Algorithmique / Programmation structurée

ECe £

PARIS ECOLE D'INGENIEURS

TD-TP Allegro 3 — Acteurs multiples, fonds, sprites, animations

1. Récapitulez ce que vous avez appris a faire avec les TDTP 1 et 2

Petite auto-évaluation pour vous aider a identifier vos éventuels points faibles et progresser...
En ayant une documentation a disposition (liste de fonctions Allegro et noms des parametres)

étes-vous actuellement capable de :

Pour chacun des points suivants, situez-vous entre NON et OUI :

NON
0

1010) |
1

Faire un projet Allegro sous CodeBlocks (linkage correct...) ?

Faire un main() correct (END_OF MAIN() ;) ?

Initialiser la librairie (allegro_init)
Rendre clavier et/ou souris opérationnels (install_keyboard install_mouse)

Sélectionner le mode couleur (set _color_depth) en utilisant le mode
couleur du bureau (desktop color depth) et choisir un mode graphique
(set_gfx mode) ?

Faire une boucle d'événements (="boucle d’animation" ="boucle de jeu")
que I’utilisateur peut arréter, par exemple en appuyant sur échap ?

Dans la boucle d’événements utiliser différentes touches du clavier pour
déclencher des appels de fonctions (par - exemple des primitives de dessin
rectfill etc.) ?

Dans la boucle d’événements utiliser les touches de direction pour déplacer
la position d'un ¢lément mobile ?

De créer une bitmap en mémoire (BITMAP* et fonction create bitmap) ?

De dessiner dedans et de ’afficher a I’écran (appels primitives de dessin,
fonction blit et la variable globale screen) ?

De récupérer une image bitmap dans le programme (load_bitmap), la
copier sur une autre bitmap ou l'afficher a I'écran ?

De la modifier pixel par pixel et d'afficher le résultat ?

De créer un buffer d'affichage "page" a la taille de I'écran et de 'utiliser
pour gérer des animations fluides en "double buffer" dans la boucle
d'animation ?

De maitriser la géométrie de l'affichage en donnant du ler coup les bonnes

coordonnées prenant en compte la taille des "objets" et de 1'écran (faire des
schémas sur papier !), de mettre les bonnes valeurs aux bons endroits lors
des appels (consulter la documentation !) ?

Algorithmique / Programmation structurée

ECE

PARIS ECOLE D'INGENIE

I\

c
]
w

OBJECTIFS A ATTEINDRE :

- Modéliser des "acteurs" en définissant une structure regroupant les caractéristiques individuelles

- Gérer simultanément un ensemble d'acteurs : soit en nombre fixe soit en nombre variable

- Faire une animation se déroulant sur une image de fond, éventuellement ajouter un avant plan

- Savoir créer et charger des images avec couleur spéciale transparence (rouge 255 vert 0 bleu 255)
- Utiliser ces images avec transparence avec les fonctions draw_sprite ou masked blit

- Dérouler une séquence d'animation en enchainant des images, synchroniser avec un déplacement

Consultez les exemples de programmes montrés en cours, disponibles sur le site.

Pour améliorer votre productivité et faire plus rapidement le tour des concepts et techniques a
connaitre, utilisez ces exemples de code comme des bases de travail : repérez les parties
pertinentes qui correspondent a vos objectifs, copiez/collez et modifiez selon vos besoins.

Méme si 'objectif final est de comprendre toutes les lignes de code des programmes, vous
pouvez dans un ler temps utiliser tels quels les aspects les plus techniques ou complexes,

quitte a revenir dessus plus tard pour les approfondir, les ré-écrire a votre maniére...

Complétez au moins un exercice par partie.

GESTION DE MULTIPLES « ACTEURS »

On appellera "acteur" un élément d'un jeu ou d'une animation qui doit réapparaitre a chaque
actualisation de I'affichage en évoluant dans son apparence et/ou sa position a chaque fois.
Cette évolution dépend de régles fixant son comportement plus ou moins complexe.

Un exemple (trés simple) d'acteur est un carré qui rebondit sur les bords de I'écran.

Le but des exercices suivants est d'intégrer dans un méme programme la gestion de multiples
acteurs. Un ordinateur ne peut exécuter qu'une seule instruction a la fois, il ne peut donc gérer
simultanément les acteurs, il faudra donc les gérer les uns aprés les autres en répétant :

gérer un peu acteur 0, gérer un peu acteur 1, gérer un peu acteur 2, ... gérer un peu acteur n-1

On aura généralement la chronologie suivante dans la boucle d'animation (ou boucle de jeu) :

Tant que (condition pour continuer)
Effacer buffer (ou blit du fond sur buffer si image de fond)
bouger un peu acteur 0 bouger un peu acteur 1 bouger un peu acteur 2 ... bouger un peu acteur n-1
afficher acteur 0 afficher acteur 1 afficher acteur 2 ... afficher acteur n-1 (sur le buffer)
Actualiser écran (blit du buffer sur I'écran) + petite pause pour temporiser (vitesse globale)

Enfin quand on parle d'acteurs multiples il s'agit de n acteurs avec n possiblement grand : il
est donc exclu de gérer n acteurs en copiant/collant n fois du code (il faut des boucles). Selon
l'objectif du programme, on souhaite pouvoir changer n ,sinon en cours de jeu, au moins
facilement en éditant une constante NACTEUR et recompilant.

Algorithmique / Programmation structurée

ECEeEZ

PARIS ECOLE D'INGENIEURS

Exercice 1 : Casse-pipes (Voir exemples 1_0 1_1 2 _0 du cours 3)

Méme exercice que l'exercice 5 du TDTP 2 de la semaine derniére. Si vous pensez avoir déja réalisé cet exercice
de maniere satisfaisante, faites valider par votre chargé de TP et passez a la suite.

Des trucs embétants, qui apparaissent un par un, circulent dans 1’écran et vous ne pouvez plus travailler.
Heureusement le curseur de la souris se transforme en viseur et vous pouvez vous en débarrasser en positionnant
le viseur sur la cible et en cliquant. Faire le programme, étape par étape.

Pour ce programme utilisez le double buffer avec une BITMAP *page de la méme taille que 1’écran : les
envahisseurs se déplacent sur cette page. Chaque envahisseur aura une couleur unique bien distincte.

Une fois que les envahisseurs se déplacent la souris tire dessus : a I’endroit du clic un getpixel sur le buffer
permet de récupérer la couleur sous le viseur (dans la séquence de la boucle de jeu, ceci doit avoir lieu avant
l'affichage du viseur !) Cette couleur permet de savoir quel envahisseur est touché (si le tir touche) puisque
chaque envahisseur est identifié par une couleur. Quand un envahisseur est touché ... ca dépend : il explose, se
met en colére, s’en va, disparait, se métamorphose (choisissez).

Pour avoir un curseur de souris spécial, faites install mouse mais pas show_mouse : le curseur standard reste
invisible. A la place dessinez vous méme directement sur le buffer (page) un viseur aux coordonnées souris.

Indications complémentaires :

Ne partez sur 1'idée d'un nombre variable d'acteurs que si vous vous sentez a l'aise car dans un premier temps il
est plus simple de gérer un nombre fixe d'acteurs : exemples 1 0et 1 1 du cours 3. On peut quand méme donner
l'illusion qu'un acteur est détruit en réinitialisant ses données (positions/taille/forme/couleur) : au moment ou un
acteur disparait, un autre apparait. En fait c'est le méme acteur, mais qui a changé de costume et qui s'est
téléporté instantanément !

Une alternative est d'ajouter un champ booléen "actif" a la structure t_acteur : en mettant a 0 la valeur de ce
champ (initialement 1) on indique qu'il disparait : les acteurs avec actif a 0 ne sont plus affichés (tester au
moment de l'affichage). Cette approche est comparable a l'utilisation d'un pointeur NULL pour signaler une
"case" disponible (exemple 2 0) en un peu moins sophistiqué.

Chaque acteur est référencé par un indice dans le tableau de pointeurs sur structures acteurs. Il peut étre
intéressant d'écrire une fonction trouveActeur qui prend en paramétre une couleur (ce qu'on obtient a partir d'un
getpixel) et qui retourne I'indice de 'acteur qui a cette couleur si un des acteurs a effectivement cette couleur, ou
-1 dans le cas ou aucun acteur ne correspond.

Cette fonction trouveActeur peut étre utilisée pour savoir quel acteur est touché lors d'un tir a la souris :

if (condition pour tirer){
cible = trouveActeur(getpixel (page, mouse_x, mouse_y));
if (cible !'= -1)
Il arrive quelque chose a mesActeurs[cible]

Pour déterminer une couleur unique pour chaque acteur le plus simple est de tirer aléatoirement sa couleur.
Pour étre stir qu'elle est effectivement unique on peut aussi utiliser trouveActeur :

do {

couleur = makecol (du hasard,du hasard,du hasard); // couleur au hasard
while (trouveActeur (couleur)!=-1); // si déja utilisée, retirer
acteur->couleur=couleur;

https://fercoq.bitbucket.io/allegro/Alleg_C3/2_0_acteurs_en_quantite_variable.html
https://fercoq.bitbucket.io/allegro/Alleg_C3/1_1_animation_structures.html
https://fercoq.bitbucket.io/allegro/Alleg_C3/1_0_animation_structures.html

Algorithmique / Programmation structurée

ECEeEZ

PARIS ECOLE D'INGENIEURS

Une carabine ne peut pas tirer en "continu" a chaque passage dans la boucle de jeu. Pour simuler un temps
minimum de rechargement le plus simple est d'utiliser une variable tmprecharge initialisée avec la valeur du
délai pour recharger (en nombre de tours de boucle de jeu) et une variable cptrecharge incrémentée a chaque
passage dans la boucle de jeu. Dés que cptrecharge>=tmprecharge on peut tirer (par exemple en cliquant).
Au moment ou on tire (que le tir touche un acteur ou pas) cptrecharge est réinitialisée a 0.

Pour que le joueur puisse voir qu'il a tiré, on peut dans ce cas dessiner un graphique supplémentaire, par exemple
un rond rouge, avant d'afficher le viseur. L'aspect de cet impact pourra dépendre du succes du tir (touché ou pas).
Comme on ne le dessine qu'une fois au moment du tir et que ce dessin se fait sur le buffer (page) qui est effacé a
chaque tour de jeu, l'impact n'apparaitra que trés briévement et il n'y aura pas besoin de l'effacer spécifiquement.

FOND, TRANSPARENCES, AVANTS-PLANS

Exercice 2 : Ecran de veille avec effets sur images (Voir exemple 3_0 du cours 3)

Imaginer et réaliser un écran de veille a partir d'une ou plusieurs images bougeant sur un fond et derri¢re un
avant-plan. Tester différentes fonctions draw_sprite de la bibliothéque pour obtenir un résultat original, effets de
miroirs, déplacements en zigzag (fonction sinus ?), jouer avec un stretch blit du fond sur le buffer ...

Pour plus de choix consultez la documentation allegro a la rubrique Blitting and sprites.

Attention aux unités spéciales d'Allegro pour les angles des rotations (paramétres de type fixed angle) :
14 ou vous auriez un angle que vous connaissez en radians vous allez mettre ftofix (angle*128.0/M PI)
la ou vous auriez un angle que vous connaissez en degrés vous allez mettre ftofix (angle*128.0/180.0)

Attention aux unités particuliéres d'Allegro pour les changements d'échelles (paramétres de type fixed scale) :
utilisez ftofix (echelle) ou échelle est une valeur float : 0.5 taille moitié, 2.0 taille double ...

Exercice 3 : Destruction de I'Etoile de 1a Mort (Voir exemples 2_1 3_0 du cours 3)

11 s'agit encore de tirer a la souris sur une cible mais cette fois ci la cible est unique, grosse, se déplace de
maniere irréguliere (au hasard 1 fois sur 20 elle change au hasard de vitesse) et nous voulons donner l'impression
que la cible se détruit progressivement précisément aux endroits ou les tirs touchent. Imaginez, par exemple, que
notre cible soit 1'étoile de la mort. Il faut deux images de méme taille, sur fond couleur transparente :

Etoilel : une image de I'étoile de la mort en bon état

Etoile2 : une image de 1'étoile de la mort totalement ravagée en chaque point.

Pour obtenir Etoile2 le plus simple est de partir d'Etoilel et de 1'éditer (logiciel de dessin) : I'outil smudge ou le
clone brush permettent de déstructurer 1'image, puis ajouter des taches de roussi (ne passez pas trop de temps,
I'important est le code). Prévoyez aussi une image de fond. Eventuellement trouvez une image pour un avant-
plan et pour un viseur, sur fonds transparents.

L'idée est d'avoir la séquence suivante dans la boucle de jeu :
Tant que (condition pour continuer)
blit bitmap du fond sur buffer
Bouger 1'étoile de la mort
Si tir au but alors
dessiner un petit disque de couleur invisible makecol(255,0,255)
a la position correspondante directement sur la bitmap de Etoilel
attention au changement de repére (coord. écran vers coord. image, faites un schéma, réfléchissez !)
draw_sprite sur buffer de bitmap Etoile2
draw_sprite sur buffer de bitmap Etoilel (méme position que Etoile2)
draw_sprite sur buffer de bitmap de viseur en mouse X mouse y
masked_blit de la bitmap avant plan sur le buffer
Actualiser écran (blit du buffer sur I'écran) + petite pause pour temporiser (vitesse globale)

https://fercoq.bitbucket.io/allegro/Alleg_C3/3_0_decor_et_sprites.html
https://fercoq.bitbucket.io/allegro/Alleg_C3/2_1_acteurs_en_quantite_variable.html
https://fercoq.bitbucket.io/allegro/Alleg_C3/3_0_decor_et_sprites.html

Algorithmique / Programmation structurée

I\

ECE

PARIS ECOLE D'INGENIEURS

En affichant Etoilel au méme endroit que Etoile2, on cache totalement Etoile2 au début du jeu. A mesure qu'on
fait des "trous de transparence" avec la couleur spéciale dans Etoilel on découvre progressivement la version
détruite de l'image de départ qui est en dessous.

Approfondissement : écrivez une fonction qui prend en parameétre une bitmap et qui compte le pourcentage de
l'image qui est colorée en transparence. En appelant cette fonction avec la bitmap Etoilel en paramétre il est
possible d'avoir une estimation quantitative du niveau de destruction atteint : au dela d'un certain seuil le jeu se
termine (message de félicitation et/ou ce qui reste de I'étoile de la mort explose)

SEQUENCE ANIMEE

Exercice 4 : Histoire d'un bonhomme qui marche (Voir exemple 4_0 du cours 3)

Pour cet exercice vous pouvez prendre la séquence animée d'un bonhomme dans le ZIP regroupant I'ensemble des
fichiers sources du Cours3 : images/bonhomme. Vous pouvez aussi essayer de dessiner grossiérement une séquence
d'animation avec un logiciel de dessin (mais dans ce cas restez simple et ne faites pas trop d'images car le dessin
animé prend beaucoup de temps a créer).

— récupérer dans un tableau de BITMAP* toutes les images de la séquence d’animation (tester !)

— gérer I’affichage de la succession des images a I’aide d’une variable imgcourante initialisée a 0

— controler la rapidité de I’animation et ne changer d’image qu'une fois sur tmpimg a 1’aide d’une variable
cptimg incrémentée de un a chaque tour : si cptimg >= tmpimg alors remettre cptimg a 0 et passer a
I'image suivante de I'animation. L'animation tourne en boucle, arrivée 8 NIMAGE elle repart a 0.

— gérer simultanément le déplacement de I’animation a 1’écran : le bonhomme se dirige vers la droite ou
vers la gauche a partir des fléches du clavier

Tout ceci devra se faire en double buffer.
Si vous utilisez le bonhomme restez sur un simple fond noir car il n'est pas dessiné sur fond transparent.

Exercice 5 : Flip le chat (Voir exemple 4_0 du cours 3)

C'est bien connu, un chat retombe toujours sur ses pattes. Ce programme devra le démontrer en laissant tomber
un chat, la téte a 'envers, depuis une abscisse aléatoire du haut de I'écran jusqu'au sol (situ¢ a SCREEN_H/2).
Entretemps il se sera retourné pour atterrir comme il convient a un félin. Arrivé au sol il partira en courant
jusqu'au bord écran le plus proche. Dés qu'il sort complétement un nouveau chat est laché du haut de 1'écran...
Pour simplifier I'expérience on ne demande pas de décomposer le retournement du chat en séquence animée (le
passage de draw_sprite v_flip a draw_sprite suffira). De méme il n'est pas demandé un amorti impeccable de
l'atterrissage qui paraitra sans doute un peu brutal...

Utilisez le décor et les images de la séquence images/cat dans le ZIP regroupant I'ensemble des fichiers sources du Cours3

Approfondissement : gérer une "pluie" de chats qui tombent aléatoirement du haut de 1'écran...

https://fercoq.bitbucket.io/allegro/Alleg_C3/4_0_sprite_anime.html
https://fercoq.bitbucket.io/allegro/Alleg_C3/4_0_sprite_anime.html
https://fercoq.bitbucket.io/allegro/Alleg_C3/Alleg_C3.zip
https://fercoq.bitbucket.io/allegro/Alleg_C3/Alleg_C3.zip
https://fercoq.bitbucket.io/allegro/Alleg_C3/Alleg_C3.zip

	TD-TP Allegro 3 – Acteurs multiples, fonds, sprites, animations
	1. Récapitulez ce que vous avez appris à faire avec les TDTP 1 et 2

