y a tentative de dissimulation (maquillage de code...)

- Le code source doit être présentable : bien indenté, raisonnablement aéré et commenté.
Pour rappel, un bon commentaire ne paraphrase pas le code (// xp prend la valeur 10) mais
explique à quoi sert le code (// L'abscisse du perso est mise à gauche de l'écran). L'ensemble doit
être structuré : sous-programmes regroupés dans des .c et .h par thématique, structures de
données adaptées aux problèmes à traiter, constantes nommées, éviter autant que possible les
duplications de codes similaires au profit de boucles, tableaux, sous-programmes, paramètres.

https://fr.wikipedia.org/wiki/Gameplay

Projet informatique ING1 semestre 2
2016-2017

→ Contrainte de volume

Le dépôt à faire sur campus ne devra pas dépasser 50Mo zippé. Allegro 4.2.2 ne prend pas en charge
les formats images compressés, les images .bmp peuvent rapidement peser très lourd. Surveillez ce
paramètre. Ce sont surtout les images de fonds et « cartes de collision » qui pèseront le plus si vous
en utilisez. Avec la version 4.4.2 mise à disposition sur le site principal du cours vous pouvez utiliser
des images en format .png (préférable pour les graphismes « lisses » et pour conserver des couleurs
exactes : cartes de collisions) et/ou des images en format .jpg (à privilégier pour des images bruitées
comme des photos numériques). Il ne s'agit pas d'une obligation, vous pouvez rester sur du .bmp si le
volume ne pose pas de problème.

Voir les options de compilation (Project → Build options... → Linker settings) de l'exemple de projet
check_alleg_4_4_png_jpg de allegro_checking.zip pour compiler un projet capable d'utiliser les
formats .jpg et .png.

→ Travail à faire

Le projet est à faire en trinôme ou binôme, à l’intérieur d’un même groupe de TP. Les consignes de
constitution des équipes de projet seront communiquées en temps utile via le forum.

Vous réaliserez ce projet en respectant la méthode de conception Données/Traitements/Interface
apprise : conception puis réalisation. Tenez à jour, dès le départ de la conception, un « cahier de
laboratoire » : vous remettrez, à l’occasion de la soutenance, un bilan écrit par équipe qui contiendra
des schémas de vos structures de données (structs, tableaux, listes chaînées éventuelles...), des
schéma géométriques (repères, vecteurs) seront appréciés, votre ACD, le graphe d’appels de vos
sous-programmes en précisant les entrées et les sorties, quelques captures écrans, ainsi que le bilan
collectif du fonctionnement de votre équipe, et le bilan individuel de votre implication, de vos
difficultés et de vos progrès via ce projet.

→ La date de soutenance est fixée pour la semaine du 1er Mai, la date exacte et les modalités de
rendu vous seront précisées rapidement. Vous aurez une 1ère séance de TP orienté projet dès la
semaine du 27/03, durant laquelle vous pourrez poser toutes vos questions à votre chargé de TP et
commencer à pratiquer les techniques de programmation spécifiques au projet.

Robin Fercoq et toute l'équipe encadrante,

20/03/2017

Version 1, sujette à ajustements mineurs en cas de besoin.

Toutes les images de ce sujet sont Copyright Blizzard Entertainment et Supercell

http://www.ece.fr/~fercoq/allegro/index.html

