
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Abstraction / design patterns
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

Exceptions, flots, fichiers...

4

COURS 10

A) Exceptions
B) Flots : streams
C) Flots fichiers : fstream
D) Flots chaînes : stringstream
E) Sérialisation

5

COURS 10

A) Exceptions
B) Flots : streams
C) Flots fichiers : fstream
D) Flots chaînes : stringstream
E) Sérialisation

6

Exceptions

7

Exceptions

● Le flot d’exécution d’un programme passe par de
nombreuses boites : sous-programmes et méthodes

● Sous-programme/méthode = sous-traitant spécialiste
● Prototype = nom + format d'appel du sous-programme

nom : résumé de la spécialité du sous-programme
paramètres in : nécessaires au job du sous-programme
paramètres out, retour : résultat(s) du job
paramètre implicite this : pour les méthodes

● Prototype + Commentaires/Documentation

→ Définition du CONTRAT du sous-programme

8

Exceptions

● Le contrat engage les 2 parties
● Appelant (prog. utilisateur du sous-programme)
● Appelé (le sous-programme)

● Il définit de manière explicite les entrées correctes
sous forme de pré-conditions à respecter

● L'appelant s'engage à fournir à l'appelé
des entrées correctes respectant les pré-conditions

● L'appelé s'engage à fournir en réponse à l'appelant
des sorties correctes respectant les post-conditions

● Le respect des contrats au cours des appels successifs
garantit le maintient d’une cohérence des données
et de la suite donnée aux traitements

9

Exceptions

Sous-programme
correct

CORRECTE

CORRECTE

entrée

sortie

Sous-programme
non correct

CORRECTE

Plantage
Blocage

Non correcte

entrée

sortie

Le contrat définit les entrées correctes et les sorties correctes résultantes
Le sous-programme doit respecter le contrat pour être considéré correct
Le sous-programme est donc testé/validé sur des entrées correctes

10

Exceptions

Sous-programme
correct

CORRECTE

CORRECTE

entrée

sortie

Sous-programme
correct

CORRECTE
Cas particulier

CORRECTE :
Traitement spécial

et / ou
Retour code erreur

entrée

sortie

Le contrat définit les entrées correctes et les sorties correctes résultantes
On peut définir des cas particuliers "à problèmes" comme faisant partie
des entrées "correctes" → correctes car correctement gérées

11

Exceptions

● Cette gestion des « cas à problèmes » est souhaitable
elle améliore la robustesse des logiciels...

● Mais en programmation procédurale (langage C)
elle présente de nombreuses difficultés :

➔La fonction où le problème est détecté n’est pas
placée assez haut dans la hiérarchie d’appels
pour décider de la suite à donner, il faut
retourner le problème à l’appelant →up →up ...

➔Parasite le mécanisme de retour de valeur
➔Utilisation de codes retours spéciaux (NULL, 1, -3)
➔Le code de gestion des erreurs devient

aussi gros que le code des situations normales
et ils se mélangent : travail en +, mauvaise lisibilité
risques d’erreurs dans la gestion d’erreurs...

12

Exceptions

● On appelle erreur une anomalie durant l’exécution qui
n’est pas prise en compte et qui peut conduire à un
plantage ou a un mauvais résultat

● On appelle exception une anomalie durant l’exécution
qui est prise en compte par le code et qui est « gérée »

● En C++ et dans les langages objets usuels on a un
mécanisme de modification du flot de contrôle et de
notification des problèmes plus haut dans la hiérarchie

● Ce mécanisme utilise 3 nouveaux mots clés :
➔ try : est un bloc où on essaie de faire quelque chose
➔ throw : indique que ça ne se passe pas bien !
➔ catch : est un bloc après le bloc try qui s’exécute

 si effectivement ça ne s’est pas bien passé

13

Exceptions

 ...;

 try
 {
 if (...)
 throw ...;

 ...;

 if (...)
 throw ...;

 ...;
 ...;
 }
 catch(...)
 {
 ...;
 ...;
 }
 ...;

dans tous les cas l’exécution continue après le try/catch

try : est un bloc où on essaie de faire quelque chose

throw : indique que ça ne se passe pas bien !

catch : est un bloc après le bloc try qui s’exécute
 si effectivement ça ne s’est pas bien passé

!

14

Exceptions

 ...;

 try
 {
 if (...)
 throw ...;

 ...;

 if (...)
 throw ...;

 ...;
 ...;
 }
 catch(...)
 {
 ...;
 ...;
 }
 ...;

alors on lance (throw) une exception :

On essaye d’exécuter un bloc de code (bloc try) ...

Si on détecte ici un 1er cas à problème

l’exécution passe directement dans le catch !

exécution du bloc catch : gestion du problème

dans tous les cas l’exécution continue après le try/catch

15

Exceptions

 ...;

 try
 {
 if (...)
 throw ...;

 ...;

 if (...)
 throw ...;

 ...;
 ...;
 }
 catch(...)
 {
 ...;
 ...;
 }
 ...;

alors on lance (throw) une exception :

On essaye d’exécuter un bloc de code (bloc try) ...

Si on détecte ici un 2ème cas à problème

l’exécution passe directement dans le bloc catch !

Si il n’y avait pas de problème ici on passe à la suite...

exécution du bloc catch : gestion du problème

dans tous les cas l’exécution continue après le try/catch

16

Exceptions

 ...;

 try
 {
 if (...)
 throw ...;

 ...;

 if (...)
 throw ...;

 ...;
 ...;
 }
 catch(...)
 {
 ...;
 ...;
 }
 ...;

le bloc try s’est exécuté sans problèmes...

On essaye d’exécuter un bloc de code (bloc try) ...

l’exécution reprend directement après le bloc catch !

Si il n’y avait pas de problème ici on passe à la suite...

dans tous les cas l’exécution continue après le try/catch

Si il n’y avait pas de problème ici on passe à la suite...

17

Exceptions

 double x = ???;

 /// Calcul et affichage de la racine carrée de l'inverse de x
 try
 {
 if (x == 0.0)
 throw std::domain_error("Denominateur nul");

 double inverse = 1.0 / x;

 if (inverse<0.0)
 throw std::domain_error("Racine negative");

 double resultat = sqrt(inverse);
 std::cout << "resultat = " << resultat << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e.what() << std::endl;
 }
 std::cout << "Ensuite la vie continue..." << std::endl;

!

18

Exceptions

● La structure de contrôle try/catch est indivisible :
un bloc try doit être immédiatement suivi d’un catch

● std::domain_error est une classe d’objets exceptions,
le paramètre de son constructeur est une chaîne qui
décrit le problème.

● Cette chaîne qui décrit le problème est récupérable
avec la méthode what()

● On peut throw une donnée ou un objet
d’un type quelconque.

● Catch attrape ou récupère l’objet ou la donnée à la
condition qu’il déclare son paramètre avec un type
compatible : soit le même type, soit un type d’une
classe plus générale dans une hiérarchie d’héritage

!

19

Exceptions

● Catch attrape ou récupère l’objet ou la donnée à la

condition qu’il déclare son paramètre avec un type
compatible : soit le même type, soit un type d’une
classe plus générale dans une hiérarchie d’héritage

 Sur l’exemple :
 une std::domain_error
est une std::exception

20

Exceptions

 double x = ???;

 /// Calcul et affichage de la racine carrée de l'inverse de x
 try
 {
 if (x == 0.0)
 throw std::domain_error("Denominateur nul");

 double inverse = 1.0 / x;

 if (inverse<0.0)
 throw std::domain_error("Racine negative");

 double resultat = sqrt(inverse);
 std::cout << "resultat = " << resultat << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e.what() << std::endl;
 }
 std::cout << "Ensuite la vie continue..." << std::endl;

// les objets sont attrapés par référence constante

description

description

description

21

Exceptions

 double x = ???;

 /// Calcul et affichage de la racine carrée de l'inverse de x
 try
 {
 if (x == 0.0)
 throw 57;

 double inverse = 1.0 / x;

 if (inverse<0.0)
 throw 28;

 double resultat = sqrt(inverse);
 std::cout << "resultat = " << resultat << std::endl;
 }
 catch(int e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e << std::endl;
 }
 std::cout << "Ensuite la vie continue..." << std::endl;

// les types élémentaires sont attrapés par valeur

Ici throw d’un type qui ne dérive pas de std::exception
(sauf cas particulier on préférera l’approche précédente)

ici on récupère 57 ou 28

22

Exceptions

● La possibilité de throw un objet de type quelconque
permet d’envoyer au bloc catch des données arbitraires

● Par exemple on peut essayer de récupérer des
données partiellement traitées (traitement coûteux)
ou des données utilisateurs, par exemple l’état
du document d’un traitement de texte pour le
sauver avant de crasher suite à une anomalie grave

● Après un bloc try on peut avoir plusieurs blocs catch
du plus spécifique au plus général (en types)

● Sur l’exemple suivant, on essaye de préserver le
résultat d’un calcul intermédiaire quand le début
du traitement a réussi mais la suite échoue
(l’exemple est bidon car ici on pourrait anticiper
 tous ces problèmes avec des tests, préférable !)

!

23

Exceptions
 double x = -0.25;
 try
 {
 if (x == 0.0)
 throw std::domain_error{"Denominateur nul"};

 double inverse = 1.0 / x;

 if (inverse<0.0)
 throw inverse;

 double resultat = sqrt(inverse);
 std::cout << "resultat = " << resultat << std::endl;
 }
 catch(double donnees)
 {
 std::cerr << "Resultat final impossible" << std::endl;
 std::cerr << "Resultat partiel : " << donnees << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e.what() << std::endl;
 }

 std::cout << "Ensuite la vie continue..." << std::endl;

24

Exceptions

● Le mécanisme des exceptions traverse les niveaux
d’appels de fonctions en fonctions (ou méthodes)

● Un throw peut être lancé depuis un sous-sous-sous
programme ou même dans une fonction de librairie

● Le code appelé va s’interrompre et le mécanisme va
remonter le problème jusqu’à trouver un catch avec
paramètre compatible en type : l’exécution reprend là

● Les données intermédiaires de types automatiques qui
existaient dans les blocs remontés sont bien détruites

● Enfin si aucun catch correspondant n’est trouvé alors
finalement le programme crash avec le message
descriptif what() affiché (c’est aussi le cas si on throw
depuis un code qui n’a pas été lancé depuis un try)

!

25

Exceptions
double fonction(double x)
{
 if (x == 0.0) throw std::domain_error{"Denominateur nul"};
 if (1.0/x <0.0) throw std::domain_error{"Racine negative"};
 return sqrt(1.0/x);
}

std::vector<double> appliquer(const std::vector<double>& entrees)
{
 std::vector<double> resultat;
 for (auto x: entrees) resultat.push_back(fonction(x));
 return resultat;
}

int main()
{
 std::vector<double> monVec{0.25, 0.01};
 try
 {
 std::vector<double> res = appliquer(monVec);
 for (auto y: res) std::cout << y << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e.what() << std::endl;
 }
 /// Dans tous les cas le programme continue...
 std::cout << "monVec est utilisable..." << std::endl;

Ici tout se passe bien

26

Exceptions
double fonction(double x)
{
 if (x == 0.0) throw std::domain_error{"Denominateur nul"};
 if (1.0/x <0.0) throw std::domain_error{"Racine negative"};
 return sqrt(1.0/x);
}

std::vector<double> appliquer(const std::vector<double>& entrees)
{
 std::vector<double> resultat;
 for (auto x: entrees) resultat.push_back(fonction(x));
 return resultat;
}

int main()
{
 std::vector<double> monVec{0.25, 0.01, 0.00, 1.00};
 try
 {
 std::vector<double> res = appliquer(monVec);
 for (auto y: res) std::cout << y << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e.what() << std::endl;
 }
 /// Dans tous les cas le programme continue...
 std::cout << "monVec est utilisable..." << std::endl;

27

Exceptions
double fonction(double x)
{
 if (x == 0.0) throw std::domain_error{"Denominateur nul"};
 if (1.0/x <0.0) throw std::domain_error{"Racine negative"};
 return sqrt(1.0/x);
}

std::vector<double> appliquer(const std::vector<double>& entrees)
{
 std::vector<double> resultat;
 for (auto x: entrees) resultat.push_back(fonction(x));
 return resultat;
}

int main()
{
 std::vector<double> monVec{0.25, 0.01, 0.00, 1.00};
 try
 {
 std::vector<double> res = appliquer(monVec);
 for (auto y: res) std::cout << y << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e.what() << std::endl;
 }
 /// Dans tous les cas le programme continue...
 std::cout << "monVec est utilisable..." << std::endl;

Le problème est signalé !
pas de catch ici, on remonte à l’appelant ...

On arrête tout,
on sort de la boucle,
plus de x, on le détruit,
pas de catch ici, on remonte
après avoir détruit resultat

On arrête le try,
la locale res est détruite,
il y a un catch qui match
on y va !

28

Exceptions
double fonction(double x)
{
 if (x == 0.0) throw std::domain_error{"Denominateur nul"};
 if (1.0/x <0.0) throw std::domain_error{"Racine negative"};
 return sqrt(1.0/x);
}

std::vector<double> appliquer(const std::vector<double>& entrees)
{
 std::vector<double> resultat;
 for (auto x: entrees) resultat.push_back(fonction(x));
 return resultat;
}

int main()
{
 std::vector<double> monVec(200000000 , 0.25);
 try
 {
 std::vector<double> res = appliquer(monVec);
 for (auto y: res) std::cout << y << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e.what() << std::endl;
 }
 /// Dans tous les cas le programme continue...
 std::cout << "monVec est utilisable..." << std::endl;

200 millions de doubles, ça passe !

200 millions de doubles en plus, ça casse !

29

Exceptions
double fonction(double x)
{
 if (x == 0.0) throw std::domain_error{"Denominateur nul"};
 if (1.0/x <0.0) throw std::domain_error{"Racine negative"};
 return sqrt(1.0/x);
}

std::vector<double> appliquer(const std::vector<double>& entrees)
{
 std::vector<double> resultat;
 for (auto x: entrees) resultat.push_back(fonction(x));
 return resultat;
}

int main()
{
 std::vector<double> monVec(200000000 , 0.25);
 try
 {
 std::vector<double> res = appliquer(monVec);
 for (auto y: res) std::cout << y << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Resultat impossible" << std::endl;
 std::cerr << "La raison est : " << e.what() << std::endl;
 }
 /// Dans tous les cas le programme continue...
 std::cout << "monVec est utilisable..." << std::endl;

On arrête tout,
on sort de la boucle,
plus de x, on le détruit,
pas de catch ici, on remonte
après avoir détruit resultat

On arrête le try,
la locale res est détruite,
il y a un catch qui match
on y va !

30

Exceptions

● Le mécanisme des exceptions traverse les niveaux
d’appels de fonctions en fonctions (ou méthodes)

● Un throw peut être lancé depuis un sous-sous-sous
programme ou même dans une fonction de librairie

● Ça veut dire qu’on va pouvoir gérer de façon propre
et efficace les problèmes d’allocation mémoire …

● Ceci ne marche qu’à la condition de bien encadrer
le code à l’initiative d’une séquence d’appels par un
try/catch, sinon l’exception remonte au main et crash !

● Vous écrivez une fonction/méthode (y compris constructeur)
vous voulez tester une pré-condition mais la fonction
ne peut pas savoir quoi faire du problème => throw !

● Charge à l’appelant de récupérer le problème : catch

!

31

Exceptions

report errors presumably
detectable only when
the program executes

dynamic cast of polymorphic
reference … (failed downcast)

situations where the inputs
are outside of the domain on
which an operation is defined

report errors presumably
detectable before the
program executes
such as violations
of logical preconditions

thrown as exceptions by
the allocation functions
to report failure to
allocate storage

https://en.cppreference.com/w/cpp/error/exception

reports errors that arise
because an argument value
has not been accepted

reports errors that are
consequence of attempt
to access elements
out of defined range

Pas à apprendre
 par cœur !

https://en.cppreference.com/w/cpp/error/exception

32

Exceptions

Retenez
➔ logic_error : à lancer quand la situation est anormale

du point de vue du fonctionnement interne du logiciel

➢ Typiquement l’appelant aurait dû éviter d’appeler
avec ces paramètres (indique une incohérence)

➢ Exemple : Sommet* Maillage::getSommet(int idx)
reçoit un idx<0 ou idx≥m_sommets.size()

➔ runtime_error : à lancer quand la situation est un
problème qui ne dépend pas directement du logiciel

➢ Typiquement une ressource n’est pas disponible
➢ Par exemple on doit ouvrir un fichier, il n’est pas là
➢ On attend que l’utilisateur complète un formulaire

mais on atteint un timeout de 10 minutes => menu

33

Exceptions

● Même si le mécanisme des exceptions est un immense
progrès par rapport aux techniques C de gestion
d’anomalies, la bonne utilisation des exceptions C++
reste un aspect difficile du développement

➔Discipline astreignante, pas de bénéfice immédiat
➔On ne peut pas facilement tester tous les cas
➔Lancer une exception est une rupture majeure

du flot d’exécution normal : sortie du contexte
➔Conservation de la cohérence des données
➔Une exception peut en générer d’autres
➔Objets dynamiques et fuites mémoire, threads ...

● Difficile mais indispensable dans certains domaines
critiques (transport, santé, bancaire...)

34

COURS 10

A) Exceptions
B) Flots : streams
C) Flots fichiers : fstream
D) Flots chaînes : stringstream
E) Sérialisation

35

Flots : streams

36

Flots : streams

● Pour manipuler des entrées et des sorties en mode
caractère la STL propose l’abstraction stream (flot)

● Un stream est une file de caractères (≈ octets)
qui connecte :

➔ un processus producteur (qui envoie des caractères)

➔ un processus consommateur (qui reçoit des caractères)

Producteur Consommateur

sortie entrée

output input

flot

stream

!

« écriture → world ! » « Hello ← lecture »

37

Flots : streams

● Du point de vue d’un programme C++
l’origine ou la destination d’un flot est soit

➢ un fichier, préfixe f
➢ une chaîne, préfixe string

● Du point de vue d’un programme C++

➢ le flot est une entrée, on peut y lire, préfixe i
➢ le flot est une sortie, on peut y écrire, préfixe o
➢ le flot est une entrée/sortie, on peut y lire/écrire

 pas de préfixe

➔ Il y a donc 6 combinaisons de classes concrètes flots...

!

38

Flots : streams

● Les 6 classes concrètes de flots du C++

!

http://www.cs.sjsu.edu/~pearce/modules/lectures/oop/streams/streams.htm

39

Flots : streams

● Et les entrées/sorties « habituelles » clavier/console ?
● Par défaut les objets flots std::cin et std::cout sont

liés aux pseudo-fichiers stdin et stdout du système C
● Du point de vue interface, lire/écrire clavier/console

est exactement comme lire/écrire un fichier
● C’est ce qui explique qu’il est impossible de traiter

de façon portable les problèmes de « effacer console »
 « saisir une touche sans avoir à valider avec entrée »
 parce qu’avec des fichiers ces opérations n’ont pas de sens

● Mais ces contraintes concrètes offrent une grande
souplesse : on peut re-diriger les flots, en particulier
stdin et stdout vers des fichiers réels (shells Unix...)

● C’est aussi ce qui permet l’utilitaire « AutoCin » proposé en TP

40

Flots : streams

● Quelle que soit la source (clavier, fichier, chaîne)
la lecture de caractères sur un flux d’entrée
utilise l’opérateur d’extraction >>

● Quel que soit le destinataire (console, fichier, chaîne)
l’écriture de caractères sur un flux de sortie
utilise l’opérateur d’insertion <<

● En prenant par référence un paramètre de type plus
général comme std::ostream le polymorphisme va
permettre d’utiliser le même code pour écrire un texte

➢ Affiché à l’écran (std::cout est de type ostream)
➢ Enregistré dans un fichier
➢ Ajouté à une chaîne

!

41

Flots : streams

● 2 petits trucs utiles à connaître :
➔ Il existe 2 autres objets « affichage » en + de std::cout

➔std::cerr qui est à utiliser pour signaler des
anomalies. C’est en général celui qu’on utilise à la
place de std::cout pour décrire les problèmes
par exemple dans les blocs catch

➔std::clog qui est à utiliser pour enregistrer le
déroulement des opération (rôle de debug)

➔L’un comme l’autre peuvent être redirigés vers
un fichier ce qui permet de séparer les messages

➔ Le retour à la ligne \n est possible et acceptable
La différence avec std::endl est que ce dernier
vide le buffer (les données sont envoyées c’est sûr)
mais en pratique ça ne fait pas grande différence

https://stackoverflow.com/a/34619037

42

COURS 10

A) Exceptions
B) Flots : streams
C) Flots fichiers : fstream
D) Flots chaînes : stringstream
E) Sérialisation

43

Flots fichiers : fstream

44

Flots fichiers : fstream

● Quel que soit le destinataire (console, fichier, chaîne)
l’écriture de caractères sur un flux de sortie
utilise l’opérateur d’insertion <<

● Quand on a dit ça on a à peu près tout dit sur un objet
std::ofstream qui décrit un flot de sortie fichier

➔Il va s’utiliser et se comporter comme un std::cout
➔Il ne reste plus qu’à savoir comment le créer :
 std::ofstream ofs{"nom_fichier.txt"};

➔comment tester si il y a un problème :
 if (!ofs) std::cerr << "Problème...\n";

➔comment le fermer
 ofs.close();
 où ne rien faire : fichier fermé à la sortie du scope !

!

45

Flots fichiers : fstream

#include <iostream>
#include <vector>
#include <fstream>

int main()
{
 std::vector<double> myVec{2.3, 4.5, 6.7};

 std::ofstream ofs{"vecdata.txt"};

 if (!ofs)
 std::cerr << "Can't write/open vecdata.txt\n";
 else
 {
 ofs << myVec.size() << std::endl;
 for (auto val : myVec)
 ofs << val << std::endl;

 ofs.close();
 }

 return 0;
}

3
2.3
4.5
6.7

vecdata.txt

!

écriture

46

Flots fichiers : fstream

● Le constructeur de std::ofstream prend un 2ème param.
facultatif (mode ajout etc... → ofstream::ofstream)

● Il est possible de déclarer un ofstream avec un
constructeur par défaut et d’utiliser la méthode
ofs.open("nom_fichier.txt") dans un 2ème temps

● On voit souvent des codes d’exemples (livres, forums)
avec l’utilisation de la méthode ofs.is_open() pour
tester la bonne ouverture. La méthode « bool »
indiquée ci dessus est préférable → ios::operator bool

● if (!ofs) { std::cerr << "Problème\n"; ... }

● if (ofs) { std::cout << "OK\n"; ... }

http://www.cplusplus.com/reference/fstream/ofstream/ofstream/
https://stackoverflow.com/a/24097622

47

Flots fichiers : fstream

● Quelle que soit la source (clavier, fichier, chaîne)
la lecture de caractères sur un flux d’entrée
utilise l’opérateur d’extraction >>

● Quand on a dit ça on a à peu près tout dit sur un objet
std::ifstream qui décrit un flot de lecture fichier

➔Il va s’utiliser et se comporter comme un std::cin
➔Il ne reste plus qu’à savoir comment le créer :
 std::ifstream ifs{"nom_fichier.txt"};

➔comment tester si il y a un problème :
 if (!ifs) std::cerr << "Problème...\n";

➔comment le fermer
 ifs.close();
 où ne rien faire : fichier fermé à la sortie du scope !

!

48

Flots fichiers : fstream

● Sauf que la lecture est en générale plus difficile à bien
réaliser que l’écriture : on ne sait pas ce qu’on va
trouver dans le fichier et en général il va falloir
 « monter en mémoire vive » les données çad
créer des stockages pour recevoir les données

● En plus de l’absence pure et simple du fichier :
→ il peut y avoir un problème de données tronquées
→ il peut y avoir des problèmes de corruption de données
→ il peut y avoir des problèmes d’allocation
→ le format du fichier a évolué : on doit pouvoir détecter
 et lire plusieurs versions différentes du format
→ un utilisateur hostile utilise le mauvais contrôle des
 anomalies du fichier pour injecter du code viral dans
 l’application (fichier infecté).

● D’un point de vue réaliste, on n’abordera pas tout ça !

49

Flots fichiers : fstream

● On pourrait croire que les exceptions vont nous sauver

● Oui mais ce n’est pas si simple...

● En fait les opérations sur les fichiers ne déclenchent des
exceptions que dans des situations gravissimes, en général
un indicateur dans l’objet flot va enregistrer le problème
et l’utilisateur est responsable de consulter ces indicateurs
Pour info : basic_ios::fail et ios_base::iostate mucho más complicado

● La façon la plus simple de procéder est de consulter
l’indicateur ifs.fail() : si il est vrai cela indique qu’une
au moins des opérations a échoué

● Selon le contexte et la problématique on préférera soit
traiter le cas directement avec des if/else (préférable
si possible) soit lancer une exception pour remonter le
problème à un appelant de plus haut niveau

https://en.cppreference.com/w/cpp/io/basic_ios/fail
https://en.cppreference.com/w/cpp/io/ios_base/iostate

50

Flots fichiers : fstream
int main()
{
 std::vector<double> myVec;
 bool myVecLoaded = false;

 std::ifstream ifs{"vecdata.txt"};
 if (!ifs)
 std::cerr << "Can't read/open vecdata.txt\n";
 else
 {
 size_t vecSize;
 ifs >> vecSize;
 myVec.resize(vecSize);
 for (size_t i=0; i<vecSize; ++i)
 ifs >> myVec[i];
 ifs.close();

 if (!ifs.fail())
 myVecLoaded = true;
 else
 {
 myVec.clear();
 std::cerr << "Corrupted/incomplete vecdata.txt\n";
 }
 }
 ... // Utiliser myVec si myVecLoaded est true

3
2.3
4.5
6.7

vecdata.txt

!

lecture

51

Flots fichiers : fstream
 ...
 if (myVecLoaded)
 {
 std::cout << "Loaded vector data ok : " << std::endl;
 for (auto val : myVec)
 std::cout << val << std::endl;
 }

3
2.3
4.5
6.7

vecdata.txt

3
2.3
4.5

vecdata.txt

3
2.3
4.5 hello :-)
6.7

vecdata.txt

3.2
2.3
4.5
6.7

vecdata.txt

good

good

good

bad

L’approche ifs.fail() n’est
pas 100 % suffisante

52

Flots fichiers : fstream

void loadVecDouble(std::vector<double>& vec, std::string filename)
{
 std::ifstream ifs{filename};

 if (!ifs)
 throw std::runtime_error("Can't read/open " + filename);

 size_t vecSize;
 ifs >> vecSize;
 vec.resize(vecSize);
 for (size_t i=0; i<vecSize; ++i)
 {
 ifs >> vec[i];
 if (ifs.fail())
 throw std::runtime_error("Problem line "
 + std::to_string(i+1)
 + " " + filename);
 }
}

● Pour être robuste et précis dans le suivi des erreurs,
préférer un sous-programme avec des throw …

● Ici pas de ifs.close() : sortie de scope → fermeture

53

Flots fichiers : fstream

int main()
{
 try
 {
 std::vector<double> myVec;
 loadVecDouble(myVec, "vecdata.txt");

 /// Using myVec safely now
 std::cout << "Loaded vector data ok : " << std::endl;
 for (auto val : myVec)
 std::cout << val << std::endl;
 }
 catch(const std::exception& e)
 {
 std::cerr << "Attention : " << e.what() << std::endl;
 }

 return 0;
}

● Pour être robuste et précis dans le suivi des erreurs,
préférer un sous-programme avec des throw …

● Penser à encadrer le chargement dans un try/catch !

54

Flots fichiers : fstream

3
2.3
4.5
6.7

vecdata.txt

3
2.3
4.5 hello :-)
6.7

vecdata.txt

3.2
2.3
4.5
6.7

vecdata.txt

good

good

bad

L’approche ifs.fail() n’est
pas 100 % suffisante

3
2.3
4.5
6.7

vectoto.txt

vecdata.txt

good

400000000
2.3
4.5
6.7 vecdata.txt

very good

no crash !

55

Flots fichiers : fstream

● On y est presque ! Pour un peu on se croirait des pros...

● Il nous manque juste... le fait de pouvoir parser les entrées
pour valider les lignes une par une (et throw si nécessaire)
les lignes étant lues avec std::getline(ifs, line)

● Et pour parser quoi de mieux que de pouvoir lire
directement dans des chaînes comme si c’étaient
des flots de lecture mais qu’on peut analyser/reprendre

● Ça tombe bien c’est justement le genre de flots que nous
proposent les stringstream !

● En pratique la lecture fiable de fichiers formatés est un
problème assez difficile pour préférer le déléguer à des
formats standardisés (XML, JSON …) et utiliser des
bibliothèques testées et approuvées par des spécialistes,
y compris des spécialistes de sécurité

https://stackoverflow.com/a/12133398

56

COURS 10

A) Exceptions
B) Flots : streams
C) Flots fichiers : fstream
D) Flots chaînes : stringstream
E) Sérialisation

57

Flots chaînes : stringstream

58

Flots chaînes : stringstream

● Les flots chaînes permettent de traiter un espace de
stockage d’une séquence de caractères (presque 1 string)
comme si c’était un fichier ou le clavier ou la console

● A tout moment le contenu de ce flot chaîne peut être
accédé soit en termes de flots (avec << ou >>) soit
comme une chaîne avec une méthode str()

● Ceci permet par exemple de fabriquer des chaînes
complexes en écrivant des donnée dans 1 ostringstream

● L’objectif peut être de préparer des écritures en une
seule opération (bufférisation) ou d’envoyer des données
sous forme textuelle à une base de donnée ou sur le
réseau ou sur une ligne d’un fichier → sérialisation

● Ceci permet aussi d’analyser/décomposer des chaînes
complexes en lisant des données depuis 1 istringstream...

!

59

Flots chaînes : stringstream !

source

oss s’utilise
comme si on
avait std::cout

on « affiche »
dans une chaîne
(rien en console
pour l’instant)

la méthode
str() récupère
la string remplie

http://www.cplusplus.com/reference/sstream/ostringstream/str/

60

Flots chaînes : stringstream !

source

iss s’utilise
comme si on
avait std::cin

http://www.cplusplus.com/reference/sstream/istringstream/istringstream/

61

Flots chaînes : stringstream

int main()
{
 std::istringstream iss{"125 320 512 750 333"};

 for (int n=0; n<5; n++)
 {
 int val;
 iss >> val;
 std::cout << val*2 << '\n';
 std::cout << iss.tellg() << '\n';
 }

 return 0;
}

position de la
 « tête de lecture »
sur la chaîne en cours
de lecture

62

COURS 10

A) Exceptions
B) Flots : streams
C) Flots fichiers : fstream
D) Flots chaînes : stringstream
E) Sérialisation

63

Sérialisation

64

Sérialisation

● Nos objets résident en mémoire vive, ils sont constitués
d’octets à des adresses pas forcément contiguës, selon
des schémas de stockage complexes et dynamiques que
seul l’exécutable compilé connaît parfaitement.

● Problème : on souhaite archiver/distribuer les données
et les canaux de stockage/transmission sont orientés flots
d’octets – à l’exception des tables de bases de données
qui peuvent recevoir des «objets» mais qui posent d’autres
problèmes (modèle différent de celui des programmes)

● On parle de sérialisation quand les informations d’un objet
sont transformées en séquence d’octets les décrivant

● L’opération inverse s’appelle une désérialisation

● C’est un problème difficile (encore !) qui nécessite souvent
l’adoption de frameworks. Lecture pour aller + loin

!

https://isocpp.org/wiki/faq/serialization

65

Sérialisation

● On peut doter nos classes d’une méthode de
sérialisation qui décrit comment sérialiser les
objets : l’objet est le mieux placé pour se sérialiser
(il accède à tous ses attributs)

● A l’inverse lors de la désérialisation on part soit
d’un objet « vide » qu’on remplit avec une méthode
de désérialisation (ce qui est à éviter si possible)
soit d’un constructeur spécial qui reçoit la source
des données (un istream)

● L’exemple suivant montre le principe
Il est extrêmement simplifié

 que les méthodes de sérialisation
 pas de gestion d’erreurs...

!

66

Sérialisation
#include <iostream>
#include <string>
#include <sstream>
#include <fstream>
#include <vector>

class Coords
{
 public :
 Coords(std::istream& is);
 void serialize(std::ostream& os) const;
 private :
 double m_x;
 double m_y;
};

Coords::Coords(std::istream& is)
{
 is >> m_x
 >> m_y;
}

void Coords::serialize(std::ostream& os) const
{
 os << m_x << " "
 << m_y << std::endl;
}

67

Sérialisation
int main()
{
 std::vector<Coords> vec;

 std::istringstream string_input{"10 20"};
 vec.push_back(Coords{string_input});

 std::ifstream file_input{"file_input.txt"};
 vec.push_back(Coords{file_input});

 vec.push_back(Coords{std::cin});

 std::ostringstream string_output;
 for (const auto& c : vec)
 c.serialize(string_output);
 std::cout << "\nto string :\n"
 << string_output.str() << std::endl;

 std::cout << "to std::cout :\n";
 for (const auto& c : vec)
 c.serialize(std::cout);

 std::ofstream file_output{"file_output.txt"};
 for (const auto& c : vec)
 c.serialize(file_output);
 return 0;
}

saisie

entrées (chaîne, fichier, clavier)
sorties (chaîne, console, fichier)

68

Sérialisation

● La sérialisation/désérialisation d’objets composites
fera l’objet d’un exercice de TP : il faudra déléguer
aux composants leur sérialisation

● La polymorphisme va compliquer le tableau : il va
falloir enregistrer le type précis de chaque objet dérivé
et retrouver ce type à la désérialisation. Ce dernier
problème conduit à l’utilisation de méthodes sans
objet qui fabriquent des objets : factory method pattern

● Dernier os : les pointeurs des entités qui se référencent
mutuellement (cycles) ne se sauvent pas :
ils ne pourraient pas être restaurés !

● Il va falloir transformer les adresses en indices
(numéro ou clé d’objet) avec une map de traduction

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68

