
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Abstraction / design patterns
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

Templates côté développeur

4

COURS 11

A) Fonctions/méthodes inline
B) Programmation générique
C) Templates de fonctions
D) Templates de classes
E) Spécialisation de templates
F) Paramètres fonctions

5

COURS 11

A) Fonctions/méthodes inline
B) Programmation générique
C) Templates de fonctions
D) Templates de classes
E) Spécialisation de templates
F) Paramètres fonctions

6

Fonctions/méthodes inline

7

Fonctions/méthodes inline

// Code appelant
void appelant()
{
 ...
 ...
 sousProg(...);
 ...
 ...
 sousProg(...);
 ...
 ...
}

// Code appelé
void sousProg(...)
{
 ... A ...
 ... B ...
 ... C ...
}

appel

retour

● appel de sous-programme = mécanisme complexe :
➔ le processeur « met en attente » la séquence actuelle
➔ le processeur exécute la séquence sous-programme
➔ le processeur poursuit la séquence après l’appel

8

Fonctions/méthodes inline

// Code appelant
void appelant()
{
 ...
 ...
 sousProg(...);
 ...
 ...
 sousProg(...);
 ...
 ...
}

// Code appelé
void sousProg(...)
{
 ... A ...
 ... B ...
 ... C ...
}

appel

retour

● appel de sous-programme = mécanisme complexe :
➔ le processeur « met en attente » la séquence actuelle
➔ le processeur exécute la séquence sous-programme
➔ le processeur poursuit la séquence après l’appel

➔ un 2ème appel implique le même travail du processeur

9

Fonctions/méthodes inline

// Code appelant
void appelant()
{
 ...
 ...

 ...
 ...

 ...
 ...
}

void sousProg(...)
{
 ... A ...
 ... B ...
 ... C ...
}

le compilateur
inline le code du
sous-programme
appelé au niveau
de chaque appel

● Pour optimiser le compilateur peut décider de mettre
inline le sous-programme

● C’est comme si le code du sous-programme était écrit
directement au niveau de l’appel

● Le processeur économise les temps des allers-retours
mais l’exécutable devient plus lourd (code bloat)

... A ...

... B ...

... C ...

... A ...

... B ...

... C ...

10

Fonctions/méthodes inline

● C’est donc un compromis entre la vitesse d’exécution
et la taille de l’exécutable

● Traditionnellement (il y a 15 ans ou plus) le choix
d’inliner ou pas une fonction au niveau de ses appels
était indiqué par le développeur en la déclarant inline

● Désormais c’est le compilateur qui décide d’inliner ou
pas un appel selon des critères d’optimisation du code
machine généré (il est mieux placé que nous pour savoir!)

● La déclaration inline continue d’être utile car elle
permet de définir des fonctions en même temps
que leur déclaration : dans un en-tête .h ou .hpp

● On n’a alors plus besoin d’implémenter séparément
la fonction dans un .cpp

11

Fonctions/méthodes inline

double carre(double x)
{
 return x*x;
}

● Une fonction déclarée inline est implémentée dans le .h

double carre(double x);

#include "utile.h"
void utiliserIci()
{
 std::cout<<carre(3)<<std::endl;
}

#include "utile.h"
void utiliserAilleurs()
{
 std::cout<<carre(4)<<std::endl;
}

ailleurs.cpp

ici.cpp

utile.cpp

utile.h inline double carre(double x)
{
 return x*x;
}

#include "utile.h"
void utiliserIci()
{
 std::cout<<carre(3)<<std::endl;
}

#include "utile.h"
void utiliserAilleurs()
{
 std::cout<<carre(4)<<std::endl;
}

ailleurs.cpp

ici.cpp

utile.cpp

utile.h

Déclaration

Implémentation

Déclaration
&

implémentation

12

Fonctions/méthodes inline

● Une fonction déclarée inline est implémentée dans le .h

● Ceci rend possible des bibliothèques sans .cpp
donc sans fichiers objets à linker : header-only libraries

● Beaucoup plus simples à utiliser, il suffit de copier
les fichiers .h en local dans les répertoires include
du compilateur et de faire #include <bibliotheque.h>

● Inconvénient principal : temps de compilation plus long

inline double carre(double x)
{
 return x*x;
}

utile.h

Déclaration
&

implémentation

!

https://en.wikipedia.org/wiki/Header-only

13

Fonctions/méthodes inline

● Une fonction déclarée inline est implémentée dans le .h

● On peut être tenté d’écrire inline nos applications pour
se débarrasser des .cpp et n’avoir que des .h

● C’est déconseillé en pratique

➔Mauvaise séparation interface / implémentation
➔Compilation longue (mauvais pour développer !)
➔Pas adapté aux grosses fonctions...

inline double carre(double x)
{
 return x*x;
}

utile.h

Déclaration
&

implémentation

!

14

Fonctions/méthodes inline
class Hero
{
 public :
 Hero(std::string realName, std::string heroName);
 std::string getHeroName() const;
 std::string getMission() const;
 void setMission(std::string mission);

 private :
 std::string m_realName;
 std::string m_heroName;
 std::string m_mission;
};

inline Hero::Hero(std::string realName, std::string heroName)
 : m_realName{realName}, m_heroName{heroName}
{ }

inline std::string Hero::getHeroName() const
{
 return m_heroName;
}

inline std::string Hero::getMission() const
{
 return m_mission;
}

inline void Hero::setMission(std::string mission)
{
 m_mission = mission;
}

hero.h

méthodes inline
implémentées
dans le .h

méthodes
déclarées
normalement

15

Fonctions/méthodes inline

class Hero
{
 public :
 Hero(std::string realName, std::string heroName)
 : m_realName{realName}, m_heroName{heroName} { }

 std::string getHeroName() const
 { return m_heroName; }

 std::string getMission() const
 { return m_mission; }

 void setMission(std::string mission)
 { m_mission = mission; }

 private :
 std::string m_realName;
 std::string m_heroName;
 std::string m_mission;
};

hero.h

● Quand on définit directement une méthode dans la
déclaration de classe elle est automatiquement inline !

!

méthodes
inline
implicites !

16

Fonctions/méthodes inline

class Hero
{
 public :
 Hero(std::string realName, std::string heroName)
 : m_realName{realName}, m_heroName{heroName} { }

 std::string getHeroName() const
 { return m_heroName; }

 std::string getMission() const
 { return m_mission; }

 void setMission(std::string mission)
 { m_mission = mission; }

 private :
 std::string m_realName;
 std::string m_heroName;
 std::string m_mission;
};

hero.h

méthodes
inline
implicites !

● Non obligatoire... A réserver aux méthodes courtes
et simples : pas plus de 10 lignes (Google style guide)

!

https://google.github.io/styleguide/cppguide.html#Inline_Functions

17

COURS 11

A) Fonctions/méthodes inline
B) Programmation générique
C) Templates de fonctions
D) Templates de classes
E) Spécialisation de templates
F) Paramètres fonctions

18

Programmation générique

std::vector<int> Sorted !

std::list<double> Sorted !

Sorted !std::deque
<std::string>

std::vector
 <Custom>

Quelles que soient les idées confuses de Robin,
Batman a toujours le même algorithme de tri !

19

Programmation générique

● Un algorithme est un ensemble de traitements qui à
partir de données initiales fourni des données résultats

● Une structure de données est une façon d’organiser
des données en mémoire pour les stocker / retrouver...

● Très souvent l’algorithme ou la structure de données
ne dépendent que d’hypothèses très limitées sur les
opérations possibles avec les données

● Par exemple il suffit que les données définissent a < b

➔pour pouvoir appliquer un algorithme de tri
➔pour pouvoir les stocker dans un arbre binaire

de recherche (comme le conteneur set)

20

Programmation générique

● Exemple simple : trier 2 données

Algorithme

trier(a par référence, b par référence)
 Si pas(a < b) Alors
 tmp  a
 a  b
 b  tmp

● Cet algorithme pourrait aussi bien traiter des entiers
que des flottants que des caractères que des chaînes
(le type string défini bien l’opérateur <) ...

● Problème : le C++ est un langage typé, il va falloir
dupliquer un même code pour chaque type !

21

Programmation générique

● Problème : le C++ est un langage typé, il va falloir
dupliquer un « même code » pour chaque type !

void trier(char& a, char& b)
{
 if (!(a<b))
 {
 char tmp = a;
 a = b;
 b = tmp;
 }
}

void trier(int& a, int& b)
{
 if (!(a<b))
 {
 int tmp = a;
 a = b;
 b = tmp;
 }
}

void trier(std::string& a, std::string& b)
{
 if (!(a<b))
 {
 std::string tmp = a;
 a = b;
 b = tmp;
 }
}

char
unsigned char
short int
unsigned short int
int
unsigned int
float
double
long double
std::string
...

+ AnyPossibleCustomType...
 (impossible)

 presque
 pareil

 presque
 pareil

 presque
 pareil

Le problème se pose principalement
pour du code de niveau bibliothèque

22

Programmation générique

● Solution 0 : le préprocesseur, les macros
● En C la façon de faire consiste à demander au

préprocesseur (1ère passe du compilateur) de
substituer littéralement le code source « appelant »
par un bloc de code avec paramètres (macro)

● Très limité, très artisanal...
● Incompatible en général avec des types objets (string)
● Hors sujet en C++ moderne

#define SWAP(a, b) do { a ^= b; b ^= a; a ^= b; } while (0)

#define SORT(a, b) do { if ((a) > (b)) SWAP((a), (b)); } while (0)

source

https://ramdeoshubham.com/macros/

23

Programmation générique

● Solution 1 : renoncer aux types
● Certains langages ont un typage « dynamique »

permissif ou pas de typage explicite du tout...

➔ Exemple en JavaScript (≠ Java)

➔ Souple et simple : trop cool ! Oui mais, trop cool...
➔ Pas de compilation => bugs au runtime + perfs 

function trier(a, b)
{
 if (a < b)
 return [a, b];
 else
 return [b, a];
}

console.log(trier("world", "hello"));
console.log(trier(7, 5));
console.log(trier("world", 5));

["hello", "world"]
[5, 7]
[5, "world"]? ???

On verra les types
au moment de l’appel !

code javascript

24

Programmation générique

● Solution 2 : le polymorphisme dynamique

● Pas assez en commun pour partager logiquement une hiérarchie
● Gros problèmes de cohérence : 2 fois même type concret ?
● Variable tmp par valeur => slicing (perte du polymorphisme)
● Pas adapté aux types primitifs int / float / char ...

« Interface »
Triable

intTriable floatTriable stringTriable . . .

void trier(Triable& a, Triable& b)
{
 if (!a.lessThan(b))
 {
 Triable tmp = a.clone();
 a = b;
 b = tmp;
 }
}

Ici ça ne marche même pas !

25

Programmation générique

● Solution 3 : le polymorphisme statique
● Le langage C++ va proposer un mécanisme de

programmation générique par typage paramétrable
● Un code qui est paramétrable en type sera appelé

un template (en français : patron)
● Peut s’appliquer aux fonctions (sous-programmes)
● Peut s’appliquer aux classes
● On a déjà rencontré des classes templates :

les conteneurs de la STL, Standard Template Library

● Ainsi dans std::vector<int> le int entre chevrons
est le paramètre de type d’une classe template
std::vector< >

!

26

Programmation générique

● Solution 3 : le polymorphisme statique
● On dit que c’est du polymorphisme parce que

un même traitement (même code) va s’appliquer
à des types concrets distincts (opérateurs spécifiques)

● On dit que c’est statique parce que la cohérence
du type est déterminée à la compilation et non pas
au runtime, d’où les avantages suivants :

➔ Les erreurs sont détectées/signalées à la compilation
➔ Pas de RTTI qui coûte des octets à chaque objet
➔ Optimisable par le compilo pour chaque type concret
➔ Compatible avec les types élémentaires (int, float...)
➔ Pas besoin de classe de base en commun

!

27

Programmation générique

● Solution 3 : le polymorphisme statique

Inconvénients :
➔ Par rapport au polymorphisme dynamique on ne peut

pas mélanger des types distincts => homogénéité
➔ On doit connaître à l’avance « en dur » les types
➔ Pour chaque type concret utilisé le compilateur génère

un ensemble de code dédié => code bloat (gros execs)
➔ La beauté syntaxique des déclarations est... discutable
➔ Utilise de la déduction automatique de type qui marche

bien en général, mais pas toujours => surprises

➔ À haut niveau la méta-programmation C++ générique
par templates est notoirement illisible et compliquée

!

28

Programmation générique

● La définition d’un bloc de code templaté
(définition d’une fonction ou classe template)
commence par une déclaration de template :

● IMPORTANT : un code templaté est automatiquement
(implicitement) inline

● Il doit toujours être inclus dans le fichier où on veut
l’utiliser : à moins de faire du test directement devant
le main (possible) il va toujours dans un en-tête .h

!

template<typename T>
/// Dans le code qui suit on utilise T comme un type
/// Définition d’une fonction ou d’une classe...
...
...
...
/// Fin de la fonction ou de la classe
après la fermeture de la définition on n’est plus dans le template

29

Programmation générique

● La définition d’un bloc de code templaté
(définition d’une fonction ou classe template)
commence par une déclaration de template :

● IMPORTANT : un code templaté est automatiquement
(implicitement) inline

● Il doit toujours être inclus dans le fichier où on veut
l’utiliser : à moins de faire du test directement devant
le main (possible) il va toujours dans un en-tête .h

!

template<typename T, typename U, typename V ...>
/// Dans le code qui suit on utilise T, U, V... comme des types
/// Définition d’une fonction ou d’une classe...
...
...
...
/// Fin de la fonction ou de la classe
après la fermeture de la définition on n’est plus dans le template

30

COURS 11

A) Fonctions/méthodes inline
B) Programmation générique
C) Templates de fonctions
D) Templates de classes
E) Spécialisation de templates
F) Paramètres fonctions

31

Templates de fonctions

32

Templates de fonctions

● Voici finalement la fonction générique de tri

● Le type concret T est (si possible) déduit de l’appel à
partir du type des paramètres utilisés

● A chaque appel un nouveau type T est déduit
● Le compilateur génère autant de versions concrètes

(instances du template) qu’il y a de types utilisés

!

template<typename T>
void trier(T& a, T& b)
{
 if (!(a<b))
 {
 T tmp = a;
 a = b;
 b = tmp;
 }
}

utile.h

33

Templates de fonctions

● Exemple instanciation pour un type char

!

template<typename T>
void trier(T& a, T& b)
{
 if (!(a<b))
 {
 T tmp = a;
 a = b;
 b = tmp;
 }
}

utile.h

int main()
{
 char x='e', y='d';
 trier(x, y);

main.cpp

type T déduit : char

void trier(char& a, char& b)
{
 if (!(a<b))
 {
 char tmp = a;
 a = b;
 b = tmp;
 }
}

code concret
automatiquement
généré par le
compilateur

34

Templates de fonctions

● Utilisable avec tout type compatible opérations < et =

!

template<typename T>
void trier(T& a, T& b)
{
 if (!(a<b))
 {
 T tmp = a;
 a = b;
 b = tmp;
 }
}

utile.h

int main()
{
 char x='e', y='d';
 trier(x, y);
 std::cout << x << " " << y << std::endl;

 double i=5.47, j=3.14;
 trier(i, j);
 std::cout << i << " " << j << std::endl;

 std::string m="world", n="hello";
 trier(m, n);
 std::cout << m << " " << n << std::endl;

main.cpp

35

Templates de fonctions

● Utilisable avec tout type compatible opérations < et =
struct Date {
 int jour, mois, annee;
};

bool operator<(const Date& d1, const Date& d2) {
 if (d1.annee < d2.annee) return true;
 if (d2.annee < d1.annee) return false;
 if (d1.mois < d2.mois) return true;
 if (d2.mois < d1.mois) return false;
 if (d1.jour < d2.jour) return true;
 return false;
}

std::ostream& operator<<(std::ostream& os, const Date& date) {
 os << date.jour << '/' << date.mois << '/' << date.annee;
 return os;
}

date.h

int main()
{
 Date d1{27, 7, 2018};
 Date d2{15, 7, 2018};
 trier(d1, d2);
 std::cout << d1 << " " << d2 << std::endl;

main.cpp

36

Templates de fonctions

● Appeler un template depuis un template...
template<typename T>
void trier(T& a, T& b)
{
 if (!(a<b))
 {
 T tmp = a;
 a = b;
 b = tmp;
 }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
 trier(a, b);
 std::cout << a << " " << b << std::endl;
}

int main()
{
 trierEtAfficher('e', 'd');
 trierEtAfficher(5.47, 3.14);
 trierEtAfficher("world", "hello");

main.cpp

utile.h

37

Templates de fonctions

● Attention aux pièges de la déduction automatique !
template<typename T>
void trier(T& a, T& b)
{
 if (!(a<b))
 {
 T tmp = a;
 a = b;
 b = tmp;
 }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
 trier(a, b);
 std::cout << a << " " << b << std::endl;
}

int main()
{
 trierEtAfficher('e', 'd');
 trierEtAfficher(5.47, 3.14);
 trierEtAfficher("world", "hello");

main.cpp

utile.h

???

38

Templates de fonctions

● Attention aux pièges de la déduction automatique !
template<typename T>
void trier(T& a, T& b)
{
 if (!(a<b))
 {
 T tmp = a;
 a = b;
 b = tmp;
 }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
 trier(a, b);
 std::cout << a << " " << b << std::endl;
}

int main()
{

 trierEtAfficher("world", "hello");

main.cpp

utile.h

! ! !

type T déduit : const char *
ce sont les adresses des chaînes
littérales qui sont triées, pas les chaînes !

39

Templates de fonctions

● On peut forcer une version du template à l’appel ...
template<typename T>
void trier(T& a, T& b)
{
 if (!(a<b))
 {
 T tmp = a;
 a = b;
 b = tmp;
 }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
 trier(a, b);
 std::cout << a << " " << b << std::endl;
}

int main()
{

 trierEtAfficher<std::string>("world", "hello");

main.cpp

utile.h

type T explicite: std::string
les paramètres sont convertis
(si il existe une conversion)

Chaîne littérales
convertie en std::string

on a une alternative
plus satisfaisante pour
le code client au chapitre
spécialisation de templates

!

40

Templates de fonctions

● Avec un « type perso » (classe utilisateur) ...
template<typename T>
void trier(T& a, T& b)
{
 if (!(a<b))
 {
 T tmp = a;
 a = b;
 b = tmp;
 }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
 trier(a, b);
 std::cout << a << " " << b << std::endl;
}

int main()
{

 trierEtAfficher(Date{27, 7, 2018},
 Date{15, 7, 2018});

main.cpp

utile.h

41

Templates de fonctions

● Il faut que toutes les opérations faites par le code
templaté sur les paramètres du type concret utilisé
(copies, comparaisons, affichages...) soient possibles

● Sinon le compilateur se manifeste → error
● La syntaxe explicite d’utilisation d’un type est toujours

possible au niveau de l’appelant, même quand elle
n’est pas indispensable (utile pour confirmer l’intention)

 trierEtAfficher<char>('e', 'd');

● Il existe d’autres types de paramètres de templates que
typename, les règles sont complexes, on ne peut pas
aborder tous les aspects en un seul cours,
plutôt en 300 pages

!

https://en.cppreference.com/w/cpp/language/template_parameters

42

COURS 11

A) Fonctions/méthodes inline
B) Programmation générique
C) Templates de fonctions
D) Templates de classes
E) Spécialisation de templates
F) Paramètres fonctions

43

Templates de classes

template<typename T> class JusticeLeague { ... };

44

Templates de classes

● Template de classe : un type paramètre intervient !
Ce type peut être utilisé comme paramètres, comme
valeur de retour, comme attribut...

● Noter : les méthodes de la classe sont définies inline

!

template<typename T>
class Intervalle
{
 public :

 Intervalle(T a, T b)
 : m_a{a}, m_b{b} { }

 bool contient(T x) {
 return m_a<=x && x<=m_b;
 }

 private :
 T m_a;
 T m_b;
};

intervalle.h

45

Templates de classes

● Contrairement aux fonctions il faut spécifier le type
lors de l’utilisation

● Ensuite l’instance se « souvient », pas besoin de
redire le type générique associé à chaque objet

!

int main()
{
 std::cout << std::boolalpha;

 Intervalle<char> minuscules{'a', 'z'};
 std::cout << minuscules.contient('m') << "\n";
 std::cout << minuscules.contient('3') << "\n";

 Intervalle<double> aigu{0.0, 90.0};
 std::cout << aigu.contient(20) << "\n";
 std::cout << aigu.contient(145) << "\n";

 Intervalle<std::string> contre{"antiatomique", "antivol"};
 std::cout << contre.contient("antilope") << "\n";
 std::cout << contre.contient("hantise") << "\n";

 return 0;

main.cpp

46

Templates de classes

● Contrairement aux fonctions il faut spécifier le type
lors de l’utilisation

● Ensuite l’instance se « souvient », pas besoin de
redire le type générique associé à chaque objet

!

int main()
{
 std::cout << std::boolalpha;

 Intervalle<char> minuscules{'a', 'z'};
 std::cout << minuscules.contient('m') << "\n";
 std::cout << minuscules.contient('3') << "\n";

 Intervalle<double> aigu{0.0, 90.0};
 std::cout << aigu.contient(20) << "\n";
 std::cout << aigu.contient(145) << "\n";

 Intervalle<std::string> contre{"antiatomique", "antivol"};
 std::cout << contre.contient("antilope") << "\n";
 std::cout << contre.contient("hantise") << "\n";

 return 0;

main.cpp

47

Templates de classes

● Pour information (→ futurs informaticiens purs et durs)
● Ça change en C++17

(C++17 : class template argument deduction)

● Configurer le compilateur en c++17
Mais la version gcc Code::Blocks windows par défaut
ne prend pas (et les versions plus récentes de gcc sur
windows semblent incompatibles avec les timers de threads...)

Ça permet de faire std::vector vec{43, 57, 21};

au lieu de faire std::vector<int> vec{43, 57, 21};

● Désormais les types des classes templates peuvent
être déduits ! Mais à certaines conditions...

● Ça rajoute des pièges (char* ≠ std::string etc …)

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

48

Templates de classes

● Si les méthodes sont longues (plus de 4 ou 5 lignes)
il peut être malcommode de les coder inline
directement dans la définition de la classe template

● Dans ce cas une définition « déportée » est possible

template<typename T>
class Intervalle
{
 public :
 Intervalle(T a, T b);
 bool contient(T x) ;

 private :
 T m_a;
 T m_b;
};

#include "intervalle.tpp"

intervalle.h

template<typename T>
Intervalle<T>::Intervalle(T a, T b)
 : m_a{a}, m_b{b}
{ }

template<typename T>
bool Intervalle<T>::contient(T x)
{
 return m_a<=x && x<=m_b;
}

intervalle.tppinterface implémentation

49

Templates de classes

● Les autres mécanismes usuels du C++ s’appliquent
● En particulier on peut surcharger, hériter, redéfinir...
● Exemple d’héritage avec ajout de fonctionnalité

template<typename T>
class IntervalleParcouru : public Intervalle<T>
{
 public :
 IntervalleParcouru(T a, T b, T pas)
 : Intervalle<T>{a, b}, m_pas{pas}, m_idx{a} { }

 bool fini() {
 return !Intervalle<T>::contient(m_idx);
 }

 T getNextStep() {
 T actuel = m_idx;
 m_idx += m_pas;
 return actuel;
 }

 private :
 T m_pas;
 T m_idx;
};

50

Templates de classes

● Les autres mécanismes usuels du C++ s’appliquent
● En particulier on peut surcharger, hériter, redéfinir...
● Exemple d’héritage avec ajout de fonctionnalité

template<typename T>
class IntervalleParcouru : public Intervalle<T>
{
 public :
 IntervalleParcouru(T a, T b, T pas)
 : Intervalle<T>{a, b}, m_pas{pas}, m_idx{a} { }

 bool fini() {
 return !Intervalle<T>::contient(m_idx);
 }

 T getNextStep() {
 T actuel = m_idx;
 m_idx += m_pas;
 return actuel;
 }

 private :
 T m_pas;
 T m_idx;
};

Ne pas hésiter à
re-préciser le type
paramètre utilisé

51

Templates de classes
int main()
{
 IntervalleParcouru<int> parkour1{10, 20, 2};
 while (!parkour1.fini())
 std::cout << parkour1.getNextStep() << " ";

 std::cout << std::endl;

 IntervalleParcouru<char> parkour2{'e', 'w', 3};
 while (!parkour2.fini())
 std::cout << parkour2.getNextStep() << " ";

 std::cout << std::endl;

 IntervalleParcouru<double> parkour3{2.0, 2.5, 0.1};
 while (!parkour3.fini())
 std::cout << parkour3.getNextStep() << " ";

 std::cout << std::endl;

 IntervalleParcouru<std::string> parkour4{"ba", "babababa", "ba"};
 while (!parkour4.fini())
 std::cout << parkour4.getNextStep() << " ";

 return 0;
}

52

Templates de classes

● Contrairement au polymorphisme dynamique on ne
peut pas mélanger différents types templatés dans un
même conteneur (lui même un template !)

● Par exemple on ne pourrait pas avoir
std::vector<Intervalle> mix;

● Ni faire
std::vector<Intervalle*> mix;

● Mais on peut avoir
std::vector<Intervalle<double>> intervallesReels;

● Et en supposant que ça fait sens, une classe templatée
peut accueillir des objets de types dérivés du type T
si ce type est utilisé par adresse (polymorphisme) :
c’est précisément ce que font les conteneurs STL !

!

53

Templates de classes
● Enfin avec plusieurs paramètres de types on peut

rendre génériques des structures complexes
/// Différents types de sommets
class Sommet2D
{
 private :
 double m_x, m_y;
};

class Sommet3D
{
 private :
 double m_x, m_y, m_z;
};

/// Différents types de faces
template<typename Sommet>
class Triangle
{
 private :
 Sommet* m_sommets[3];
};

template<typename Sommet>
class Polygone
{
 private :
 std::vector<Sommet*> m_sommets;
};

Exemple
très incomplet
(structure générale)

54

Templates de classes
● Enfin avec plusieurs paramètres de types on peut

rendre génériques des structures complexes
/// Un type maillage générique
template<typename Face, typename Sommet>
class Maillage
{
 private :
 std::vector<Sommet*> m_sommets;
 std::vector<Face*> m_faces;
};

int main()
{
 Maillage<Triangle<Sommet2D>, Sommet2D> maillageProjet;

 Maillage<Polygone<Sommet3D>, Sommet3D> maillageKillerApp;

 return 0;
}

Exemple
très incomplet
(structure générale)

55

COURS 11

A) Fonctions/méthodes inline
B) Programmation générique
C) Templates de fonctions
D) Templates de classes
E) Spécialisation de templates
F) Paramètres fonctions

56

Spécialisation de templates

57

Spécialisation de templates

● Pour le confort du code client on peut vouloir préciser
un comportement spécifique pour un type T connu

● Par exemple convertir les chaînes littérales en string

template<typename T>
void trierEtAfficher(T a, T b)
{
 trier(a, b);
 std::cout << a << " " << b << std::endl;
}

template<>
void trierEtAfficher<const char*>(const char* a, const char* b)
{
 std::string sa{a};
 std::string sb{b};
 trierEtAfficher(sa, sb);
}

58

Spécialisation de templates

● Pour le confort du code client on peut vouloir préciser
un comportement spécifique pour un type T connu

● Par exemple convertir les chaînes littérales en string

template<typename T>
void trierEtAfficher(T a, T b)
{
 trier(a, b);
 std::cout << a << " " << b << std::endl;
}

template<>
void trierEtAfficher<const char*>(const char* a, const char* b)
{
 std::string sa{a};
 std::string sb{b};
 trierEtAfficher(sa, sb);
}

indique une spécialisation
précise pour quel type on spécialise

59

Spécialisation de templates

● Pour le confort du code client on peut vouloir préciser
un comportement spécifique pour un type T connu

● Par exemple convertir les chaînes littérales en string

template<typename T>
void trierEtAfficher(T a, T b)
{
 trier(a, b);
 std::cout << a << " " << b << std::endl;
}

template<>
void trierEtAfficher(const char* a, const char* b)
{
 std::string sa{a};
 std::string sb{b};
 trierEtAfficher(sa, sb);
}

indique une spécialisation

pour les cas simples la déduction de type marche

60

Spécialisation de templates

● Pour le confort du code client on peut vouloir préciser
un comportement spécifique pour un type T connu

● Par exemple convertir les chaînes littérales en string

int main()
{

 trierEtAfficher<std::string>("world", "hello");

 trierEtAfficher("world", "hello");

 return 0;
}

Grâce à la spécialisation
ces 2 appels côté client
vont fonctionner de la
même façon ce qui
est préférable !

61

Spécialisation de templates

● Une spécialisation bien connue (et mal aimée) de la
STL est le std::vector<bool>

● En effet en le spécialisant la STL est capable de ne
réserver en mémoire que 1 seul bit par case !

● C’est 8 fois plus efficace qu’une implémentation naïve
● Mais c’est une fausse bonne idée : comment le

code suivant va fonctionner ?

● Ça ne compile pas ! Le vecteur de bits est donc un
conteneur dont on ne peut pas prendre l’adresse d’un
élément : c’est un cas particulier, et les cas particuliers
compliquent la programmation générique.

 std::vector<bool> vec{true, false};
 bool* ptr = &vec[1];

62

COURS 11

A) Fonctions/méthodes inline
B) Programmation générique
C) Templates de fonctions
D) Templates de classes
E) Spécialisation de templates
F) Paramètres fonctions

63

Paramètres fonctions

template<typename HeroicFunctionType>
beMyHero(HeroicFunctionType myHeroicFunction)
{ ... myHeroicFunction(supervillain) ... }

64

Paramètres fonctions

● Inversion de contrôle (inversion of control)
● Différentes techniques « objets » pour réaliser

l’inversion de contrôle. Hériter d’une interface
du framework est une des façons...

/// Classe interface (Abstraite pure)
class Fonction
{
 public :
 virtual double evaluer(double x)=0;
};

/// Intégration méthode du point milieu
double integrer(Fonction& f,
 double a, double b,
 double pas)
{
 double somme = 0;
 for (double x = a+pas/2; x<b; x+=pas)
 somme += f.evaluer(x) * pas;
 return somme;
}

/// Code utilisateur
class Fracrat : public Fonction
{
 public :
 double evaluer(double x);
};

double Fracrat::evaluer(double x)
{
 return 1/(1+x*x);
}

int main()
{
 Fracrat fr;
 std::cout<<4.0*integrer(fr,
 0, 1,
 0.001) << std::endl;

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

65

Paramètres fonctions

● Inversion de contrôle (inversion of control)
● Différentes techniques « objets » pour réaliser

l’inversion de contrôle. Hériter d’une interface
du framework est une des façons...

/// Classe interface (Abstraite pure)
class Fonction
{
 public :
 virtual double evaluer(double x)=0;
};

/// Intégration méthode du point milieu
double integrer(Fonction& f,
 double a, double b,
 double pas)
{
 double somme = 0;
 for (double x = a+pas/2; x<b; x+=pas)
 somme += f.evaluer(x) * pas;
 return somme;
}

/// Code utilisateur
class Fracrat : public Fonction
{
 public :
 double evaluer(double x);
};

double Fracrat::evaluer(double x)
{
 return 1/(1+x*x);
}

int main()
{
 Fracrat fr;
 std::cout<<4.0*integrer(fr,
 0, 1,
 0.001) << std::endl;

Appel par l’interface

Polymorphisme...

Classe concrète hérite interface

Implémentation !

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

66

Paramètres fonctions

● Quelle usine à gaz !
● Heureusement avec les paramètres templatés on a un

mécanisme beaucoup plus simple pour passer une
fonction en paramètre

/// Fonction template avec type
/// "paramètre utilisé en fonction"

template<typename F>
double integrer(F f,
 double a, double b,
 double pas)
{
 double somme = 0;
 for (double x = a+pas/2; x<b; x+=pas)
 somme += f(x) * pas;
 return somme;
}

/// Code utilisateur
double fracrat(double x)
{
 return 1/(1+x*x);
}

int main()
{

std::cout<<4.0*integrer(fracrat,
 0, 1, 0.001)
 << std::endl;

!

67

Paramètres fonctions

● Un paramètre templaté peut recevoir une fonction
● Il reçoit en fait l’adresse d’une fonction …
● On peut faire ça sans template mais les déclarations

de pointeurs de fonctions ne sont pas sympathiques
/// Fonction template avec type
/// "paramètre utilisé en fonction"

template<typename F>
double integrer(F f,
 double a, double b,
 double pas)
{
 double somme = 0;
 for (double x = a+pas/2; x<b; x+=pas)
 somme += f(x) * pas;
 return somme;
}

/// Code utilisateur
double fracrat(double x)
{
 return 1/(1+x*x);
}

int main()
{

std::cout<<4.0*integrer(fracrat,
 0, 1, 0.001)
 << std::endl;en appliquant f

la fonction intégrer
applique en fait la
fonction reçue en
paramètre

!

68

Paramètres fonctions

● Le gros avantage, on peut recevoir n’importe quelle
entité qui se comporte comme une fonction...

● Par exemple une fonction anonyme (lambda)
pas au programme, juste pour montrer la suite en C++

/// Fonction template avec type
/// "paramètre utilisé en fonction"

template<typename F>
double integrer(F f,
 double a, double b,
 double pas)
{
 double somme = 0;
 for (double x = a+pas/2; x<b; x+=pas)
 somme += f(x) * pas;
 return somme;
}

/// Code utilisateur

int main()
{
 std::cout << 4.0*integrer(

[](double x){ return 1/(1+x*x);},

0, 1, 0.001) << std::endl;

en appliquant f
la fonction intégrer
applique en fait la
fonction reçue en
paramètre

69

Paramètres fonctions

● Le gros avantage, on peut recevoir n’importe quelle
entité qui se comporte comme une fonction...

● Par exemple un objet fonction (foncteur)
qui est une sorte de fonction paramétrable

/// Classe foncteur : classe d'objets "fonctions paramétrables"
class SecondDegre {
 public :

 SecondDegre(double a, double b, double c)
 : m_a{a}, m_b{b}, m_c{c} { }

 double operator() (double x) {
 return m_a*x*x + m_b*x + m_c;
 }

 private :
 double m_a, m_b, m_c;
};

int main() {
 SecondDegre monPolynome{1.5, -1, 2};
 std::cout << integrer(monPolynome, 1, 2, 0.001) << std::endl;

f (x)=ax2+bx+c

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69

