Robin FERCOQ

|-|!| ECE PARIS NS e 019

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

r POO - C++

I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des donneées
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++ : complements 6. UML et C++, associations
/. Conteneurs & C++ : la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Abstraction / design patterns 9. Modele composite et graphismes

10.Exceptions, flots, fichiers .. 10.Persistance / fichiers / except.
11.Templates coté developpeur 11.Développement de templates
12.Gestion méemoire / smarts ptrs 12.Soutenance de projet ...

Templates cote développeur

COURS 11

A) Fonctions/methodes inline
B) Programmation génerique
C) Templates de fonctions

D) Templates de classes

E) Specialisation de templates
F) Parametres fonctions

COURS 11

A) Fonctions/methodes inline
B) Programmation génerique
C) Templates de fonctions

D) Templates de classes

E) Specialisation de templates
F) Parametres fonctions

Fonctions/méthodes inline

Fonctions/méthodes inline

I e appel de sous-programme = mécanisme complexe :

> |e processeur « met en attente » la sequence actuelle

I > le processeur exécute la séquence sous-programme

> |e processeur poursuit la séquence apres l'appel

// Code appelant
void appelant()

o

sousProg(...);
. -—

// Code appelé
void sousProg(...)

ééﬁsProg(...);

{
appel > ... A ...
tou ¢ B ...
V...cC...

}

Fonctions/méthodes inline

I e appel de sous-programme = mécanisme complexe :
> |e processeur « met en attente » la sequence actuelle
I > |e processeur exéecute la séquence sous-programme
> |e processeur poursuit la séquence apres l'appel
> un 2°™ appel impligue le méme travail du processeur

// Code appelant
void appelant()

// Code appelé
void sousProg(...)

SOUSProg(-)3 AL,
%¢...B...
sousProg(...); retour T

Vo

}

F Fonctions/méthodes inline

I * Pour optimiser le compilateur peut décider de mettre
Inline le sous-programme

directement au niveau de I'appel

I * C’est comme si le code du sous-programme était ecrit

* Le processeur économise les temps des allers-retours
mais I'exécutable devient plus lourd (code bloat)

e NI

)&

e NI

// Code appelant
void appelant()

':;;;<

le compilateur

inline le code du
Sous-programme
appelé au niveau
de chaque appel

void sousProg(...)

{

7~

' 4
[]

Fonctions/Iméthodes inline

C’est donc un compromis entre la vitesse d’execution
et la taille de I'executable

Traditionnellement (il y a 15 ans ou plus) le choix
d’inliner ou pas une fonction au niveau de ses appels
etait indiqué par le developpeur en la déclarant inline

Désormais c’est le compilateur qui décide d’inliner ou
pas un appel selon des criteres d’optimisation du code
machine généere (il est mieux placé que nous pour savoir!)

La declaration inline continue d'étre utile car elle
permet de définir des fonctions en méme temps
que leur declaration : dans un en-téte .h ou .hpp

On n’a alors plus besoin d’'implementer separement
la fonction dans un .cpp

Fonctions/méthodes inline

* Une fonction déclaree inline est implementée dans le .h

double carre(double x); utile.h inline double carre(double Xx)| utile.h
Déclaration i return x*x; Déclaration

implémintation

double carre(double x) utile.cpp utile.cpp

i return x*x; Implémentation

#include "utile.h" ici.cpp #include "utile.h" ici.cpp

void utiliserIci() void utiliserIci()

; std: :cout<<carre(3)<<std: :endl; i std: :cout<<carre(3)<<std::endl;

#include "utile.h™

ailleurs.cpp

void utiliserAilleurs()

{
}

std: :cout<<carre(4)<<std: :endl;

#tinclude "utile.h"

ailleurs.cpp

void utiliserAilleurs()

{
}

std: :cout<<carre(4)<<std: :endl;

Fonctions/méthodes inline 0

Une fonction déclaree inline est implementée dans le .h
(inline)double carre(double x) j
utile.h

return x*x;

}

Déclaration
&
implémentation

Ceci rend possible des bibliotheques sans .cpp
donc sans fichiers objets a linker : header-only libraries

Beaucoup plus simples a utiliser, il suffit de copier
les fichiers .h en local dans les répertoires include
du compilateur et de faire #include <bibliotheque.h>

Inconveénient principal : temps de compilation plus long

https://en.wikipedia.org/wiki/Header-only

Fonctions/méthodes inline 0

I * Une fonction déclaree inline est implementée dans le .h

E inline)double carre(double x) utile.h

return x*x;
}
Déclaration

&
implémentation

* On peut étre tente d’ecrire inline nos applications pour
se débarrasser des .cpp et n’avoir que des .h

 C’est deconsellle en pratique
2 Mauvaise séparation interface / implémentation
2 Compilation longue (mauvais pour developper !)
2 Pas adapté aux grosses fonctions...

Fonctions/Iméthodes inline

class Hero

public :
Hero(std::string realName, std::string heroName);
std::string getHeroName() const;
std::string getMission() const;
void setMission(std::string mission);

private :
std::string m_realName;
std::string m_heroName;
std::string m_mission;

}s

inline Hero: :Hero(std::string realName, std::string heroName)\\
: m_realName{realName}, m_heroName{heroName}

{1}

inline std::string Hero::getHeroName() const
{ return m_heroName;

}

inline std::string Hero::getMission() const
i return m_mission;

inline void Hero::setMission(std::string mission)

{

m_mission = mission;

} /

hero.h

meéthodes
déclarees
normalement

méthodes inline
implémentées
dans le .h

Fonctions/Iméthodes inline G

* Quand on définit directement une methode dans la
déclaration de classe elle est automatiquement inline !

class Hero hero.h

{

public : N
Hero(std: :string realName, std::string heroName)

: m_realName{realName}, m_heroName{heroName} { }

std::string getHeroName() const
{ return m_heroName; }

std::string getMission() const
{ return m_mission; }

void setMission(std::string mission)
{ m_mission = mission; }

[/
private : . méthodes
std: :string m_realName; inline

std::string m_heroName;

. . . implicites !
std::string m _mission; P

}s

Fonctions/Iméthodes inline G

* Non obligatoire... A réserver aux méthodes courtes

et simples : pas plus de 10 lignes (Google style guide)

class Hero hero.h
{
public : ~N
Hero(std: :string realName, std::string heroName)
: m_realName{realName}, m_heroName{heroName} { }
std: :string getHeroName() const
{ return m_heroName; }
std::string getMission() const
{ return m_mission; }
void setMission(std::string mission)
{ m_mission = mission; }
ivate - /
private . . meéthodes
std: :string m_realName; inline
std::string m_heroName; implicites !

std::string m _mission;

}s

https://google.github.io/styleguide/cppguide.html#Inline_Functions

COURS 11

A) Fonctions/methodes inline
B) Programmation generique
C) Templates de fonctions

D) Templates de classes

E) Specialisation de templates
F) Parametres fonctions

Programmation generique

| std::vector<int>

td::list<double Sorted |

Quelles que soient les idées confuses de Robin,
Batman a toujours le méme algorithme de tri |

Programmation générique

Un algorithme est un ensemble de traitements qui a
partir de données initiales fourni des données résultats

Une structure de données est une facon d’organiser
des donnees en memoire pour les stocker / retrouver...

Tres souvent l'algorithme ou la structure de donnéees
ne dépendent que d’hypotheses tres limitees sur les
opérations possibles avec les donnéees

Par exemple Il suffit que les données définissent a < b

2pour pouvolir appliquer un algorithme de tri

2>pour pouvoir les stocker dans un arbre binaire
de recherche (comme le conteneur set)

Programmation générique

* Exemple simple : trier 2 données

Algorithme

trier(a par référence, b par reférence)
Si pas(a < b) Alors

tmp < a

a<Db

b <« tmp

* Cet algorithme pourrait aussi bien traiter des entiers
que des flottants que des caracteres que des chaines
(le type string défini bien l'opérateur <) ...

* Probleme : le C++ est un langage typé, il va falloir
dupliquer un méme code pour chaque type !

Programmation generique

 Probleme : le C++ est un langage typé, il va falloir
dupliquer un « méme code » pour chaque type !

void trier(char& a, char& b)

ey) - Le probleme se pose principalement
1 (a< . . . x
{ pour du code de niveau bibliotheque
char ‘Fmp = a; presque
E _ ’Er)np; pareil char
) } 5 unsigned char
short int
void trier(int& a, int& b) unsigned short int
if (!(a<b)) h int. .
{ unsigned int
int Emp = a; presque float
a =b; .
b = tmp; pareil double
} } 3 long double

void trier(std::string& a, std::string& b)

std: :string

if (!(a<b)) h
{ . . + AnyPossibleCustomType. ..
:tg'tft”"g tmp = a; presque (impossible)
b - tmp; pareil
}
} _

Programmation générique

e Solution 0 : le préprocesseur, les macros

* En C la facon de faire consiste a demander au
préprocesseur (1¢¢ passe du compilateur) de
substituer littéralement le code source « appelant »
par un bloc de code avec parametres (macro)

* Tres limite, tres artisanal...
* Incompatible en général avec des types objets (string)
* Hors sujet en C++ moderne

#define SWAP(a, b) do { a ~= b; b ~= a; a *= b; } while (0)

#define SORT(a, b) do { if ((a) > (b)) SWAP((a), (b)); } while (@)

source

https://ramdeoshubham.com/macros/

Programmation générique

* Solution 1 : renoncer aux types

* Certains langages ont un typage « dynamique »
permissif ou pas de typage explicite du tout...

> Exemple en JavaScript (# Java)

function trier(a, b)

h On verra les types code javascript
if (a<b) au moment de l'appel !
return [a, b];
else
return [b, a];
}
console.log(trier("world", "hello")); ["hello", "world"]
console.log(trier(7, 5)); [5, 7]
console.log(trier("world", 5));? [5, "world" 1?7?77

> Souple et simple : trop cool ! Oui mais, trop cool...
> Pas de compilation => bugs au runtime + perfs N

Programmation générique

* Solution 2 : le polymorphisme dynamique

« Interface »

Triable

JAN

intTriable

floatTriable

stringTriable

}

if ('a.lessThan(b))

{

¥

void trier(Triable& a, Triable& b)

Triable tmp = a.clone();
a = b;
b = tmp;

Pas assez en commun pour partager logiguement une hiérarchie
Gros problemes de coherence : 2 fois méme type concret ?
Variable tmp par valeur => slicing (perte du polymorphisme)

Pas adapte aux types primitifs int / float / char ...

Programmation genérique a

Solution 3 : le polymorphisme statique

Le langage C++ va proposer un mécanisme de
programmation génerique par typage paramétrable

Un code qui est parametrable en type sera appelé
un template (en francais : patron)

Peut s’appliquer aux fonctions (sous-programmes)
Peut s’appliquer aux classes

On a déja rencontré des classes templates :
les conteneurs de la STL, Standard Template Library

Ailnsi dans std: :vector<int> le int entre chevrons

est le parametre de type d’une classe template
std: :vector< >

Programmation génerique a

I * Solution 3 : le polymorphisme statique

* On dit que c’est du polymorphisme parce que
un méme traitement (méme code) va s’appliquer
a des types concrets distincts (opérateurs spécifigues)

* On dit que c’est statique parce que la cohérence
du type est determinée a la compilation et non pas
au runtime, d’ou les avantages suivants :

> Les erreurs sont détectées/signalées a la compilation
> Pas de RTTI qui colte des octets a chaque objet

> Optimisable par le compilo pour chaque type concret
> Compatible avec les types elementaires (int, float...)
> Pas besoin de classe de base en commun

Programmation génerique a

I * Solution 3 : le polymorphisme statique
Inconvénients :

> Par rapport au polymorphisme dynamique on ne peut
pas meéelanger des types distincts => homogeneéité

> On doit connaitre a l'avance « en dur » les types

> Pour chaque type concret utilisé le compilateur genere
un ensemble de code dédié => code bloat (gros execs)

> | a beauté syntaxique des déclarations est... discutable

> Utilise de la déduction automatique de type qui marche
bien en général, mais pas toujours => surprises

> A haut niveau la méta-programmation C++ générique
par templates est notoirement illisible et compliquee

Programmation générique

I * La définition d’un bloc de code templaté
(définition d’une fonction ou classe template)

template<typename T>
/// Dans le code qui suit on utilise T comme un type
/// Définition d’une fonction ou d’une classe...

I commence par une déclaration de template :

)}) Fin de la fonction ou de la classe
apres La fermeture de La definition on n’est plus dans le template

* IMPORTANT : un code templaté est automatiquement
(implicitement) inline

* Il doit toujours étre inclus dans le fichier ou on veut
l'utiliser : a moins de faire du test directement devant
le main (possible) il va toujours dans un en-téte .h

Programmation genérique 0

I * La définition d’un bloc de code templaté
(définition d’une fonction ou classe template)

template<typename T, typename U, typename V ...>
/// Dans le code qui suit on utilise T, U, V... comme des types
/// Définition d’une fonction ou d’une classe...

I commence par une déclaration de template :

)}) Fin de la fonction ou de la classe
apres La fermeture de La definition on n’est plus dans le template

* IMPORTANT : un code templaté est automatiquement
(implicitement) inline

* Il doit toujours étre inclus dans le fichier ou on veut
l'utiliser : a moins de faire du test directement devant
le main (possible) il va toujours dans un en-téte .h

30

R

COURS 11

A) Fonctions/methodes inline
B) Programmation génerique
C) Templates de fonctions

D) Templates de classes

E) Specialisation de templates
F) Parametres fonctions

Templates de fonctions

Templates de fonctions 0

I Voici finalement la fonction generique de tri
template<typename T>

utile.h

void trier(T& a, T& b)
I if (!(a<b))
{
T tmp = a;

a = b;
b = tmp;

* Le type concret T est (si possible) deduit de I'appel a
partir du type des parametres utilisés

* A chaque appel un nouveau type T est déduit

* Le compilateur génere autant de versions concretes
(instances du template) qu’il y a de types utilisés

Templates de fonctions

* Exemple instanciation pour un type char

template<typename T> utile.h
¥oid trier(T& a, T& b) :> void trier(char& a, char& b)
if (!(a<b)) if (!(a<b))
{ code concret {
T tmp = a; automatiquement char tmp = a;
a = b; généré par le a = b;
b = tmp; compilateur b = tmp;
} }
} }
\
int main() main.cpp
char x= , Y= ;

trier(x, y);

type T déduit : char

Templates de fonctions

* Utilisable avec tout type compatible opérations < et =

template<typename T> utile.h
void trier(T& a, T& b)
if (!(a<b))
{
T tmp = a,;
a = b;
b = tmp;
}
}
int main() main.cpp
char x= , Y= ;
trier(x, y);
std::cout << x << " " << y << std::endl;

double i=5.47, j=3.14;
trier(i, j);
std::cout << i << " " << j << std::endl;

std: :string m="world", n="hello";
trier(m, n);
std::cout << m << " " << n << std::endl;

Templates de fonctions

Utilisable avec tout type compatible opérations < et =

struct Date { date.h

s

int jour, mois, annee;

bool operator<(const Date& dl, const Date& d2) {

if (dl.annee < d2.annee) return true;
if (d2.annee < dl.annee) return false;
if (dl.mois < d2.mois) return true;

if (d2.mois < dl.mois) return false;
if (dl.jour < d2.jour) return true;
return false;

}
std: :ostream& operator<<(std::ostream& os, const Date& date) {
0s << date.jour <« << date.mois <« << date.annee;
return os;
}
%nt main() main.cpp

Date d1{27, 7, 2018};

Date d2{15, 7, 2018};

trier(dl, d2);

std::cout << dl << " " << d2 << std::endl;

Templates de fonctions

* Appeler un template depuis un template...

template<typename T>
void trier(T& a, T& b)

if (1(a<b))
{

T tmp = a,;
a = b;
b = tmp;
}
}

template<typename T>
void trierEtAfficher(T a, T b)
{
trier(a, b);
std::cout << a << " " << b << std::endl;

}

utile.h

int main()

d e

trierEtAfficher('e’,) e
trierEtAfficher(5.47, 3.14); 3.14 5.47
trierEtAfficher("world", "hello"); world hello

main.cpp

Templates de fonctions

* Attention aux pieges de la déduction automatique !

template<typename T>
void trier(T& a, T& b)

}

if (1(a<b))
{

=a;

c oL -
nmn

mp
b;
tmp;
}

template<typename T>
void trierEtAfficher(T a, T b)

{

}

trier(a, b);

utile.h

std::cout << a << " " << b << std::endl;

int main()

trierEtAfficher(s)
trierEtAfficher(5.47, 3.14);
trierEtAfficher("world", "hello");

main.cpp

@world hello pNarals

Templates de fonctions

* Attention aux pieges de la déduction automatique !

template<typename T>
void trier(T& a, T& b)

if (1(a<b))
{

T tmp = a,;
a = b;
b = tmp;

}

template<typename T>
void trierEtAfficher(T a, T b)

{
trier(a, b);
std::cout << a <«

<< b <<

}

j

utile.h

type T déduit : const char *
ce sont les adresses des chaines
littérales qui sont triées, pas les chaines !

std: :endl;

int main()

main.cpp

Ve

~

trierEtAfficher("world", "hello"); M)l]

Templates de fonctions G

* On peut forcer une version du template a I'appel ...

template<typename T>
void trier(T& a, T& b)

if (1(a<b))
{

T tmp = a,;
a = b;
b = tmp;

}

template<typename T>
void trierEtAfficher(T a, T b)

{
trier(a, b);
std::cout << a <«

<< b <<

}

j

utile.h

on a une alternative

plus satisfaisante pour

le code client au chapitre
spécialisation de templates

type T explicite: std::string
les parametres sont convertis
(si il existe une conversion)

std: :endl;

int main()

Ve

main.cpp

Chaine littérales
convertie en std::string

' \
trierEtAfficher<std: :string>("world", "hello"); [I=AMESIR slails

Templates de fonctions

* Avec un « type perso » (classe utilisateur) ...

template<typename T> utile.h

void trier(T& a, T& b)

}

if (1(a<b))
{

=a;

c oL -
nmn

mp
b;
tmp;
}

template<typename T>
void trierEtAfficher(T a, T b)

{
trier(a, b);
std::cout << a << " " << b << std::endl;
}
int main() main.cpp

trierEtAfficher(Date{27, 7, 2018}, e ——— p————
Date{15, 7, 2018}); Il Ny

Templates de fonctions 0

Il faut que toutes les opérations faites par le code
template sur les parametres du type concret utilisé
(copies, comparaisons, affichages...) solent possibles

Sinon le compilateur se manifeste — error

La syntaxe explicite d’utilisation d’un type est toujours
possible au niveau de I'appelant, méme quand elle
n’est pas indispensable (utile pour confirmer I'intention)

trierEtAfficher<char>(,);

Il existe d’autres types de parametres de templates que
typename, les regles sont complexes, on ne peut pas
aborder tous les aspects en un seul cours,

plutot en 300 pages

https://en.cppreference.com/w/cpp/language/template_parameters

42

R

COURS 11

A) Fonctions/methodes inline
B) Programmation génerique
C) Templates de fonctions

D) Templates de classes

E) Specialisation de templates
F) Parametres fonctions

43

R

Templates de classes

template<typename T> class JusticelLeague { ... };

Templates de classes G

* Template de classe : un type parametre intervient !
Ce type peut étre utilise comme parametres, comme
valeur de retour, comme attribut...

* Noter : les méthodes de la classe sont définies Inline

template<typename T> intervalle.h

class Intervalle

{ .
public :

Intervalle(T a, T b)
: m_a{a}, m_b{b} { }

bool contient(T x) {
return m_a<=x && x<=m_b;
}

private :
T m_a;
T m b;

s

Templates de classes G

I * Contrairement aux fonctions il faut specifier le type
lors de l'utilisation

* Ensuite 'instance se « souvient », pas besoin de
redire le type generique associée a chaque objet

int main() main.cpp

{
std::cout << std::boolalpha;

Intervalle<char> minuscules{ s }s
std::cout << minuscules.contient() << "\n";
std::cout << minuscules.contient() << "\n";

Intervalle<double> aigu{©.0, 90.0};
std::cout << aigu.contient(20) << "\n";
std::cout << aigu.contient(145) << "\n";

Intervalle<std: :string> contre{"antiatomique"”, "antivol"};
std::cout << contre.contient("antilope"”) << "\n";
std::cout << contre.contient("hantise") << "\n";

return 0;

Templates de classes

» Contrairement aux fonctions il fautGpécifier le type>

lors de l'utilisation

* Ensuite 'instance se « souvient », pas besoin de
redire le type generique associée a chaque objet

int main()

{
std::cout << std::boolalpha;

Inter‘vall minuscules{ s }s
std: :cout < nuscules.contient() << "\n";
std::cout << minuscules.contient() << "\n";

Inter‘vall aigu{0.0, 90.0};
std::cout << aigu.contient(20) << "\n";

std::cout << aigu.contient(145) << "\n";

IntepV311€<§£§éﬁ;§;§E§§>ContPe{"antiatomique", "antivol"
std::cout << C .contient("antilope”) << "\n";

std::cout << contre.contient("hantise") << "\n";

return 0;

main.cpp

}s

Templates de classes

Pour information (- futurs informaticiens purs et durs)
Ca change en C++17

(C++17 : class template argument deduction)

Configurer le compilateur en c++17
Mais la version gcc Code::Blocks windows par defaut

ne prend pas (et les versions plus récentes de gcc sur
windows semblent incompatibles avec les timers de threads...)

Ca permet de faire std: :vector vec{43, 57, 21};
au lieu de faire std: :vector<int> vec{43, 57, 21};

Désormais les types des classes templates peuvent
étre déduits ! Mais a certaines conditions...

Ca rajoute des pieges (char* # std::string etc ...)

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

Templates de classes

I » Si les méthodes sont longues (plus de 4 ou 5 lignes)
Il peut étre malcommode de les coder inline

directement dans la définition de la classe template
I * Dans ce cas une définition « déeportée » est possible
interface intervalle.h | | implémentation intervalle.tpp
template<typename T> template<typename T>
class Intervalle Intervalle<T>::Intervalle(T a, T b)
{ : m_a{a}, m b{b}
public : { }
Intervalle(T a, T b);
bool contient(T x) ; template<typename T>
bool Intervalle<T>::contient(T x)
private : {
T m_a; return m_a<=x && x<=m_b;
T mb; }
¥
#include "intervalle.tpp"

Templates de classes

I * Les autres mecanismes usuels du C++ s’appliquent
* En particulier on peut surcharger, hériter, redeéfinir...

I * Exemple d’heritage avec ajout de fonctionnalite

template<typename T>
class IntervalleParcouru : public Intervalle<T>

public :
IntervalleParcouru(T a, T b, T pas)
: Intervalle<T>{a, b}, m _pas{pas}, m_idx{a} { }

bool fini() {
return !Intervalle<T>::contient(m_idx);

¥

T getNextStep() {
T actuel = m_idx;
m_idx += m_pas;
return actuel;

¥

private :
T m_pas;
T m_idx;

s

Templates de classes

I * Les autres mecanismes usuels du C++ s’appliquent
* En particulier on peut surcharger, hériter, redeéfinir...

I * Exemple d’heritage avec ajout de fonctionnalite

template<typename T>
class IntervalleParcouru : public Intervalld::>

public :

IntervalleParcouru(T a, T b, T pas)
: Intervall a, b}, m pas{pas}, m_idx{a} { }

bool fini()
return ! ntervalle%fzz:tontient(m_idx);

}

T getNextSte L . :
. T actuelpi)mfidx; Ne pas hesiter a

m_idx += m_pas; re-préciser le type
} return actuel; arametre utilisé
private :
T m_pas;
T m_idx;

s

Templates de classes

int main()

IntervalleParcouru<int> parkourl{10, 20, 2}; 18 12 14 16 18 280

while (!parkourl.fini()) ehkng

std: :cout << parkourl.getNextSte << K
P & PO 2 2.1 2.2

std: :cout << std::endl;
IntervalleParcouru<char> parkour2{ , , 3};
while (!parkour2.fini())

std::cout << parkour2.getNextStep() << " ";
std: :cout << std::endl;
IntervalleParcouru<double> parkour3{2.0, 2.5, 0.1};
while (!parkour3.fini())

std::cout << parkour3.getNextStep() << " ";
std: :cout << std::endl;
IntervalleParcouru<std: :string> parkour4{"ba", "babababa"
while (!parkour4.fini())

std::cout << parkour4.getNextStep() << " ";

return 0;

T w

2.3 2.4 2.

s llball};

C
b

ba baba bababa babababa

Templates de classes a

Contrairement au polymorphisme dynamique on ne
peut pas mélanger difféerents types templatés dans un
méme conteneur (lur méme un template !)

Par exemple on ne pourrait pas avoir
std: :vector<Intervalle> mix;

NI faire
std: :vector<Intervalle*> mix;

Mais on peut avoir
std: :vector<Intervalle<double>> intervallesReels;

Et en supposant que ca fait sens, une classe templatee
peut accuelllir des objets de types derives du type T

Si ce type est utilisé par adresse (polymorphisme) :
c’est précisément ce que font les conteneurs STL !

Templates de classes

* Enfin avec plusieurs parametres de types on peut
rendre génériques des structures complexes

class Sommet2D Exemple
{ vt trés incomplet
private : L
double m_x, m_y; (structure générale)
}s
class Sommet3D
{
private :
double m_x, m_y, m_z;
}s5

template<typename Sommet>
class Triangle
{
private :
Sommet* m_sommets[3];

}s

template<typename Sommet>
class Polygone

private :
std::vector<Sommet*> m_sommets;

}s

Templates de classes

* Enfin avec plusieurs parametres de types on peut
rendre génériques des structures complexes

/// Un type maillage générique

Exemple

template<typename Face, typename Sommet> .

class Maillage tres incomplet

{ (structure générale)
private :

std: :vector<Sommet*> m_sommets;
std: :vector<Face*> m_faces;

}s5

int main()

{ Maillage<Triangle<Sommet2D>, Sommet2D> maillageProjet;
Maillage<Polygone<Sommet3D>, Sommet3D> maillageKillerApp;

return 0;

95

R

COURS 11

A) Fonctions/methodes inline
B) Programmation génerique
C) Templates de fonctions

D) Templates de classes

E) Specialisation de templates
F) Parametres fonctions

Speécialisation de templates

THERE, Now your,. Y 7 soMeTHING Y You CAN'T §
THE HULK wiLL FACE/ WENT WRONG/| GO oUT
--WHAT ARE YOU | YOUR BoDY I'VE GOT LIKE THAT/
STARIN' AT, BRAT=¢ IS THE BANNER'S IT woulLD

HULK'S, BUT MILE SOP GIVE YOUR
YOUR FACE-- FACE/ IDENTITY

P

Speécialisation de templates

I * Pour le confort du code client on peut vouloir preciser
un comportement spécifique pour un type T connu

I * Par exemple convertir les chaines littérales en string

template<typename T>
void trierEtAfficher(T a, T b)

{
trier(a, b);
std::cout << a << " " << b << std::endl;
}
template<>
void trierEtAfficher<const char*>(const char* a, const char* b)
{

std::string sa{a};
std::string sb{b};
trierEtAfficher(sa, sb);

Speécialisation de templates

I * Pour le confort du code client on peut vouloir preciser
un comportement spécifique pour un type T connu

I * Par exemple convertir les chaines littérales en string

template<typename T>
void trierEtAfficher(T a, T b)

{
trier(a, b);
std::cout << a << " " << b << std::endl;

¥

indique une specialisation

(template<>) précise pour quel type on spécialise
Yo ' PEtAffiCheﬂggéist char*>(const char* a, const char* b)

{

std: :string sa{a};
std::string sb{b};
trierEtAfficher(sa, sb);

Speécialisation de templates

I * Pour le confort du code client on peut vouloir preciser
un comportement spécifique pour un type T connu

I * Par exemple convertir les chaines littérales en string

template<typename T>
void trierEtAfficher(T a, T b)

{
trier(a, b);
std::cout << a << " " << b << std::endl;

¥

indique une specialisation
(template<> pour les cas simples la déduction de type marche
;r‘EtAfflcher‘(const c@ a, @.t c@ b)

{

std: :string sa{a};
std::string sb{b};
trierEtAfficher(sa, sb);

* Pour le confort du code client on peut vouloir preciser
un comportement spécifique pour un type T connu

60
r Specialisation de templates

* Par exemple convertir les chaines litterales en string

int main()

{
trierEtAfficher<std: :string>("world"”, "hello");
triereEtAfficher("world”, "hello"); Gréace a la spécialisation
ces 2 appels cote client
return ©; vont fonctionner de la
} méme fagon ce qui

est préférable !

Speécialisation de templates

Une specialisation bien connue (et mal aimee) de la
STL estle std: :vector<bool>

En effet en le spéecialisant la STL est capable de ne
reserver en meémoire que 1 seul bit par case !

C’est 8 fois plus efficace qu’une implementation naive

Mais c’est une fausse bonne idée : comment le
code suivant va fonctionner ?

std: :vector<bool> vec{true, false};
bool* ptr = &vec[1];

Ca ne compile pas ! Le vecteur de bits est donc un
conteneur dont on ne peut pas prendre 'adresse d’un
eléement : c’est un cas particulier, et les cas particuliers
compliquent la programmation génerique.

62

B

COURS 11

A) Fonctions/methodes inline
B) Programmation génerique
C) Templates de fonctions

D) Templates de classes

E) Specialisation de templates
F) Parametres fonctions

Parametres fonctions

template<typename HeroicFunctionType>
beMyHero(HeroicFunctionType myHeroicFunction)
{ ... myHeroicFunction(supervillain) ... }

Parametres fonctions

I * Inversion de controle (inversion of control)

* Différentes techniques « objets » pour réaliser
I I'inversion de contrble. Hériter d’'une interface
du framework est une des facons...

class Fonction

{ .
public :

s

{

return somme;

¥

virtual double evaluer(double x)=0;

double integrer(Fonction& f,

double a, double b,
double pas)

double somme = 0;
for (double x = a+pas/2; x<b; x+=pas)
somme += f.evaluer(x) * pas;

class Fracrat : public Fonction

{ .
public :

double evaluer(double x);
}s

double Fracrat::evaluer(double x)

return 1/(1+x*x);

¥

int main() AT
{ 3.1415
Fracrat fr;
std: :cout<<4.0*integrer(fr,
@J 1)
0.001) << std::endl;

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

Parametres fonctions

I * Inversion de controle (inversion of control)

* Différentes techniques « objets » pour réaliser
I I'inversion de contrble. Hériter d’'une interface
du framework est une des facons...

class Fonction class Fracrat : public Fonction
{ {Classe concréte hérite interface
public : public :
virtual double evaluer(double x)=90; double evaluer(double x);
}s Polymorphisme... }s Implémentation !
double Fracrat:sevaluer(double x)
double integrer(Honction& f, {

ouble a, double b, return 1/(1+x*x);
ouble pas) }

{
double somme = \0;
for (double
somme +& f.evaluer(x
return

¥

int main() AT
2; x<b; x+=pas)||{ 3.1415
* pas; Fracrat fr;
somme; Appel par I'interface std: :cout<<g.@:1ntegrer~(1cr',

J J
0.001) << std::endl;

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

Parametres fonctions

* Quelle usine a gaz !

* Heureusement avec les parametres templates on a un
mecanisme beaucoup plus simple pour passer une

fonction en parametre

template<typename F>
double integrer(F f,
double a, double b,
double pas)
{
double somme = 0;
for (double x = a+pas/2; x<b; x+=pas)
somme += f(x) * pas;
return somme;

¥

double fracrat(double x)
{

¥

int main()

{

std: :cout<<4.0*integrer(fracrat,
0, 1, 0.001)
<< std::endl;

3.14159

return 1/(1+x*x);

Parametres fonctions 0

I * Un parametre templaté peut recevoir une fonction
* Il recoit en fait I'adresse d’une fonction ...

* On peut faire ca sans template mais les déclarations
de pointeurs de fonctions ne sont pas sympathiques

double fracrat(double x)
{

template<typename F5— — —— [return 1/(1+x*x);

double integrer(F f,
double a, double b,
double pas)

int main()

{ {
double somme = 0;
for (double x—= a+pas/2; x<b; x+=pas) std::cout<<4.@*integr'er'
somme += * pas; 9, 1, 0.0C
return sommelen appliquant f << std::endl;
} la fonction intégrer 5 q A
1 3.1415

applique en fait la
fonction regue en
parametre

Parametres fonctions

* Le gros avantage, on peut recevoir n'importe quelle
entité qui se comporte comme une fonction...

* Par exemple une fonction anonyme (lambda)
pas au programme, juste pour montrer la suite en C++

{

¥

template<typename F&K/”_____‘“‘~\\\\\\
double integrer(F f

q

J

double a, double b,
double pas)

double somme = 0;
for (double x—= a+pas/2; x<b; x+=pas)
somme += * pas;

return sommejen appliquant f
la fonction intégrer
applique en fait la
fonction regue en
parametre

VA

int main()

{

std::cout << 4.0*integrer(

llﬁfouble x){ return 1/(1+x*x)€}2:::

9, 1, 0.001) << std::endl;

Parametres fonctions

* Le gros avantage, on peut recevoir n'importe quelle
entité qui se comporte comme une fonction...

* Par exemple un objet fonction (foncteur)
qui est une sorte de fonction parametrable

class SecondDegre {
public :

SecondDegre(double a, double b, double c)
: m_a{a}, m_b{b}, m c{c} { }

double operator() (double x) { 5
return m_a*x*x + m_b*x + m_c; f(x):ax +bx+c
}

private :
double m_a, m_b, m c;

}s
int main() {

SecondDegre monPolynome{1.5, -1, 2};
std::cout << integrer(monPolynome, 1, 2, 0.001) << std::endl;

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69

