Controle informatique : ECE - INGE1

Librairie graphique Allegro 03/05/2014
Durée : 1H30

Calculatrices non autorisées. Aucun document.
Répondez sur votre copie, pas sur 1'énoncé.

Un "squelette" de projet Allegro est en annexe : les différentes parties sont indiquées

par des lettres A B C ... : il est inutile de recopier ce squelette. Pour les différentes

questions vous préciserez dans quelles sections (A B C...) votre code devra s'écrire.
Une liste des fonctions Allegro utiles et de leurs paramétres est en annexe.

1. Animation, blit, défilement 8 points (2+6)

L'objectif est de réaliser une animation d'une locomotive avangant sur un paysage qui défile de
droite a gauche. La locomotive reste a une position fixe par rapport a I'écran mais est animée par
affichage successif et cyclique de 17 dessins (principe du dessin animé).

L'animation est "infinie" : le paysage tourne "en boucle". Touche echap. pour quitter.

train00.bmp train01.bmp train02.bmp train03.bmp train04.bmp ,

i défilement paysage
train06.bmp train07.bmp train08.bmp train09.bmp train10.bmp train11.bmp
train12.bmp train13.bmp train14.bmp train15.bmp train16.bmp

résultat écran

Le fichier image paysage.bmp a la méme hauteur que l'écran, il est plus large que I'écran.

Les fichiers images du train sont toutes de méme dimension, les graphismes y sont dessinés

sur fond magenta (255,0,255).

Les tailles exactes de ces images ainsi que de I'écran ne sont pas connues au moment d'écrire le
code : le code doit étre "paramétrique” et s'adapter automatiquement a ces différentes valeurs
selon les éléments fournis par le graphiste, et il est possible que le projet final ne soit pas sur un
¢cran 800x600 mais dans une autre résolution graphique (autres valeurs pour set _gfx _mode...)
La locomotive doit étre centrée horizontalement sur I'écran, et placée verticalement de telle sorte
que la base de I'image (les roues) soit a 50 pixels au dessus de la base de 1'écran.

TSVP %

1/5

L'animation doit se faire a environ 50 images par seconde (fonction rest : parametre en
millisecondes). La vitesse de défilement sera de 100 pixels par seconde. L'animation de la
locomotive doit se faire a 25 dessins par seconde : on ne passe d'un graphisme locomotive au
suivant qu'une fois sur deux.

Pour éviter tout risque de clignotement, I'animation sera réalisée en "double-buffer".

Le nombre d'images de locomotive est défini en section A :
#define NBLOCO 17

Vous disposez des sous-programmes suivants, supposés déja écrits par un collégue

// Charger image a partir d'un fichier, avec gestion de 1'échec éventuel (abandon de programme)
BITMAP *chargerImage (char *nomFichierImage) ;

// Chargement de tous les fichiers "train00.bmp" "train01.bmp" ... dans le tableau de BITMAP
void chargerLocos (BITMAP *locos[NBLOCO]) ;

a) Dessinez un ou plusieurs schémas représentant la géométrie du projet, en indiquant des
cotes (mesures) se rapportant aux noms de variables qui seront utilisés dans le programme.
Explicitez les formules qui vous permettrons de connaitre toutes les valeurs utiles a partir
des valeurs de départ (dans l'énoncé ou récupérables a l'exécution avec Allegro)

b) Ecrivez le code, a ajouter au squelette Allegro, pour obtenir le résultat décrit ci dessus.
Précisez bien dans quelle(s) section(s) vous ajoutez vos lignes de code.
1l n'est pas indispensable de découper en sous-programmes (les 2 sous-programmes
chargerImage et chargerLocos sont supposés disponibles, ils ne sont pas demandés)

. Détection niveau pixel et traitement d'image 6 points (3 +3)
On dispose d'un fichier image "paques.bmp" dans le répertoire de projet. Le graphisme est
constitué de zones de couleurs unies sur fond blanc. On souhaite réaliser un programme qui

charge ce fichier, applique un algorithme qui dessine 57 disques de couleur aléatoires dans les
zones de couleur (pas sur le fond blanc), et affiche le résultat a I'écran. Echap. pour quitter.

17 easter_egg B N % =

0,9

‘at

paques.bmp résultat écran (moins vilain en couleurs !)

Les 57 disques sont a des positions aléatoires, ils ont un rayon aléatoire entre 10 et 30 pixels.
Pour éviter qu'un disque soit "a cheval" entre 2 zones de couleurs différentes on testera que la
zone envisagée est bien de couleur uniforme. Pour simplifier on pourra se contenter d'étudier les
pixels du carré circonscrit au disque. Voir illustration page suivante.

2/5

Une fonction placeOk renvoie un booléen Faux si le
@ carré circonscrit au disque dont les coordonnées du

centre et le rayon qui lui sont donnés en parameétre

contient des pixels de couleurs distinctes (cas 2) ou si la

couleur est unie mais est blanche (cas 1). Elle retourne

Vrai sinon (cas 3). L'image est nécessairement regue en
parameétre (mais n'est pas modifiée).

@ Pour cette fonction la gestion des bords image n'est pas

demandée (les accés hors image ne plantent pas)

a) Ecrire la fonction placeOk selon les indications ci dessus.

b) Ecrire la procédure decorer qui recoit une BITMAP (de taille arbitraire) et qui dessine
dessus 57 disques qui respectent les contraintes de placement (en utilisant placeOk)
Le reste du programme n'est pas demandé.

3. Cinématiques et structures acteurs 6 points (4 +2)

Dans cet exercice on souhaite étudier les sous-programmes de déplacement (pas d'affichage) d'un
programme qui fait bouger un nombre variable d'acteurs autonomes, par exemple des soucoupes
volantes. Les soucoupes se déplacent en ligne droite selon un mouvement rectiligne uniforme.
Les soucoupes de type 0 rebondissent comme une boule de billard dés qu'un coté touche un bord
écran (800 par 600 mais utilisez les globales SCREEN W et SCREEN H)

Les soucoupes de type 1 disparaissent complétement par un bord écran avant de ré-apparaitre
progressivement par le bord opposé : gestion des bords type PacMan.

Les structures suivantes sont supposées définies en section B (inutile de recopier)

typedef struct acteur // chaque acteur qui se déplace
{
int x, y; // coordonnées (du coin supérieur gauche)
int dx, dy:; // vecteur déplacement
BITMAP * sprite; // image pour cet acteur
int type; // 0 pour un acteur rebond billard, 1 pour un acteur PacMan

} t_acteur;

typedef struct listeActeurs // Une collection d'acteurs (vague d'assaut)

{
int max; // nombre maxi d'éléments = taille du tableau de pointeurs
t_acteur **tab; // le tableau de pointeurs sur acteurs

} t_listeActeurs;

La vague d'assaut est représentée par un tableau de pointeurs sur structures, les cases "non
utilisées" de ce tableau ayant par convention la valeur NULL (pas de soucoupe a cette case).
Toutes les données utiles sont supposées déja allouées/chargées/initialisées dans ces structures.
Pour connaitre la taille (largeur et hauteur) d'une soucoupes on se basera sur son sprite associé.

a) Ecrire le sous-programme actualiserActeur qui recoit comme seul paramétre un

pointeur sur un t_acteur, qui met a jour la position de cet acteur a partir de son vecteur
déplacement et qui gere les bords selon son type. Aucun affichage.

b) Ecrire le sous-programme actualiserListeActeurs qui regoit comme seul

parameétre un pointeur sur un t_listeActeurs et qui actualise tous les acteurs référencés en
appelant le sous-programme précédent.

3/5

Annexes
SQUELETTE DE PROJET ALLEGRO

I1 est inutile de recopier ce code, mais précisez bien dans quelle(s) section(s) les morceaux de
programme que vous écrivez doivent se trouver. Ne répondez pas sur 1'énoncé, il n'y a pas la place.

#include <allegro.h>
#include <time.h>

// SECTION A : CONSTANTES #define

// SECTION B : DEFINITIONS DES STRUCTURES

// SECTION C : PROTOTYPES DES SOUS-PROGRAMMES

// Programme principal
int main(int argc, char *argv[])
{
// SECTION D : DECLARATIONS DES VARIABLES DU MAIN

// SECTION E : INITIALISATION ALLEGRO
srand (time (NULL)) ;

allegro_init();

install keyboard() ;

install mouse() ;

// SECTION F : OUVERTURE MODE GRAPHIQUE

set_color_ depth (desktop_color depth());

if (set_gfx mode (GFX_AUTODETECT WINDOWED,800,600,0,0) !=0)
{

allegro _message ("probleme mode graphique") ;
allegro_exit();
exit (EXIT FAILURE) ;

}

show_mouse (screen) ;

// SECTION G : AVANT BOUCLE JEU

// SECTION H : BOUCLE JEU
while ('key[KEY ESC])
{

}

// SECTION I : TERMINER LE PROGRAMME

return O;

}
END_OF MAIN();

// SECTION J : DEFINITIONS DES SOUS-PROGRAMMES

4/5

LISTE DE FONCTIONS, TYPES ET VARIABLES ALLEGRO UTILES

void allegro_message(const char *text format, ...);
Affiche une popup avec un message.

screen : extern BITMAP *screen,;
C'est I'identifiant de I'écran réel

SCREEN_W SCREEN_H
Largeur (Width) et Hauteur (Height) de la sortie graphique Allegro (I'écran Allegro)

void clear_bitmap(BITMAP *bmp);
Efface (en noir) la bitmap en paramétre.

void clear_to_color(BITMAP *bmp, int color);
Efface (en couleur color) la bitmap en parametre.

int makecol(int r, int g, int b);
Pour fabriquer 'entier représentant une couleur a partir de Red/Green/Blue
Chaque composante est donnée entre 0 (minimum) et 255 (maximum)

int getr(int c); int getg(int c); int getb(int c);
Permet d'accéder aux 3 composantes rouge vert et bleu d'une couleur (entier c)
Chaque composante est entre 0 (minimum) et 255 (maximum)

void putpixel(BITMAP *bmp, int x, int y, int color);
Poser un seul pixel de couleur sur une BITMAP ou sur I'écran (screen) en x y
La couleur précédente du pixel est écrasée.

int getpixel(BITMAP *bmp, int x, int y);
Lire la couleur du pixel de la BITMAP ou de I'écran (screen) en x y
La valeur récupérée est un int, équivalent a une couleur obtenue avec un makecol

void rectfill(BITMAP *bmp, int x1, int y1, int x2, int y2, int color);
Dessine un rectangle plein. (x1,yl) : coin supérieur gauche (x2,y2) : coin inférieur droit

void circlefill(BITMAP *bmp, int X, int y, int radius, int color);
Dessine un cercle plein (disque) (x,y) : coordonnées du centre radius : rayon du disque

typedef struct BITMAP ...
Structure qui contient les images (chargées depuis fichiers ou dessinées par programme)
Les bitmaps sont toujours déclarées et utilisées comme pointeurs : BITMAP *
Pour accéder a la largeur et a la hauteur d'une BITMAP aprés création ou chargement :
bmp->w // largeur (width) bmp->h // hauteur (height)

BITMAP *create_bitmap(int width, int height);
Allouer et initialiser une BITMAP "vide" de taille width(largeur) x height(hauteur)

BITMAP *load_bitmap(const char *filename, RGB *pal);
Charge l'image d'un fichier .bmp dans une BITMAP créée sur mesure.
Retourne le pointeur sur la BITMAP en cas de succeés, NULL en cas d'échec (a tester)
Nous n'utilisons pas les palettes : on indiquera NULL dans le paramétre pal.

int save_bitmap(const char *filename, BITMAP *bmp, const RGB *pal);
Sauve I'image d'une BITMAP dans un fichier .bmp (ou .tga ou .pcx)
Nous n'utilisons pas les palettes : on indiquera NULL dans le paramétre pal.

void blit(BITMAP *source, BITMAP *dest, int source_x, int source_y, int dest_x, int dest_y, int width, int height);
Copie une zone rectangulaire de la BITMAP source vers la BITMAP destination.

void draw_sprite(BITMAP *bmp, BITMAP *sprite, int x, int y);
Dessine la totalité de I'image sprite sur la bitmap bmp, en évitant de dessiner la ou les pixels du sprites sont "transparents" (violet...)
Attention par rapport a un blit, ici la destination est indiquée avant la source.

key : extern volatile char key[KEY MAX];
Tableau de booléens (Vrai/Faux) indiquant si une touche est enfoncée
Entre crochet mettre l'identifiant du scancode de la touche :
KEY A...KEY Z KEY 0...KEY 9 KEY _SPACE KEY_ENTER

mouse_b : extern volatile int mouse b;
Contient I'état instantané des boutons de la souris.
mouse_b&l : Booléen vrai si le bouton gauche est enfoncé, faux sinon
mouse_b&?2 : Booléen vrai si le bouton droit est enfoncé, faux sinon

mouse_Xx : extern volatile int mouse x; mouse_y : extern volatile int mouse_y;
Coordonnées instantanées de la souris (bout du pointeur)

5/5

http://alleg.sourceforge.net/stabledocs/en/alleg000.html#allegro_message
http://alleg.sourceforge.net/stabledocs/en/alleg004.html#mouse_y
http://alleg.sourceforge.net/stabledocs/en/alleg004.html#mouse_y
http://alleg.sourceforge.net/stabledocs/en/alleg004.html#mouse_x
http://alleg.sourceforge.net/stabledocs/en/alleg004.html#mouse_x
http://alleg.sourceforge.net/stabledocs/en/alleg004.html#mouse_b
http://alleg.sourceforge.net/stabledocs/en/alleg004.html#mouse_b
http://alleg.sourceforge.net/stabledocs/en/alleg006.html#key
http://alleg.sourceforge.net/stabledocs/en/alleg006.html#key
http://alleg.sourceforge.net/stabledocs/en/alleg014.html#draw_sprite
http://alleg.sourceforge.net/stabledocs/en/alleg014.html#blit
http://alleg.sourceforge.net/stabledocs/en/alleg010.html#save_bitmap
http://alleg.sourceforge.net/stabledocs/en/alleg010.html#load_bitmap
http://alleg.sourceforge.net/stabledocs/en/alleg009.html#create_bitmap
http://alleg.sourceforge.net/stabledocs/en/alleg001.html#BITMAP
http://alleg.sourceforge.net/stabledocs/en/alleg013.html#circlefill
http://alleg.sourceforge.net/stabledocs/en/alleg013.html#rectfill
http://alleg.sourceforge.net/stabledocs/en/alleg013.html#getpixel
http://alleg.sourceforge.net/stabledocs/en/alleg013.html#putpixel
http://alleg.sourceforge.net/stabledocs/en/alleg012.html#getb
http://alleg.sourceforge.net/stabledocs/en/alleg012.html#getg
http://alleg.sourceforge.net/stabledocs/en/alleg012.html#getr
http://alleg.sourceforge.net/stabledocs/en/alleg012.html#makecol
http://alleg.sourceforge.net/stabledocs/en/alleg009.html#SCREEN_H
http://alleg.sourceforge.net/stabledocs/en/alleg009.html#SCREEN_W

