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POO - C++
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Templates côté développeur
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F)  Paramètres fonctions
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Fonctions/méthodes inline
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Fonctions/méthodes inline

// Code appelant
void appelant()
{
    ...
    ...
    sousProg(...);
    ...
    ...
    sousProg(...);
    ...
    ...
}

// Code appelé
void sousProg(...)
{
    ... A ...
    ... B ...
    ... C ...
}

appel

retour

● appel de sous-programme = mécanisme complexe :
➔ le processeur « met en attente » la séquence actuelle
➔ le processeur exécute la séquence sous-programme
➔ le processeur poursuit la séquence après l’appel
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Fonctions/méthodes inline

// Code appelant
void appelant()
{
    ...
    ...
    sousProg(...);
    ...
    ...
    sousProg(...);
    ...
    ...
}

// Code appelé
void sousProg(...)
{
    ... A ...
    ... B ...
    ... C ...
}

appel

retour

● appel de sous-programme = mécanisme complexe :
➔ le processeur « met en attente » la séquence actuelle
➔ le processeur exécute la séquence sous-programme
➔ le processeur poursuit la séquence après l’appel

➔ un 2ème appel implique le même travail du processeur
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Fonctions/méthodes inline

// Code appelant
void appelant()
{
    ...
    ...

    ...
    ...

    ...
    ...
}

void sousProg(...)
{
    ... A ...
    ... B ...
    ... C ...
}

le compilateur 
inline le code du 
sous-programme 
appelé au niveau
de chaque appel

● Pour optimiser le compilateur peut décider de mettre 
inline le sous-programme 

● C’est comme si le code du sous-programme était écrit 
directement au niveau de l’appel

● Le processeur économise les temps des allers-retours
mais l’exécutable devient plus lourd (code bloat)

... A ...

... B ...

... C ...

... A ...

... B ...

... C ...
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Fonctions/méthodes inline

● C’est donc un compromis entre la vitesse d’exécution 
et la taille de l’exécutable

● Traditionnellement (il y a 15 ans ou plus) le choix 
d’inliner ou pas une fonction au niveau de ses appels 
était indiqué par le développeur en la déclarant inline

● Désormais c’est le compilateur qui décide d’inliner ou 
pas un appel selon des critères d’optimisation du code 
machine généré (il est mieux placé que nous pour savoir!)

● La déclaration inline continue d’être utile car elle 
permet de définir des fonctions en même temps 
que leur déclaration : dans un en-tête .h ou .hpp

● On n’a alors plus besoin d’implémenter séparément 
la fonction dans un .cpp
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Fonctions/méthodes inline

double carre(double x)
{
    return x*x;
}

● Une fonction déclarée inline est implémentée dans le .h

double carre(double x);

#include "utile.h"
void utiliserIci()
{
    std::cout<<carre(3)<<std::endl;
}

#include "utile.h"
void utiliserAilleurs()
{
    std::cout<<carre(4)<<std::endl;
}

ailleurs.cpp

ici.cpp

utile.cpp

utile.h inline double carre(double x)
{
    return x*x;
}

#include "utile.h"
void utiliserIci()
{
    std::cout<<carre(3)<<std::endl;
}

#include "utile.h"
void utiliserAilleurs()
{
    std::cout<<carre(4)<<std::endl;
}

ailleurs.cpp

ici.cpp

utile.cpp

utile.h

Déclaration

Implémentation

Déclaration
&

implémentation
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Fonctions/méthodes inline

● Une fonction déclarée inline est implémentée dans le .h

● Ceci rend possible des bibliothèques sans .cpp 
donc sans fichiers objets à linker : header-only libraries

● Beaucoup plus simples à utiliser, il suffit de copier 
les fichiers .h en local dans les répertoires include 
du compilateur et de faire #include <bibliotheque.h>

● Inconvénient principal : temps de compilation plus long

inline double carre(double x)
{
    return x*x;
}

utile.h

Déclaration
&

implémentation

!

https://en.wikipedia.org/wiki/Header-only
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Fonctions/méthodes inline

● Une fonction déclarée inline est implémentée dans le .h

● On peut être tenté d’écrire inline nos applications pour 
se débarrasser des .cpp et n’avoir que des .h

● C’est déconseillé en pratique

➔Mauvaise séparation interface / implémentation
➔Compilation longue (mauvais pour développer !)
➔Pas adapté aux grosses fonctions...

inline double carre(double x)
{
    return x*x;
}

utile.h

Déclaration
&

implémentation

!
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Fonctions/méthodes inline
class Hero
{
    public :
        Hero(std::string realName, std::string heroName);
        std::string getHeroName() const;
        std::string getMission() const;
        void setMission(std::string mission);

    private :
        std::string m_realName;
        std::string m_heroName;
        std::string m_mission;
};

inline Hero::Hero(std::string realName, std::string heroName)
    : m_realName{realName}, m_heroName{heroName}
{ }

inline std::string Hero::getHeroName() const
{
    return m_heroName;
}

inline std::string Hero::getMission() const
{
    return m_mission;
}

inline void Hero::setMission(std::string mission)
{
    m_mission = mission;
}

hero.h

méthodes inline 
implémentées
dans le .h

méthodes 
déclarées
normalement
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Fonctions/méthodes inline

class Hero
{
    public :
        Hero(std::string realName, std::string heroName)
            : m_realName{realName}, m_heroName{heroName} { }

        std::string getHeroName() const
        {   return m_heroName;  }

        std::string getMission() const
        {   return m_mission;  }

        void setMission(std::string mission)
        {   m_mission = mission;   }

    private :
        std::string m_realName;
        std::string m_heroName;
        std::string m_mission;
};

hero.h

● Quand on définit directement une méthode dans la 
déclaration de classe elle est automatiquement inline !

!

méthodes 
inline
implicites !
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Fonctions/méthodes inline

class Hero
{
    public :
        Hero(std::string realName, std::string heroName)
            : m_realName{realName}, m_heroName{heroName} { }

        std::string getHeroName() const
        {   return m_heroName;  }

        std::string getMission() const
        {   return m_mission;  }

        void setMission(std::string mission)
        {   m_mission = mission;   }

    private :
        std::string m_realName;
        std::string m_heroName;
        std::string m_mission;
};

hero.h

méthodes 
inline
implicites !

● Non obligatoire... A réserver aux méthodes courtes 
et simples : pas plus de 10 lignes (Google style guide)

!

https://google.github.io/styleguide/cppguide.html#Inline_Functions
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Programmation générique

std::vector<int> Sorted !

std::list<double> Sorted !

Sorted !std::deque
<std::string>

std::vector
 <Custom>

Quelles que soient les idées confuses de Robin,
Batman a toujours le même algorithme de tri !
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Programmation générique

● Un algorithme est un ensemble de traitements qui à 
partir de données initiales fourni des données résultats

● Une structure de données est une façon d’organiser 
des données en mémoire pour les stocker / retrouver...

● Très souvent l’algorithme ou la structure de données 
ne dépendent que d’hypothèses très limitées sur les 
opérations possibles avec les données

● Par exemple il suffit que les données définissent a < b

➔pour pouvoir appliquer un algorithme de tri
➔pour pouvoir les stocker dans un arbre binaire 

de recherche ( comme le conteneur set )
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Programmation générique

● Exemple simple : trier 2 données

Algorithme
 

trier(a par référence, b par référence)
      Si pas(a < b) Alors
            tmp  a
            a  b
            b  tmp

● Cet algorithme pourrait aussi bien traiter des entiers 
que des flottants que des caractères que des chaînes 
( le type string défini bien l’opérateur < ) ...

● Problème : le C++ est un langage typé, il va falloir 
dupliquer un même code pour chaque type !
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Programmation générique

● Problème : le C++ est un langage typé, il va falloir 
dupliquer un « même code » pour chaque type !

void trier(char& a, char& b)
{
    if ( !(a<b) )
    {
        char tmp = a;
        a = b;
        b = tmp;
    }
}

void trier(int& a, int& b)
{
    if ( !(a<b) )
    {
        int tmp = a;
        a = b;
        b = tmp;
    }
}

void trier(std::string& a, std::string& b)
{
    if ( !(a<b) )
    {
        std::string tmp = a;
        a = b;
        b = tmp;
    }
}

char
unsigned char
short int
unsigned short int
int
unsigned int
float
double
long double
std::string
...

+ AnyPossibleCustomType...
  ( impossible )

                   presque
               pareil

                   presque
               pareil

                   presque
               pareil

Le problème se pose principalement
pour du code de niveau bibliothèque 
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Programmation générique

● Solution 0 : le préprocesseur, les macros
● En C la façon de faire consiste à demander au 

préprocesseur (1ère passe du compilateur) de 
substituer littéralement le code source « appelant »
par un bloc de code avec paramètres (macro)

● Très limité, très artisanal... 
● Incompatible en général avec des types objets (string)
● Hors sujet en C++ moderne

#define SWAP(a, b) do { a ^= b; b ^= a; a ^= b; } while ( 0 )

#define SORT(a, b) do { if ((a) > (b)) SWAP((a), (b)); } while (0)

source

https://ramdeoshubham.com/macros/
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Programmation générique

● Solution 1 : renoncer aux types
● Certains langages ont un typage « dynamique » 

permissif ou pas de typage explicite du tout...

➔ Exemple en JavaScript ( ≠ Java  )

➔ Souple et simple : trop cool !     Oui mais, trop cool...
➔ Pas de compilation => bugs au runtime  +  perfs 

function trier(a, b)
{
    if ( a < b )
        return [a, b];
    else
        return [b, a];
}

console.log( trier( "world", "hello" ) );
console.log( trier( 7, 5 ) );
console.log( trier( "world", 5 ) );

[ "hello", "world" ]
[ 5, 7 ]
[ 5, "world" ]? ???

On verra les types
au moment de l’appel !

code javascript
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Programmation générique

● Solution 2 : le polymorphisme dynamique

● Pas assez en commun pour partager logiquement une hiérarchie
● Gros problèmes de cohérence : 2 fois même type concret ?
● Variable tmp par valeur => slicing (perte du polymorphisme)
● Pas adapté aux types primitifs int / float / char ... 

« Interface »
Triable

intTriable floatTriable stringTriable . . .

void trier(Triable& a, Triable& b)
{
    if ( !a.lessThan(b) )
    {
        Triable tmp = a.clone();
        a = b;
        b = tmp;
    }
}

Ici ça ne marche même pas !
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Programmation générique

● Solution 3 : le polymorphisme statique
● Le langage C++ va proposer un mécanisme de 

programmation générique par typage paramétrable
● Un code qui est paramétrable en type sera appelé 

un template (en français : patron)
● Peut s’appliquer aux fonctions (sous-programmes)
● Peut s’appliquer aux classes
● On a déjà rencontré des classes templates : 

les conteneurs de la STL, Standard Template Library

● Ainsi dans std::vector<int> le int entre chevrons 
est le paramètre de type d’une classe template
std::vector< >

!
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Programmation générique

● Solution 3 : le polymorphisme statique
● On dit que c’est du polymorphisme parce que 

un même traitement (même code) va s’appliquer 
à des types concrets distincts (opérateurs spécifiques)

● On dit que c’est statique parce que la cohérence 
du type est déterminée à la compilation et non pas 
au runtime, d’où les avantages suivants :

➔ Les erreurs sont détectées/signalées à la compilation
➔ Pas de RTTI qui coûte des octets à chaque objet
➔ Optimisable par le compilo pour chaque type concret
➔ Compatible avec les types élémentaires (int, float...)
➔ Pas besoin de classe de base en commun

!
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Programmation générique

● Solution 3 : le polymorphisme statique

Inconvénients :
➔ Par rapport au polymorphisme dynamique on ne peut 

pas mélanger des types distincts => homogénéité
➔ On doit connaître à l’avance « en dur » les types
➔ Pour chaque type concret utilisé le compilateur génère 

un ensemble de code dédié => code bloat (gros execs)
➔ La beauté syntaxique des déclarations est... discutable
➔ Utilise de la déduction automatique de type qui marche 

bien en général, mais pas toujours => surprises

➔ À haut niveau la méta-programmation C++ générique 
par templates est notoirement illisible et compliquée

!
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Programmation générique

● La définition d’un bloc de code templaté 
(définition d’une fonction ou classe template)
commence par une déclaration de template :

● IMPORTANT : un code templaté est automatiquement
(implicitement) inline

● Il doit toujours être inclus dans le fichier où on veut 
l’utiliser : à moins de faire du test directement devant 
le main (possible) il va toujours dans un en-tête .h

!

template<typename T>
/// Dans le code qui suit on utilise T comme un type
/// Définition d’une fonction ou d’une classe...
... 
... 
... 
/// Fin de la fonction ou de la classe
après la fermeture de la définition on n’est plus dans le template
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Programmation générique

● La définition d’un bloc de code templaté 
(définition d’une fonction ou classe template)
commence par une déclaration de template :

● IMPORTANT : un code templaté est automatiquement
(implicitement) inline

● Il doit toujours être inclus dans le fichier où on veut 
l’utiliser : à moins de faire du test directement devant 
le main (possible) il va toujours dans un en-tête .h

!

template<typename T, typename U, typename V ...>
/// Dans le code qui suit on utilise T, U, V... comme des types
/// Définition d’une fonction ou d’une classe...
... 
... 
... 
/// Fin de la fonction ou de la classe
après la fermeture de la définition on n’est plus dans le template
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Templates de fonctions
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Templates de fonctions

● Voici finalement la fonction générique de tri

● Le type concret T est (si possible) déduit de l’appel à 
partir du type des paramètres utilisés

● A chaque appel un nouveau type T est déduit
● Le compilateur génère autant de versions concrètes 

(instances du template) qu’il y a de types utilisés 

!

template<typename T>
void trier(T& a, T& b)
{
    if ( !(a<b) )
    {
        T tmp = a;
        a = b;
        b = tmp;
    }
}

utile.h
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Templates de fonctions

● Exemple instanciation pour un type char

!

template<typename T>
void trier(T& a, T& b)
{
    if ( !(a<b) )
    {
        T tmp = a;
        a = b;
        b = tmp;
    }
}

utile.h

int main()
{
    char x='e', y='d';
    trier(x, y);

main.cpp

type T déduit : char

void trier(char& a, char& b)
{
    if ( !(a<b) )
    {
        char tmp = a;
        a = b;
        b = tmp;
    }
}

code concret
automatiquement
généré par le 
compilateur
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Templates de fonctions

● Utilisable avec tout type compatible opérations < et =

!

template<typename T>
void trier(T& a, T& b)
{
    if ( !(a<b) )
    {
        T tmp = a;
        a = b;
        b = tmp;
    }
}

utile.h

int main()
{
    char x='e', y='d';
    trier(x, y);
    std::cout << x << " " << y << std::endl;

    double i=5.47, j=3.14;
    trier(i, j);
    std::cout << i << " " << j << std::endl;

    std::string m="world", n="hello";
    trier(m, n);
    std::cout << m << " " << n << std::endl;

main.cpp
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Templates de fonctions

● Utilisable avec tout type compatible opérations < et =
struct Date {
    int jour, mois, annee;
};

bool operator<(const Date& d1, const Date& d2) {
    if ( d1.annee < d2.annee ) return true;
    if ( d2.annee < d1.annee ) return false;
    if ( d1.mois < d2.mois ) return true;
    if ( d2.mois < d1.mois ) return false;
    if ( d1.jour < d2.jour ) return true;
    return false;
}

std::ostream& operator<<(std::ostream& os, const Date& date) {
    os << date.jour << '/' << date.mois << '/' << date.annee;
    return os;
}

date.h

int main()
{
    Date d1{27, 7, 2018};
    Date d2{15, 7, 2018};
    trier(d1, d2);
    std::cout << d1 << " " << d2 << std::endl;

main.cpp
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Templates de fonctions

● Appeler un template depuis un template...
template<typename T>
void trier(T& a, T& b)
{
    if ( !(a<b) )
    {
        T tmp = a;
        a = b;
        b = tmp;
    }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
    trier(a, b);
    std::cout << a << " " << b << std::endl;
}

int main()
{
    trierEtAfficher('e', 'd');
    trierEtAfficher(5.47, 3.14);
    trierEtAfficher("world", "hello");

main.cpp

utile.h
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Templates de fonctions

● Attention aux pièges de la déduction automatique !
template<typename T>
void trier(T& a, T& b)
{
    if ( !(a<b) )
    {
        T tmp = a;
        a = b;
        b = tmp;
    }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
    trier(a, b);
    std::cout << a << " " << b << std::endl;
}

int main()
{
    trierEtAfficher('e', 'd');
    trierEtAfficher(5.47, 3.14);
    trierEtAfficher("world", "hello");

main.cpp

utile.h

???
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Templates de fonctions

● Attention aux pièges de la déduction automatique !
template<typename T>
void trier(T& a, T& b)
{
    if ( !(a<b) )
    {
        T tmp = a;
        a = b;
        b = tmp;
    }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
    trier(a, b);
    std::cout << a << " " << b << std::endl;
}

int main()
{

    trierEtAfficher("world", "hello");

main.cpp

utile.h

! ! !

type T déduit : const char *
ce sont les adresses des chaînes 
littérales qui sont triées, pas les chaînes !
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Templates de fonctions

● On peut forcer une version du template à l’appel ...
template<typename T>
void trier(T& a, T& b)
{
    if ( !(a<b) )
    {
        T tmp = a;
        a = b;
        b = tmp;
    }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
    trier(a, b);
    std::cout << a << " " << b << std::endl;
}

int main()
{

    trierEtAfficher<std::string>("world", "hello");

main.cpp

utile.h

type T explicite: std::string
les paramètres sont convertis
(si il existe une conversion)

Chaîne littérales
convertie en std::string

on a une alternative
plus satisfaisante pour
le code client au chapitre
spécialisation de templates

!
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Templates de fonctions

● Avec un « type perso » (classe utilisateur) ...
template<typename T>
void trier(T& a, T& b)
{
    if ( !(a<b) )
    {
        T tmp = a;
        a = b;
        b = tmp;
    }
}

template<typename T>
void trierEtAfficher(T a, T b)
{
    trier(a, b);
    std::cout << a << " " << b << std::endl;
}

int main()
{

    trierEtAfficher( Date{27, 7, 2018},
                     Date{15, 7, 2018} );

main.cpp

utile.h
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Templates de fonctions

● Il faut que toutes les opérations faites par le code 
templaté sur les paramètres du type concret utilisé 
(copies, comparaisons, affichages...) soient possibles

● Sinon le compilateur se manifeste → error
● La syntaxe explicite d’utilisation d’un type est toujours 

possible au niveau de l’appelant, même quand elle 
n’est pas indispensable (utile pour confirmer l’intention)

    trierEtAfficher<char>('e', 'd');

● Il existe d’autres types de paramètres de templates que 
typename, les règles sont complexes, on ne peut pas 
aborder tous les aspects en un seul cours, 
plutôt en 300 pages

!

https://en.cppreference.com/w/cpp/language/template_parameters
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Templates de classes

template<typename T> class JusticeLeague { ... };
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Templates de classes

● Template de classe : un type paramètre intervient !
Ce type peut être utilisé comme paramètres, comme 
valeur de retour, comme attribut...

● Noter : les méthodes de la classe sont définies inline 

!

template<typename T>
class Intervalle
{
    public :

        Intervalle(T a, T b)
            : m_a{a}, m_b{b} { }

        bool contient(T x) {
            return m_a<=x && x<=m_b;
        }

    private :
        T m_a;
        T m_b;
};

intervalle.h
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Templates de classes

● Contrairement aux fonctions il faut spécifier le type 
lors de l’utilisation

● Ensuite l’instance se « souvient », pas besoin de 
redire le type générique associé à chaque objet

!

int main()
{
    std::cout << std::boolalpha;

    Intervalle<char> minuscules{'a', 'z'};
    std::cout << minuscules.contient('m') << "\n";
    std::cout << minuscules.contient('3') << "\n";

    Intervalle<double> aigu{0.0, 90.0};
    std::cout << aigu.contient(20) << "\n";
    std::cout << aigu.contient(145) << "\n";

    Intervalle<std::string> contre{"antiatomique", "antivol"};
    std::cout << contre.contient("antilope") << "\n";
    std::cout << contre.contient("hantise") << "\n";

    return 0;

main.cpp
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Templates de classes

● Contrairement aux fonctions il faut spécifier le type 
lors de l’utilisation

● Ensuite l’instance se « souvient », pas besoin de 
redire le type générique associé à chaque objet

!

int main()
{
    std::cout << std::boolalpha;

    Intervalle<char> minuscules{'a', 'z'};
    std::cout << minuscules.contient('m') << "\n";
    std::cout << minuscules.contient('3') << "\n";

    Intervalle<double> aigu{0.0, 90.0};
    std::cout << aigu.contient(20) << "\n";
    std::cout << aigu.contient(145) << "\n";

    Intervalle<std::string> contre{"antiatomique", "antivol"};
    std::cout << contre.contient("antilope") << "\n";
    std::cout << contre.contient("hantise") << "\n";

    return 0;

main.cpp
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Templates de classes

● Pour information (→ futurs informaticiens purs et durs)
● Ça change en C++17 

( C++17 : class template argument deduction )

● Configurer le compilateur en c++17
Mais la version gcc Code::Blocks windows par défaut
ne prend pas (et les versions plus récentes de gcc sur 
windows semblent incompatibles avec les timers de threads...)

Ça permet de faire std::vector vec{43, 57, 21};

au lieu de faire std::vector<int> vec{43, 57, 21};

● Désormais les types des classes templates peuvent 
être déduits ! Mais à certaines conditions...

● Ça rajoute des pièges (char* ≠ std::string etc …)

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
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Templates de classes

● Si les méthodes sont longues (plus de 4 ou 5 lignes)
il peut être malcommode de les coder inline 
directement dans la définition de la classe template

● Dans ce cas une définition « déportée » est possible

template<typename T>
class Intervalle
{
    public :
        Intervalle(T a, T b);
        bool contient(T x) ;

    private :
        T m_a;
        T m_b;
};

#include "intervalle.tpp"

intervalle.h

template<typename T>
Intervalle<T>::Intervalle(T a, T b)
    : m_a{a}, m_b{b}
{ }

template<typename T>
bool Intervalle<T>::contient(T x)
{
    return m_a<=x && x<=m_b;
}

intervalle.tppinterface implémentation
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Templates de classes

● Les autres mécanismes usuels du C++ s’appliquent
● En particulier on peut surcharger, hériter, redéfinir...
● Exemple d’héritage avec ajout de fonctionnalité

template<typename T>
class IntervalleParcouru : public Intervalle<T>
{
    public :
        IntervalleParcouru(T a, T b, T pas)
            : Intervalle<T>{a, b}, m_pas{pas}, m_idx{a} { }

        bool fini() {
            return !Intervalle<T>::contient(m_idx);
        }

        T getNextStep() {
            T actuel = m_idx;
            m_idx += m_pas;
            return actuel;
        }

    private :
        T m_pas;
        T m_idx;
};



50

Templates de classes

● Les autres mécanismes usuels du C++ s’appliquent
● En particulier on peut surcharger, hériter, redéfinir...
● Exemple d’héritage avec ajout de fonctionnalité

template<typename T>
class IntervalleParcouru : public Intervalle<T>
{
    public :
        IntervalleParcouru(T a, T b, T pas)
            : Intervalle<T>{a, b}, m_pas{pas}, m_idx{a} { }

        bool fini() {
            return !Intervalle<T>::contient(m_idx);
        }

        T getNextStep() {
            T actuel = m_idx;
            m_idx += m_pas;
            return actuel;
        }

    private :
        T m_pas;
        T m_idx;
};

Ne pas hésiter à 
re-préciser le type 
paramètre utilisé
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Templates de classes
int main()
{
    IntervalleParcouru<int> parkour1{10, 20, 2};
    while ( !parkour1.fini() )
        std::cout << parkour1.getNextStep() << " ";

    std::cout << std::endl;

    IntervalleParcouru<char> parkour2{'e', 'w', 3};
    while ( !parkour2.fini() )
        std::cout << parkour2.getNextStep() << " ";

    std::cout << std::endl;

    IntervalleParcouru<double> parkour3{2.0, 2.5, 0.1};
    while ( !parkour3.fini() )
        std::cout << parkour3.getNextStep() << " ";

    std::cout << std::endl;

    IntervalleParcouru<std::string> parkour4{"ba", "babababa", "ba"};
    while ( !parkour4.fini() )
        std::cout << parkour4.getNextStep() << " ";

    return 0;
}
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Templates de classes

● Contrairement au polymorphisme dynamique on ne 
peut pas mélanger différents types templatés dans un 
même conteneur (lui même un template !)

● Par exemple on ne pourrait pas avoir 
std::vector<Intervalle> mix;

● Ni faire 
std::vector<Intervalle*> mix;

● Mais on peut avoir 
std::vector<Intervalle<double>> intervallesReels;

● Et en supposant que ça fait sens, une classe templatée 
peut accueillir des objets de types dérivés du type T 
si ce type est utilisé par adresse (polymorphisme) :
c’est précisément ce que font les conteneurs STL !

!
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Templates de classes
● Enfin avec plusieurs paramètres de types on peut 

rendre génériques des structures complexes
/// Différents types de sommets
class Sommet2D
{
    private :
        double m_x, m_y;
};

class Sommet3D
{
    private :
        double m_x, m_y, m_z;
};

/// Différents types de faces
template<typename Sommet>
class Triangle
{
    private :
        Sommet* m_sommets[3];
};

template<typename Sommet>
class Polygone
{
    private :
        std::vector<Sommet*> m_sommets;
};

Exemple 
très incomplet
(structure générale)



54

Templates de classes
● Enfin avec plusieurs paramètres de types on peut 

rendre génériques des structures complexes
/// Un type maillage générique
template<typename Face, typename Sommet>
class Maillage
{
    private :
        std::vector<Sommet*> m_sommets;
        std::vector<Face*> m_faces;
};

int main()
{
    Maillage<Triangle<Sommet2D>, Sommet2D> maillageProjet;

    Maillage<Polygone<Sommet3D>, Sommet3D> maillageKillerApp;

    return 0;
}

Exemple 
très incomplet
(structure générale)
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COURS 11
 

A)  Fonctions/méthodes inline
B)  Programmation générique
C)  Templates de fonctions
D)  Templates de classes
E)  Spécialisation de templates
F)  Paramètres fonctions
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Spécialisation de templates
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Spécialisation de templates

● Pour le confort du code client on peut vouloir préciser 
un comportement spécifique pour un type T connu 

● Par exemple convertir les chaînes littérales en string

template<typename T>
void trierEtAfficher(T a, T b)
{
    trier(a, b);
    std::cout << a << " " << b << std::endl;
}

template<>
void trierEtAfficher<const char*>(const char* a, const char* b)
{
    std::string sa{a};
    std::string sb{b};
    trierEtAfficher(sa, sb);
}
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Spécialisation de templates

● Pour le confort du code client on peut vouloir préciser 
un comportement spécifique pour un type T connu 

● Par exemple convertir les chaînes littérales en string

template<typename T>
void trierEtAfficher(T a, T b)
{
    trier(a, b);
    std::cout << a << " " << b << std::endl;
}

template<>
void trierEtAfficher<const char*>(const char* a, const char* b)
{
    std::string sa{a};
    std::string sb{b};
    trierEtAfficher(sa, sb);
}

indique une spécialisation
précise pour quel type on spécialise
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Spécialisation de templates

● Pour le confort du code client on peut vouloir préciser 
un comportement spécifique pour un type T connu 

● Par exemple convertir les chaînes littérales en string

template<typename T>
void trierEtAfficher(T a, T b)
{
    trier(a, b);
    std::cout << a << " " << b << std::endl;
}

template<>
void trierEtAfficher(const char* a, const char* b)
{
    std::string sa{a};
    std::string sb{b};
    trierEtAfficher(sa, sb);
}

indique une spécialisation

pour les cas simples la déduction de type marche
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Spécialisation de templates

● Pour le confort du code client on peut vouloir préciser 
un comportement spécifique pour un type T connu 

● Par exemple convertir les chaînes littérales en string

int main()
{

    trierEtAfficher<std::string>("world", "hello");

    trierEtAfficher("world", "hello");

    return 0;
}

Grâce à la spécialisation 
ces 2 appels côté client 
vont fonctionner de la 
même façon ce qui 
est préférable !
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Spécialisation de templates

● Une spécialisation bien connue (et mal aimée) de la 
STL est le std::vector<bool>

● En effet en le spécialisant la STL est capable de ne 
réserver en mémoire que 1 seul bit par case !

● C’est 8 fois plus efficace qu’une implémentation naïve
● Mais c’est une fausse bonne idée : comment le 

code suivant va fonctionner ?

● Ça ne compile pas ! Le vecteur de bits est donc un 
conteneur dont on ne peut pas prendre l’adresse d’un 
élément : c’est un cas particulier, et les cas particuliers 
compliquent la programmation générique.

    std::vector<bool> vec{true, false};
    bool* ptr = &vec[1];
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Paramètres fonctions

template<typename HeroicFunctionType> 
beMyHero(HeroicFunctionType myHeroicFunction)
{ ... myHeroicFunction(supervillain) ... }
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Paramètres fonctions

● Inversion de contrôle ( inversion of control )
● Différentes techniques « objets » pour réaliser 

l’inversion de contrôle. Hériter d’une interface 
du framework est une des façons...

/// Classe interface (Abstraite pure)
class Fonction
{
  public :
    virtual double evaluer(double x)=0;
};

/// Intégration méthode du point milieu
double integrer(Fonction& f, 
                double a, double b, 
                double pas)
{
  double somme = 0;
  for (double x = a+pas/2; x<b; x+=pas)
    somme += f.evaluer(x) * pas;
  return somme;
}

/// Code utilisateur
class Fracrat : public Fonction
{
  public :
    double evaluer(double x);
};

double Fracrat::evaluer(double x)
{
  return 1/(1+x*x);
}

int main()
{
  Fracrat fr;
  std::cout<<4.0*integrer(fr, 
             0, 1,
             0.001) << std::endl;

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu
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Paramètres fonctions

● Inversion de contrôle ( inversion of control )
● Différentes techniques « objets » pour réaliser 

l’inversion de contrôle. Hériter d’une interface 
du framework est une des façons...

/// Classe interface (Abstraite pure)
class Fonction
{
  public :
    virtual double evaluer(double x)=0;
};

/// Intégration méthode du point milieu
double integrer(Fonction& f, 
                double a, double b, 
                double pas)
{
  double somme = 0;
  for (double x = a+pas/2; x<b; x+=pas)
    somme += f.evaluer(x) * pas;
  return somme;
}

/// Code utilisateur
class Fracrat : public Fonction
{
  public :
    double evaluer(double x);
};

double Fracrat::evaluer(double x)
{
  return 1/(1+x*x);
}

int main()
{
  Fracrat fr;
  std::cout<<4.0*integrer(fr, 
             0, 1,
             0.001) << std::endl;

Appel par l’interface

Polymorphisme...

Classe concrète hérite interface

Implémentation !

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu
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Paramètres fonctions

● Quelle usine à gaz !
● Heureusement avec les paramètres templatés on a un

mécanisme beaucoup plus simple pour passer une 
fonction en paramètre

/// Fonction template avec type 
/// "paramètre utilisé en fonction"

template<typename F>
double integrer(F f, 
                double a, double b,
                double pas)
{
  double somme = 0;
  for (double x = a+pas/2; x<b; x+=pas)
    somme += f(x) * pas;
  return somme;
}

/// Code utilisateur
double fracrat(double x)
{
    return 1/(1+x*x);
}

int main()
{
  
std::cout<<4.0*integrer(fracrat, 
                   0, 1, 0.001)
         << std::endl;

!
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Paramètres fonctions

● Un paramètre templaté peut recevoir une fonction
● Il reçoit en fait l’adresse d’une fonction …
● On peut faire ça sans template mais les déclarations

de pointeurs de fonctions ne sont pas sympathiques
/// Fonction template avec type 
/// "paramètre utilisé en fonction"

template<typename F>
double integrer(F f, 
                double a, double b,
                double pas)
{
  double somme = 0;
  for (double x = a+pas/2; x<b; x+=pas)
    somme += f(x) * pas;
  return somme;
}

/// Code utilisateur
double fracrat(double x)
{
    return 1/(1+x*x);
}

int main()
{
  
std::cout<<4.0*integrer(fracrat, 
                   0, 1, 0.001)
         << std::endl;en appliquant f

la fonction intégrer
applique en fait la 
fonction reçue en 
paramètre

!
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Paramètres fonctions

● Le gros avantage, on peut recevoir n’importe quelle 
entité qui se comporte comme une fonction...

● Par exemple une fonction anonyme (lambda)
pas au programme, juste pour montrer la suite en C++

/// Fonction template avec type 
/// "paramètre utilisé en fonction"

template<typename F>
double integrer(F f, 
                double a, double b,
                double pas)
{
  double somme = 0;
  for (double x = a+pas/2; x<b; x+=pas)
    somme += f(x) * pas;
  return somme;
}

/// Code utilisateur

int main()
{
  std::cout << 4.0*integrer( 

[](double x){ return 1/(1+x*x);},

0, 1, 0.001) << std::endl;

en appliquant f
la fonction intégrer
applique en fait la 
fonction reçue en 
paramètre
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Paramètres fonctions

● Le gros avantage, on peut recevoir n’importe quelle 
entité qui se comporte comme une fonction...

● Par exemple un objet fonction (foncteur)
qui est une sorte de fonction paramétrable

/// Classe foncteur : classe d'objets "fonctions paramétrables"
class SecondDegre {
    public :

        SecondDegre(double a, double b, double c)
            : m_a{a}, m_b{b}, m_c{c}   {  }

        double operator() (double x) {
            return m_a*x*x + m_b*x + m_c;
        }

    private :
        double m_a, m_b, m_c;
};

int main() {
    SecondDegre monPolynome{1.5, -1, 2};
    std::cout << integrer(monPolynome, 1, 2, 0.001) << std::endl;

f ( x)=ax2+bx+c
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