Robin FERCOQ

|-|!| ECE PARIS Ny 2B16:5015

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

r POO - C++

I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des données
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++ ! compléments 6. UML et C++, associations
/. Conteneurs & C++ :la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Abstraction / design patterns 9. Modele composite et graphismes
10.Exceptions, flots, fichiers ... 10.Persistance / fichiers / except.
11.Templates cote developpeur 11.Développement de templates

12.Gestion méemoire / smarts ptrs 12.Soutenance de projet ...

r Exceptions, flots, fichiers...

COURS 10

A) Exceptions

B) Flots : streams

C) Flots fichiers : fstream

D) Flots chaines : stringstream
E) Serialisation

COURS 10

A) Exceptions

B) Flots : streams

C) Flots fichiers : fstream

D) Flots chaines : stringstream
E) Serialisation

1")

al(

verlk

L}

er

yntaine

—

runtime error ("(

10NS

G
Q,
D
&)
>

LL

f £ throw std

Exceptions

Le flot d’exécution d’'un programme passe par de
nombreuses boites : sous-programmes et méthodes

Sous-programme/methode = sous-traitant specialiste

Prototype = nom + format d'appel du sous-programme
nom : résumé de la specialité du sous-programme
parametres in : hécessaires au job du sous-programme
parametres out, retour : résultat(s) du job

parametre implicite this : pour les méthodes

Prototype + Commentaires/Documentation

— Définition du CONTRAT du sous-programme

Exceptions

Le contrat engage les 2 parties

* Appelant (prog. utilisateur du sous-programme)
* Appelé (le sous-programme)

Il définit de maniere explicite les entrées correctes
sous forme de pré-conditions a respecter

L 'appelant s'engage a fournir a I'appelé
des entrées correctes respectant les pre-conditions

L'appele s'engage a fournir en reponse a l'appelant
des sorties correctes respectant les post-conditions

Le respect des contrats au cours des appels successifs
garantit le maintient d’'une cohérence des données
et de la suite donnée aux traitements

Exceptions

e contrat définit les entrées correctes et les sorties correctes résultantes

Le sous-programme doit respecter le contrat pour étre consideéreé correct
Le sous-programme est donc testé/validé sur des entrées correctes

CORRECTE

entrée

~

Sous-programme
correct

CORRECTE

sortie

~

CORRECTE

entrée

~

Sous-programme
non correct

Plantage
Blocage
Non correcte

sortie

~

10 |

Exceptions

e contrat définit les entrées correctes et les sorties correctes résultantes

On peut définir des cas particuliers "a problémes" comme faisant partie
des entrées "correctes" — correctes car correctement gérées

CORRECTE

entrée

~

Sous-programme
correct

CORRECTE

sortie

~

CORRECTE

Cas particulier
entrée
) Sous-programme ,
correct

CORRECTE

Traitement speécial
et/ ou

Fetour code erreur

sortie

r Exceptions

I » Cette gestion des « cas a problemes » est souhaitable
elle améliore la robustesse des logiciels...

* Mais en programmation procedurale (langage C)
elle présente de nhombreuses difficultés :

2 [a fonction ou le probleme est détecté n’est pas
placée assez haut dans la hiérarchie d’appels
pour décider de la suite a donner, Il faut
retourner le probleme a l'appelant —up - up ...

= Parasite le mécanisme de retour de valeur
2 Utilisation de codes retours spéciaux (NULL, 1, -3)

2 [e code de gestion des erreurs devient
aussi gros que le code des situations normales
et ils se mélangent : travail en +, mauvaise lisibilité
risques d’erreurs dans la gestion d’erreurs...

Exceptions

On appelle erreur une anomalie durant I'exécution qui
n’est pas prise en compte et qui peut conduire a un
plantage ou a un mauvais resultat

On appelle exception une anomalie durant I'exécution
qui est prise en compte par le code et qui est « geree »

En C++ et dans les langages objets usuels on a un
mecanisme de modification du flot de contrble et de
notification des problemes plus haut dans la hierarchie

Ce meécanisme utilise 3 nouveaux mots cles :
try : est un bloc ou on essaie de faire quelque chose
throw : indique que ca ne se passe pas bien !

catch : est un bloc apres le bloc try qui s’execute
si effectivement ca ne s’est pas bien passé

Exceptions a

try

if

if

catch (...

}

throw ..

throw ..

.
LI 4

.7

J

/

try : est un bloc ou on essaie de faire quelque chose

throw : indique que ¢a ne se passe pas bien !

catch : est un bloc apres le bloc try qui s’exécute
Si effectivement ¢a ne s’est pas bien passé

l' "*’ dans tous les cas I'exécution continue apres le try/catch

Exceptions

L] .;

On essaye d’exéecuter un bloc de code (bloc try) ...

try
{ f_
if (...) Sion détecte ici un 1° cas a probleme

_-~-=—throw ...; alors on lance (throw) une exception :
R - I’exécution passe directement dans le catch !
/ ’
if (...)
throw .. .;
.
\ catch(...)
\
\\ .
*l' """ exécution du bloc catch : gestion du probleme
}

l' """ dans tous les cas I’exécution continue apres le try/catch

15 |

Exceptions

try /_ On essaye d’exécuter un bloc de code (bloc try) ...

if (...)] Si il n’y avait pas de probleme ici on passe a la suite...
throw ...;
y if (...) Siondéetecte ici un 2°™ cas a probléme
_____ throw ...; alors on lance (throw) une exception :
R I’exécution passe directement dans le bloc catch !
/ ;
}
catch(...)
AN
\\

exécution du bloc catch : gestion du probleme

-
Py

l' """ dans tous les cas I’exécution continue aprés le try/catch

16 |

Exceptions

try r_ On essaye d’exécuter un bloc de code (bloc try) ...

if (...)] Si il n’y avait pas de probleme ici on passe a la suite...
throw ...;
if (...)] Si il n’y avait pas de probleme ici on passe a la suite...
throw .. .;
_y le bloc try s’est exécuté sans problemes...
"} I’exécution reprend directement aprés le bloc catch !
catch(...)
{
}

l' "*’ dans tous les cas I'exécution continue apres le try/catch

17]

Exceptions

double x = ?27°7;

/// Calcul et affichage de la racine carrée de l'inverse de x
try
{
if (x == 0.0)
throw std::domain error ("Denominateur nul");

double inverse = 1.0 / x;

if (inverse<0.0)
throw std::domain error ("Racine negative");

double resultat = sqgrt(inverse);
std: :cout << "resultat = " << resultat << std::endl;
}
catch (const std: :exceptioné e)
{
std: :cerr << "Resultat impossible" << std::endl;
std: :cerr << "La raison est : " << e.what() << std::endl;
}

std: :cout << "Ensuite la vie continue..." << std::endl;

Exceptions 0

La structure de controle try/catch est indivisible :
un bloc try doit étre immeédiatement suivi d’un catch

std::domain_error est une classe d’objets exceptions,
le parametre de son constructeur est une chaine qui
decrit le probleme.

Cette chaine qui décrit le probleme est récupérable
avec la methode what()

On peut throw une donnée ou un objet
d’un type quelconque.

Catch attrape ou recupere l'objet ou la donnée a la
condition qu’il déclare son parametre avec un type
compatible : soit le méme type, soit un type d’une
classe plus générale dans une hiérarchie d’héritage

Exceptions

The C++ Exception Hierarchy

bad_cast
<typelnfo= domain_arror
<stdexcept=
H
o Sur I'exemple :
bad_lypeid | [Invalid_argument P .
<typeinfo> <stdexcept> une std::domain_error
, est une std::exception
ogic_error {] lergth_emor
=sldexcapl= =sldexcapl=
exception | | out_of range
<excepiion> | bad_alloc <stdexcept>
<New=
Ins_hiis;}lallura [range_emor
<gtdexcept>
runtime_error <_\.41 overlow_eror
<stdexcapt> <gtdaxcapi>
. underfiow_ermor
bad_exception T <stdexcapt=
<@xception:

e Catch attrape ou recupere I'objet ou la donnée a la
condition qu’il déclare son parametre avec un type
compatible : soit le méme type, soit un type d’une
classe plus générale dans une hiérarchie d’héritage

20 |

Exceptions

double x = ?27°7;

/// Calcul et affichage de la racine carrée de l'inverse de x

try
{
if (x
throw<§gg:i§oma1n error "Denomlnateur nul") ;
_/ description

double inverse = 1.0 / Xx;
1nversiii:i
throw(std: domalnEEEEEZTRa01ne negatlve"),
_/ description
double resultat = sqgrt(inverse)
std: :cout << "resultat = " << resultat << std::endl;

}
catch (const(std: :exception) e) //les objets sont attrapés par référence constante
{

std: :cerr << "Resultat impossible" << std::endl;

std::cerr << "La raison est : " << e.what() << std::endl;
} - / description

std: :cout << "Ensuite la vie continue..." << std::endl;

21 |

Exceptions

double x = ?27°7;

/// Calcul et affichage de la racine carrée de l'inverse de x
try
{

if (x == 0.0) lIcithrow d’'un type qui ne dérive pas de std::exception
throw@ (sauf cas particulier on préférera I'approche precédente)

double inverse = 1.0 / x;
if (inverse<0.0)
throw
double resultat = sqgrt(inverse);
std: :cout << "resultat = " << resultat << std::endl;

}
catch (@ e) //les types élementaires sont attrapés par valeur

{

std: :cerr << "Resultat impossible" << std::endl;
std: :cerr << "La raison est : " << e << std::endl;
} —ici on récupere 57 ou 28
std: :cout << "Ensuite la vie continue..." << std::endl;

22

B

Exceptions 0

La possibilité de throw un objet de type quelconque
permet d’envoyer au bloc catch des donnees arbitraires

Par exemple on peut essayer de récupeéerer des
données partiellement traitees (traitement colteux)
ou des données utilisateurs, par exemple I'état

du document d’un traitement de texte pour le
sauver avant de crasher suite a une anomalie grave

Apres un bloc try on peut avoir plusieurs blocs catch
du plus spécifique au plus general (en types)

Sur I'exemple suivant, on essaye de preserver le

résultat d’un calcul intermediaire quand le debut

du traitement a reussi mais la suite echoue

('exemple est bidon car ici on pourrait anticiper
tous ces problemes avec des tests, préférable !)

Exceptions

double x = -0.25;
try

{
if ((x == 0.0)
- throw std::domain error{"Denominateur nul"};

-
7’
/’
,’ double inverse = 1.0 / x;
/
,’ if (inverse<0.0) . _a
- = throw inverse; i] .
,' ,"- Fnsuite la vie continue...
’
I/ double resultat = sqgrt (inverse);
std: :cout << "resultat = " << resultat << std::endl;

-y,

}
W catch (double donnees)
{

std: :cerr << "Resultat final impossible" << std::endl;
std: :cerr << "Resultat partiel " << donnees << std::endl;

\, !
A‘catch(const std: :exception& e)

{
std: :cerr << "Resultat impossible" << std::endl;

std: :cerr << "l.a raison est " << e.what () << std::endl;

}

std: :cout << "Ensuite la vie continue..." << std::endl;

24

Sk

Exceptions 0

Le mécanisme des exceptions traverse les niveaux
d’appels de fonctions en fonctions (ou méthodes)

Un throw peut étre lanceé depuis un sous-sous-sous
programme ou méme dans une fonction de librairie

Le code appelé va s’interrompre et le mécanisme va
remonter le probleme jusqu’a trouver un catch avec
parametre compatible en type : I'exécution reprend la

Les donnees intermédiaires de types automatiques qui
existaient dans les blocs remontes sont bien detruites

Enfin si aucun catch correspondant n’est trouvé alors
finalement le programme crash avec le message
descriptif what() affiche (c’est aussi le cas si on throw
depuis un code qui n'a pas éte lanceé depuis un try)

25 |

Exceptions

double fonction (double x)

{

if (x == 0.0) throw std::domain error{"Denominateur nul"};

if (1.0/x <0.0) throw std::domain error{"Racine negative"};
return sqrt (1.0/x);

}

std: :vector<double> appliquer (const std::vector<double>& entrees)
{

std: :vector<double> resultat;
for (auto x: entrees)

resultat.push back(fonction(x));
return resultat;

}

int main ()

{ Ici tout se passe bien
std: :vector<double> monVec{0.25, 0.01};
try

{

std: :vector<double> res =

= appliquer (monVec) ;
for (auto y: res)

std: :cout << y << std::endl;

-}
/ catch (const std::exceptioné& e)
I {
‘ std: :cerr << "Resultat impossible" << std::endl;
\ std::cerr << "La raison est : " << e.what () << std::endl;
w

monVec est utilisable...
std: :cout << "monVec est utilisable..." << std::endl;

26 |

Exceptions

double fonction (double x)
{

if (x == 0.0) throw std::domain error{"Denominateur nul"};

if (1.0/x <0.0) throw std::domain error{"Racine negative"};
return sqrt (1.0/x);

}

std: :vector<double> appliquer (const std::vector<double>& entrees)
{

std: :vector<double> resultat;
for (auto x: entrees)

resultat.push back(fonction(x));
return resultat;

}

int main ()

{
std: :vector<double> monVec{0.25, 0.01, 1.00%};
try

{

std: :vector<double> res = appliquer (monVec) ;
for (auto y: res) std::cout << y << std::endl;
}

catch (const std::exceptioné& e)

{

Resultat impossible

La raison est
std: :cerr << "Resultat impossible" << std::endl;
std: :cerr << "lLa raison est : "

Denominateur nul)

<< e.what () << std::endl;
}

monVec est utilisable...
std: :cout << "monVec est utilisable..." << std::endl;

zr

Exceptions

double fonction (double x) Le probleme est signalé /
{ pas de catch ici, on remonte a I’'appelant ...
if (x == 0.0) throw std::domain error{"Denominateur nul"};—-—..\
if (1.0/x <0.0) throw std::domain error{"Racine negative"}; \\
return sqrt (1.0/x); 1
/
J /7
7
std: :vector<double> appliquer (const std::vector<double>& entrees) ’¢f,
{ _,*’
std: :vector<double> resultat; «---" On arréte tout,
for (auto x: entrees) resultat.push back(fonction(x));
1) - - on sort de la boucle,
return resultat; ‘. plus de x, on le détruit,
} S~o - pas de catch ici, on remonte
S~ o apreés avoir detruit resultat
int main () T~ o
{ T~
N ~
std: :vector<double> monVec{0.25, 0.01, 0.00, 1.00}; _ On arréte le try,
try === la locale res est détruite,
{ e e 4___._——--""' il y a un catch qui match
,"' std: :vector<double> res = appliquer (monVec) ; onyval
/ for (auto y: res) std::cout << y << std::endl;

I}
\ catch (const std::exceptioné& e)

Resultat impossible

< La raison est : Denominateur nul
| std::cerr << "Resultat impossible" << std::endl;
std::cerr << "La raison est : " << e.what () << std::endl;

} —
monVec est utilisable. ..

istd: :cout << "monVec est utilisable..." << std::endl;

28 |

Exceptions

double fonction (double x)
{

if (x == 0.0) throw std::domain error{"Denominateur nul"};
if (1.0/x <0.0) throw std::domain error{"Racine negative"};
return sqrt (1.0/x);

}

std: :vector<double> appliquer (const std::vector<double>& entrees)

{
std: :vector<double> resultat;
for (auto x: entrees) resulta fonction (x));
return resultat;

) 200 millions de doubles en plus, ¢ca casse !

int main ()

{ 200 millions de doubles, ¢ca passe !
std: :vector<double> monVec (000000000, 0.25);

try

{
std: :vector<double> res = appliquer (monVec) ;
for (auto y: res) std::cout << y << std::endl;

}

catch (const std::exceptioné& e) .
{ La raison est :(std::bad _alloc)

Resultat impossible

std: :cerr << "Resultat impossible" << std::endl;
std::cerr << "La raison est : " << e.what () << std::endl;

}

monVec est utilisable...
std: :cout << "monVec est utilisable..." << std::endl;

29 |

Exceptions

double fonction (double x)

{

std: :vector<double> appliquer (const std::vector<double>& entrees)

P plus de x, on le détruit,
} S o - pas de catch ici, on remonte
S~o apreés avoir détruit resultat
int main () TS ~o
~~

{

try === la locale res est détruite,
{ e 4____———"" il y a un catch qui match
e ~ std::vector<double> res = appliquer (monVec) ; onyval
/ for (auto y: res) std::cout << y << std::endl;
) : :
Resultat impossible
| .. :
catch (const std::exceptioné e)]
< La raison est :(std::bad _alloc)

if (x == 0.0) throw std::domain error{"Denominateur nul"};
if (1.0/x <0.0) throw std::domain error{"Racine negative"};
return sqrt (1.0/x);

std: :vector<double> resultat; On arréte tout
for (auto x: entrees) resultat fonction (x)) ; ’
on sort de la boucle,

return resultat;

~ ~
std: :vector<double> monVec (200000000 , 0.25); > On arréte le try,

std::cerr << "La raison est : " << e.what () << std::endl;

*l std::cerr << "Resultat impossible" << std::endl;

}

/// Dans tous les cas le programme continue. . !
std: :cout << "monVec est utilisable..." << std::

30

R

Exceptions 0

Le mécanisme des exceptions traverse les niveaux
d’appels de fonctions en fonctions (ou méthodes)

Un throw peut étre lanceé depuis un sous-sous-sous
programme ou méme dans une fonction de librairie

Ca veut dire qu’on va pouvoir gérer de facon propre
et efficace les problemes d’allocation mémoire ...

Ceci ne marche qu’a la condition de bien encadrer
le code a l'initiative d’'une séquence d’appels par un
try/catch, sinon I'exception remonte au main et crash !

VVous écrivez une fonction/méthode (y compris constructeur)
vous voulez tester une pré-condition mais la fonction
ne peut pas savoir quoi faire du probleme => throw !

Charge a I'appelant de récupérer le probleme : catch

Exceptions FESECLITEL

dynamic cast of polymorphic

reference ... (failed downcast)\

report errors presumably
detectable before the
program executes

such as violations

of logical preconditions

thrown as exceptions by
the allocation functions
to report failure to
allocate storage

report errors presumably =

detectable only when
the program executes

The C++ Exception Hierarchy

Situations where the inputs

are outside of the domain on
/\

TN

exception :l
<axception=
/

SETTETTER which an operation is defined
alrfas) domain_emor
\qy\p/’ (tstde:-:c&m:*
reports errors that arise
hjf—;frﬂﬂf [Invalid_argument v because an argument value
P _<stdexcept> has not been accepted
v
e
A logic_error N length_ermor
\ =stdexcapl= Y =gldaxcapl>
N~ reports errors that are
T / consequence of attempt
@ WL _rang: >’ to access elements
" bad_alloc Stoexcept out of defined range
— _/
 Enew=
~———

los base:-failura

range_error

ol T e

A runtime _emror |\

-

<stdexcept=

overflow _error

]

| <stdexcept= J <stdexcept>
—
underflow_error
bad_exception =gidaxcapl>

<@xception=

https.//en.cppreference.com/w/cpp/error/exception

https://en.cppreference.com/w/cpp/error/exception

Retenez

> logic_error : a lancer quand la situation est anormale
du point de vue du fonctionnement interne du logiciel

r Exceptions

> Typiqguement I'appelant aurait du eviter d’appeler
avec ces parametres (indique une incohérence)

» Exemple : sommet* Maillage::getSommet(int idx)
recoit un Idx<0 ou idx>m_sommets.size()

> runtime_error : a lancer quand la situation est un
probleme qui ne dépend pas directement du logiciel

> Typiquement une ressource n’est pas disponible
> Par exemple on doit ouvrir un fichier, il n’est pas la

> On attend que l'utilisateur complete un formulaire
mais on atteint un timeout de 10 minutes => menu

 Méme si le mécanisme des exceptions est un immense
progres par rapport aux techniques C de gestion
d’anomalies, la bonne utilisation des exceptions C++
reste un aspect difficile du développement

Exceptions
I 2 Discipline astreignante, pas de bénéfice immediat
2 On ne peut pas facilement tester tous les cas

2 [ancer une exception est une rupture majeure
du flot d’exécution normal : sortie du contexte

2 Conservation de la cohérence des données
2 Une exception peut en génerer d’autres
2 Objets dynamiques et fuites mémoire, threads ...

* Difficile mais indispensable dans certains domaines
critiques (transport, santé, bancaire...)

34

B

COURS 10

A) Exceptions

B) Flots : streams

C) Flots fichiers : fstream

D) Flots chaines : stringstream
E) Serialisation

: Streams

Flots

e Pour manipuler des entrées et des sorties en mode
caractere la STL propose I'abstraction stream (flot)

* Un stream est une file de caracteres (= octets)
gui connecte :

r Flots : streams 0

> un processus producteur (qui envoie des caractéres)
> Un processus consommateur (qui recoit des caracteres)

« écriture — world ! » sortie flot entrée « Hello < lecture »
D
output Stream input
Producteur P P Consommateur

r Flots : streams 0

I * Du point de vue d’'un programme C++
I'origine ou la destination d’'un flot est soit

I > un fichier, préfixe f

> une chaine, préfixe string

* Du point de vue d’un programme C++

> le flot est une entrée, on peuty lire, préfixe i
> |e flot est une sortie, on peut y écrire, préfixe o

> |e flot est une entrée/sortie, on peuty lire/écrire
pas de préefixe

> |l y a donc 6 combinaisons de classes concretes flots...

Flots : streams

Les 6 classes concretes de flots du C++

(11
+r§|:n_|F|:]|I:I _buf streambuf
+rdstate
+setstate) i +buffer: char[]
+flagsi)

Y\?\ istream

+getl) char
+peek): char

osktream

+putizc: char)

ostringstream | N
< istringstream >

= iostream —

ufstream
/j ifstream >

< fstream stringstream >

N 1
e ———
http://www.cs.sjsu.edu/~pearce/modules/lectures/oop/streams/streams.htm

I
I

Flots : streams

Et les entrées/sorties « habituelles » clavier/console ?

Par défaut les objets flots std::cin et std::cout sont
Ieés aux pseudo-fichiers stdin et stdout du systeme C

DU point de vue interface, lire/écrire clavier/console
est exactement comme lire/écrire un fichier

C’est ce qui expligue qu’il est impossible de traiter

de facon portable les problemes de « effacer console »

« saisir une touche sans avoir a valider avec entrée »
parce qu’'avec des fichiers ces operations n'ont pas de sens

Mais ces contraintes concretes offrent une grande
souplesse : on peut re-diriger les flots, en particulier
stdin et stdout vers des fichiers réels (shells Unix...)

C’est aussi ce qui permet l'utilitaire « AutoCin » proposé en TP

* Quelle que soit la source (clavier, fichier, chaine)
la lecture de caracteres sur un flux d’entrée
utilise 'opérateur d’extraction >>

* Quel que soit le destinataire (console, fichier, chaine)
I'écriture de caracteres sur un flux de sortie
utilise 'opéerateur d’insertion <<

r Flots : streams G

* En prenant par réference un parametre de type plus
géneéral comme std: :ostream le polymorphisme va

permettre d’utiliser le méme code pour écrire un texte

> Affiché a I'’ecran (std:.cout est de type ostream)
> Enregistré dans un fichier
> Ajouté a une chaine

r Flots : streams

I 2 petits trucs utiles a connaitre :
> |l existe 2 autres objets « affichage » en + de std::cout

anomalies. C’est en général celui qu’on utilise a la
place de std: : cout pour décrire les problemes
par exemple dans les blocs catch

2>std: :clog qui est a utiliser pour enregistrer le
déeroulement des opération (role de debug)

2 [’'un comme l'autre peuvent étre rediriges vers
un fichier ce qui permet de séparer les messages

> Le retour a la ligne \n est possible et acceptable
La difference avec std: :endl est que ce dernier
vide le buffer (les données sont envoyees c’est slr)
mais en pratigue c¢a ne fait pas grande différence

I 2>std: :cerr qui est a utiliser pour signaler des

https://stackoverflow.com/a/34619037

42

B

COURS 10

A) Exceptions

B) Flots : streams

C) Flots fichiers : fstream

D) Flots chailnes : stringstream
E) Serialisation

Flots fichiers : fstream

Flots fichiers : fstream 0

I * Quel que soit le destinataire (console, fichier, chaine)
I’écriture de caracteres sur un flux de sortie
I utilise 'opérateur d’insertion <<

* Quand on a dit ca on a a peu pres tout dit sur un objet
std: :ofstream qui décrit un flot de sortie fichier

21| va s'utiliser et se comporter comme un std:.cout

21l ne reste plus qu’a savoir comment le creer :
std: :ofstream ofs{"nom_fichier.txt"};

2 comment tester si il y a un probleme :
if (!ofs) std::cerr << "Probleme...\n";

2 comment le fermer
ofs.close();

ou ne rien faire : fichier fermé a la sortie du scope !

Flots fichiers : fstream

#@nclude <iostream>

#include

int main()
std: :vector<double> myVec{2.3, 4.5, 6.7};
std::ofstream ofs{"vecdata.txt"};

if (lofs)
std::cerr << "Can't write/open vecdata.txt\n";
else

{

ofs << myVec.size() << std::endl;
for (auto val : myVec)
ofs << val << std::endl; écnu"e::>

ofs.close();

AR NDW
N U w

¥

return 0;

vecdata.txt

Flots fichiers : fstream

Le constructeur de std::ofstream prend un 2°™ param.
facultatif (mode ajout etc... - ofstream::ofstream)

Il est possible de déclarer un ofstream avec un
constructeur par défaut et d'utiliser la methode
ofs.open("nom_fichier.txt") dans un 2°™ temps

On voit souvent des codes d’exemples (livres, forums)
avec l'utilisation de la méthode ofs.is_open() pour
tester la bonne ouverture. La méthode « bool »
Indiguée ci dessus est preféerable - |o0s::.operator bool
if (lofs) { std::cerr << "Probleme\n"; ... }

if (ofs) { std::cout << "OK\n"; ... }

http://www.cplusplus.com/reference/fstream/ofstream/ofstream/
https://stackoverflow.com/a/24097622

Flots fichiers : fstream 0

I * Quelle que soit la source (clavier, fichier, chaine)
la lecture de caracteres sur un flux d’entree
I utilise 'opérateur d’extraction >>

* Quand on a dit ca on a a peu pres tout dit sur un objet
std: :ifstream qui decrit un flot de lecture fichier

21| va s'utiliser et se comporter comme un std::.cin

21l ne reste plus qu’a savoir comment le creer :
std::ifstream ifs{"nom_fichier.txt"};

2 comment tester si il y a un probleme :
if (!ifs) std::cerr << "Probleme...\n";

2 comment le fermer
ifs.close();

ou ne rien faire : fichier fermé a la sortie du scope !

Flots fichiers : fstream

I e Sauf que la lecture est en géenéerale plus difficile a bien
realiser que l'écriture : on ne sait pas ce qu’on va
trouver dans le fichier et en général il va falloir
I « monter en memoire vive » les données cad

créer des stockages pour recevoir les données

* En plus de l'absence pure et simple du fichier :

— Il peut y avoir un probleme de données tronquées

— Il peut y avoir des problemes de corruption de donnees

- Il peut y avoir des problemes d’allocation

- le format du fichier a eévolué : on doit pouvoir détecter
et lire plusieurs versions differentes du format

— un utilisateur hostile utilise le mauvais controle des
anomalies du fichier pour injecter du code viral dans
I'application (fichier infecte).

* D’un point de vue réaliste, on n’abordera pas tout ca !

Flots fichiers : fstream

On pourrait croire que les exceptions vont nous sauver
Oul mais ce n’est pas si simple...

En fait les opérations sur les fichiers ne déeclenchent des
exceptions que dans des situations gravissimes, en général
un indicateur dans l'objet flot va enregistrer le probleme

et l'utilisateur est responsable de consulter ces indicateurs
Pour info : basic_ios::fail et ios_base::iostate mucho mas complicado

La facon la plus simple de procéder est de consulter
I'indicateur ifs.fail() : si il est vrai cela indique qu’une
au moins des opérations a échoué

Selon le contexte et la problématique on préférera soit
traiter le cas directement avec des if/else (preférable
Si possible) soit lancer une exception pour remonter le
probleme a un appelant de plus haut niveau

https://en.cppreference.com/w/cpp/io/basic_ios/fail
https://en.cppreference.com/w/cpp/io/ios_base/iostate

Flots fichiers : fstream

int main()

std: :vector<double> myVec;
bool myVecLoaded = false;

std::ifstream ifs{"vecdata.txt"};
if (!ifs)

std::cerr << "Can't read/open vecdata.txt\n";
else

{

size t vecSize;

ifs >> vecSize;
myVec.resize(vecSize);

for (size_t i=0; i<vecSize; ++1)
lecture

ifs >> myVec[i];
ifs.close();

AL NDW
N U W

if (lifs.fail())
myVecLoaded = true;

vecdata.txt

else

{

myVec.clear();
std::cerr << "Corrupted/incomplete vecdata.txt\n";

}

. // Utiliser myVec si myVeclLoaded est true

Flots fichiers : fstream

i%.(myVecLoaded)

std: :cout << "Loaded vector data ok : " << std::endl;
for (auto val : myVec)
std::cout << val << std::endl;

}
3
5.3 vecdata.txt goo d
4.5
6.7
3 vecdata.txt ood
2.3 J - Corrupted/incomplete vecdata.txt
4.5
3 vecdata.txt good _ _
2.3 - amm_orrupted/incomplete vecdata.txt
4.5 hello :-)
6.7
|l oaded vector data ok :
;g vecdata.txt bad o= -
4.5 L’approche ifs.fail() n’est
6.7 pas 100 % suffisante

Flots fichiers : fstream

I * Pour étre robuste et préecis dans le suivi des erreurs,
preférer un sous-programme avec des throw ...

I * |ci pas de ifs.close() : sortie de scope - fermeture

void loadVecDouble(std: :vector<double>& vec, std::string filename)

{

std::ifstream ifs{filename};

if (lifs)
throw std::runtime _error("Can't read/open " + filename);

size t vecSize;

ifs >> vecSize;
vec.resize(vecSize);

for (size t i=0; i<vecSize; ++i)

{
ifs >> vec[i];
if (ifs.fail())
throw std::runtime_error("Problem line "
+ std::to_string(i+1)
+ " " + filename);
}

Flots fichiers : fstream

* Pour étre robuste et préecis dans le suivi des erreurs,

preférer un sous-programme avec des throw ...

* Penser a encadrer le chargement dans un try/catch !

int main()

{

try

{
std: :vector<double> myVec;
loadVecDouble(myVec, "vecdata.txt");

std: :cout << "Loaded vector data ok : " << std::endl;
for (auto val : myVec)
std::cout << val << std::endl;

}
catch(const std::exception& e)
{
std::cerr << "Attention : " << e.what() << std::endl;
}
return 0;

Flots fichiers : fstream

ve txt
3 3 vectoto.ixt good W Can't read/open vecdata.txt
4.5
6.7
3
> 3 vecdata.txt good
4.5
6.7
3, 3 vecdata.txt good M ttention : Problem line 3 vecdata.txt
4.5 hello :-)
6.7

Attention : std::bad alloc

400000000 very good
zzlg returned @ (0x8) no crash !
6.7 vecdata.txt
3 - g vecdata.txt bad
4: 5 L’approche ifs.fgi/() n’est
6.7 pas 100 % suffisante

Flots fichiers : fstream

On y est presque ! Pour un peu on se croirait des pros...

Il nous manque juste... le fait de pouvoir parser les entrées
pour valider les lignes une par une (et throw si nécessaire)
les lignes éetant lues avec std:.getline(ifs, line)

Et pour parser quoi de mieux que de pouvolr lire
directement dans des chaines comme si c’étaient
des flots de lecture mais qu’on peut analyser/reprendre

Ca tombe bien c’est justement le genre de flots que nous
proposent les stringstream !

En pratique la lecture fiable de fichiers formateés est un
probleme assez difficile pour préferer le deleguer a des
formats standardisés (XML, JSON ...) et utiliser des
bibliotheques testées et approuvees par des spéecialistes,
v compris des spécialistes de sécurité

https://stackoverflow.com/a/12133398

56

R

COURS 10

A) Exceptions

B) Flots : streams

C) Flots fichiers : fstream

D) Flots chaines : stringstream
E) Serialisation

Flots chaines : stringstream

Flots chaines : stringstream G

Les flots chaines permettent de traiter un espace de
stockage d’'une séquence de caracteres (presque 1 string)
comme si c’était un fichier ou le clavier ou la console

A tout moment le contenu de ce flot chaine peut étre
accéede soit en termes de flots (avec << ou >>) soit
comme une chaine avec une méthode str()

Ceci permet par exemple de fabriquer des chaines
complexes en écrivant des donnée dans 1 ostringstream

L’objectif peut étre de preparer des écritures en une
seule opération (bufférisation) ou d’envoyer des données
sous forme textuelle a une base de donnée ou sur le
réseau ou sur une ligne d’'un fichier - serialisation

Ceci permet aussi d’analyser/décomposer des chaines
complexes en lisant des données depuis 1 istringstream...

Flots chaines : stringstream a

// ostringstream: :rdbuf e
#include <string> // std::string
finclude <19s am> // std::cout
#includeéé;;iiigﬁb // std::ostringstream
int main () {

std::ostringstream oss;

0ss << "One hundred and one: " << 101;

std::string s = oss.str(); «-—

std::cout << s << '\n'; la méthode

str() recupere

return O; . :
101 la string remplie

One hundred and one:

oss s’utilise
comme Si on
avait std::cout

on « affiche »
dans une chaine
(rien en console
pour I’instant)

http://www.cplusplus.com/reference/sstream/ostringstream/str/

Flots chaines : stringstream G

// 1stringstream constructors. source
finclude <iostream> // std::cout
finclude <sstream> // std::istringstream
finclude <string> // std::string
int main () {
std::string stringvalues = "125 320 512 750 333";
std::1stringstream 1ss (stringvalues);
for (int n=0; n<5; n++) iss s’utilise
(comme si on
avait std::cin
int val; ‘(///////// 220
iss >> val; 640
std: :cout << val*2 << '\n'; 1024

/ 1500

return 0; 31515

http://www.cplusplus.com/reference/sstream/istringstream/istringstream/

Flots chaines : stringstream

int main()

258
646

1824
1566

{
std::istringstream iss{"125 320 512 750 333"};
for (int n=0; n<5; n++)
{
int val;
iss >> val;
std::cout << val*2 <« 5
std::cout << iss.tellg() <<
}
return 9;
}

position de la

« téte de lecture »
sur la chaine en cours
de lecture

666

62

R

COURS 10

A) Exceptions

B) Flots : streams

C) Flots fichiers : fstream

D) Flots chaines : stringstream
E) Serialisation

Sérialisation

Sérialisation G

Nos objets resident en mémoire vive, ils sont constitues
d’octets a des adresses pas forcement contigués, selon
des schemas de stockage complexes et dynamigues que
seul I'exécutable compilé connait parfaitement.

Probleme : on souhaite archiver/distribuer les données

et les canaux de stockage/transmission sont orientes flots
d’octets — a I'exception des tables de bases de donnees
gui peuvent recevoir des «objets» mais qui posent d’autres
problemes (modele différent de celui des programmes)

On parle de seérialisation quand les informations d’'un objet
sont transformées en séquence d’octets les decrivant

L’'opération inverse s’appelle une desérialisation

C’est un probleme difficile (encore !) qui nécessite souvent
I'adoption de frameworks. Lecture pour aller + loin

https://isocpp.org/wiki/faq/serialization

I Sérialisation a

I * On peut doter nos classes d’'une méthode de
sérialisation qui décrit comment sérialiser les
I objets : I'objet est le mieux placé pour se sérialiser

(il accede a tous ses attributs)

A l'inverse lors de la désérialisation on part soit
d’'un objet « vide » qu’on remplit avec une methode
de déserialisation (ce qui est a eviter si possible)
soit d’'un constructeur special qui recoit la source
des données (un istream)

* L’'exemple suivant montre le principe
Il est extrémement simplifié

* que les méthodes de sérialisation
¢ pas de gestion d’erreurs...

Sérialisation

#include <iostream>
#include <string>
#include <sstream>
#include <fstream>
#include <vector>

class Coords

{
public :
Coords(std: :istream& is);
void serialize(std::ostream& os) const;
private :
double m_x;
double m_ y;
¥
Coords: :Coords(std::istream& is)
{
is >> m_x
>> my;
}

void Coords::serialize(std::ostream& os) const

{

0S << m_X <<
<< m_y << std::endl;

Sérialisation

int main() entrées (chaine, fichier, clavier)

sorties (chaine, console, fichier
std: :vector<Coords> vec; ()

std: :istringstream string input{({10 20')}; .
vec.push_back(Coords{string_inpu AN file_input.txt

i Editior
std::ifstream file input{"file_ input.txt"}; (30 40)
vec.push_back(Coords{file_input}),«—

- I-I—u
. . . B | CAECBE\cpp\cours_lhsenalk;
vec.push_back(Coords{std::cin});=— saisie “_1 i
b
std::ostringstream string_output; _
for (const auto& c : vec) 0 string :
c.serialize(string_output); —>| e
std::cout << "\nto string :\n" 30 40
<< string_output.str() << std::endl; J 60
std::cout << "to std::cout :\n"; 0 std::cout :
for (const auto& c : vec) —» | iR

c.serialize(std::cout); — 30 40
D 68
std::ofstream file_output{"file_output.txt"};
for (const auto& c : vec) [file_output txt Process returned @
C. ser‘lallze(ﬁle_ou’cpu’c);\m‘pcher Edition Press any key to ci

return 0O; %gig

50 60

}

I
I

Sérialisation

La sérialisation/désérialisation d’objets composites
fera I'objet d’'un exercice de TP : il faudra deleguer
aux composants leur serialisation

La polymorphisme va compliquer le tableau : il va
falloir enregistrer le type précis de chaque objet derive
et retrouver ce type a la desérialisation. Ce dernier
probleme conduit a l'utilisation de méthodes sans
objet qui fabriguent des objets : factory method pattern

Dernier os : les pointeurs des entités qui se referencent
mutuellement (cycles) ne se sauvent pas :
IIs ne pourraient pas étre restaures !

Il va falloir transformer les adresses en indices
(numero ou clé d’objet) avec une map de traduction

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68

