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POO - C++

Sommaire général du semestre

COURS     

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Abstraction / design patterns
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Compléments

TPs     

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates 
12.Soutenance de projet ...

Semaine suivante
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static variables/attributs/méthodes

● Les variables statiques sont des variables définies 
localement (à une fonction ou une méthode) 

● se comportent comme une variable globale : 

– valeur initialisée par défaut (comme une globale) 
– valeur conservée d'un appel à l'autre :

la variable n'est pas détruite en fin d'appel

void fonction()
{
    static int compteur = 0;

    std::cout << "appel numero " << ++compteur << std::endl;
}

int main()
{
    fonction();
    fonction();
    fonction(); 
    ...

C ou C++
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static variables/attributs/méthodes

● Utile en débogage, générer des identifiants…
● Pas possible d'accéder depuis l'extérieur de la fonction 

à la ressource static pour la reset ou autres opérations  
● Attention aux bricolages : bon potentiel d’abus !

/// HORRIBLE: bricolage, un seul pacman, pas accès aux données...

void bougerPacMan(int depx, int depy)
{
    static int posx=200, posy=100;

    posx += depx;   posy += depy;

    std::cout << "le pacman est en x=" << posx
                              << " y=" << posy << std::endl;
}

int main()
{
    bougerPacMan(+50, +10);
    bougerPacMan(  0, +20);
    bougerPacMan(-20,   0);

C ou C++
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static variables/attributs/méthodes

● L'abus de static indique une confusion fonction / classe 
● Utiliser une fonction comme une classe ? => classe !

/// Correct
class PacMan
{
    public :
        PacMan() = default;
        void bouger(int depx, int depy)       {
            m_posx += depx;   m_posy += depy;
            std::cout << "le pacman est en"
                      << " x=" << m_posx
                      << " y=" << m_posy << std::endl;   }
    private :
        int m_posx = 200;  /// Init. par défaut des attributs
        int m_posy = 100;
};

int main()
{
    PacMan monPacMan;
    monPacMan.bouger(+50, +10);
    monPacMan.bouger(  0, +20);
    monPacMan.bouger(-20,   0);

C++ only !
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static variables/attributs/méthodes

● Exemple de cas d’usage légitime : détecter 1er passage
● Supposons un besoin de vitesse sur une fonction 

mathématique lourde mais sans besoin de précision
/// Calcul du sinus d’un angle "au degré près" (pas très précis)
double slowSin(unsigned int deg)
{
    const double M_PI = 3.14159265358979323846;
    return sin(deg*M_PI/180);
}

int main()
{
    std::vector<double> vals(100000000);
    std::generate(vals.begin(), vals.end(),
                  [v = -10] () mutable { return v+=10; });

    std::vector<double> result;
    std::transform(vals.cbegin(), vals.cend(),
                   std::back_inserter(result), slowSin);

    for (size_t i=0; i<10; ++i)
        std::cout << "sin(" << vals[i] << ")="
                  << result[i] << std::endl;

C++14

100 millions d’appels à sinus : ~5s
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static variables/attributs/méthodes

● Plutôt que de recalculer à chaque fois la valeur de la 
fonction f(x) en un ensemble de x finis, on peut pré-
calculer tous les f(x) dans une Lookup Table ( LUT )

/// Calcul du sinus d’un angle "au degré près" (pas très précis)
double fastSin0(unsigned int deg)
{
    static const double lut[360] = {
        0.000000, 0.017452, 0.034899, 0.052336, 0.069756, 0.087156, 0.104528, 0.121869, 0.139173, 0.156434,
        0.173648, 0.190809, 0.207912, 0.224951, 0.241922, 0.258819, 0.275637, 0.292372, 0.309017, 0.325568,
        0.342020, 0.358368, 0.374607, 0.390731, 0.406737, 0.422618, 0.438371, 0.453990, 0.469472, 0.484810,
        0.500000, 0.515038, 0.529919, 0.544639, 0.559193, 0.573576, 0.587785, 0.601815, 0.615661, 0.629320,
        0.642788, 0.656059, 0.669131, 0.681998, 0.694658, 0.707107, 0.719340, 0.731354, 0.743145, 0.754710,
        0.766044, 0.777146, 0.788011, 0.798636, 0.809017, 0.819152, 0.829038, 0.838671, 0.848048, 0.857167,
        0.866025, 0.874620, 0.882948, 0.891007, 0.898794, 0.906308, 0.913545, 0.920505, 0.927184, 0.933580,
        0.939693, 0.945519, 0.951057, 0.956305, 0.961262, 0.965926, 0.970296, 0.974370, 0.978148, 0.981627,
        0.984808, 0.987688, 0.990268, 0.992546, 0.994522, 0.996195, 0.997564, 0.998630, 0.999391, 0.999848,
        1.000000, 0.999848, 0.999391, 0.998630, 0.997564, 0.996195, 0.994522, 0.992546, 0.990268, 0.987688,
        0.984808, 0.981627, 0.978148, 0.974370, 0.970296, 0.965926, 0.961262, 0.956305, 0.951057, 0.945519,
        0.939693, 0.933580, 0.927184, 0.920505, 0.913545, 0.906308, 0.898794, 0.891007, 0.882948, 0.874620,
        0.866025, 0.857167, 0.848048, 0.838671, 0.829038, 0.819152, 0.809017, 0.798636, 0.788011, 0.777146,
        0.766044, 0.754710, 0.743145, 0.731354, 0.719340, 0.707107, 0.694658, 0.681998, 0.669131, 0.656059,
        0.642788, 0.629320, 0.615661, 0.601815, 0.587785, 0.573576, 0.559193, 0.544639, 0.529919, 0.515038,
        0.500000, 0.484810, 0.469472, 0.453990, 0.438371, 0.422618, 0.406737, 0.390731, 0.374607, 0.358368,
        0.342020, 0.325568, 0.309017, 0.292372, 0.275637, 0.258819, 0.241922, 0.224951, 0.207912, 0.190809,
        0.173648, 0.156434, 0.139173, 0.121869, 0.104528, 0.087156, 0.069756, 0.052336, 0.034899, 0.017452,
        0.000000, -0.017452, -0.034899, -0.052336, -0.069756, -0.087156, -0.104528, -0.121869, -0.139173, -0.156434,
        -0.173648, -0.190809, -0.207912, -0.224951, -0.241922, -0.258819, -0.275637, -0.292372, -0.309017, -0.325568,
        -0.342020, -0.358368, -0.374607, -0.390731, -0.406737, -0.422618, -0.438371, -0.453990, -0.469472, -0.484810,
        -0.500000, -0.515038, -0.529919, -0.544639, -0.559193, -0.573576, -0.587785, -0.601815, -0.615661, -0.629320,
        -0.642788, -0.656059, -0.669131, -0.681998, -0.694658, -0.707107, -0.719340, -0.731354, -0.743145, -0.754710,
        -0.766044, -0.777146, -0.788011, -0.798636, -0.809017, -0.819152, -0.829038, -0.838671, -0.848048, -0.857167,
        -0.866025, -0.874620, -0.882948, -0.891007, -0.898794, -0.906308, -0.913545, -0.920505, -0.927184, -0.933580,
        -0.939693, -0.945519, -0.951057, -0.956305, -0.961262, -0.965926, -0.970296, -0.974370, -0.978148, -0.981627,
        -0.984808, -0.987688, -0.990268, -0.992546, -0.994522, -0.996195, -0.997564, -0.998630, -0.999391, -0.999848,
        -1.000000, -0.999848, -0.999391, -0.998630, -0.997564, -0.996195, -0.994522, -0.992546, -0.990268, -0.987688,
        -0.984808, -0.981627, -0.978148, -0.974370, -0.970296, -0.965926, -0.961262, -0.956305, -0.951057, -0.945519,
        -0.939693, -0.933580, -0.927184, -0.920505, -0.913545, -0.906308, -0.898794, -0.891007, -0.882948, -0.874620,
        -0.866025, -0.857167, -0.848048, -0.838671, -0.829038, -0.819152, -0.809017, -0.798636, -0.788011, -0.777146,
        -0.766044, -0.754710, -0.743145, -0.731354, -0.719340, -0.707107, -0.694658, -0.681998, -0.669131, -0.656059,
        -0.642788, -0.629320, -0.615661, -0.601815, -0.587785, -0.573576, -0.559193, -0.544639, -0.529919, -0.515038,
        -0.500000, -0.484810, -0.469472, -0.453990, -0.438371, -0.422618, -0.406737, -0.390731, -0.374607, -0.358368,
        -0.342020, -0.325568, -0.309017, -0.292372, -0.275637, -0.258819, -0.241922, -0.224951, -0.207912, -0.190809,
        -0.173648, -0.156434, -0.139173, -0.121869, -0.104528, -0.087156, -0.069756, -0.052336, -0.034899, -0.017452,
    };
    return lut[deg%360];
}

360 valeurs précalculées 
             « en dur »
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static variables/attributs/méthodes

● Plutôt que de recalculer à chaque fois la valeur de la 
fonction f(x) en un ensemble de x finis, on peut pré-
calculer tous les f(x) dans une Lookup Table ( LUT )

/// Calcul du sinus d’un angle "au degré près" (pas très précis)
double fastSin0(unsigned int deg)
{
    static const double lut[360] = {
        0.000000, 0.017452, 0.034899, 0.052336, 0.069756, ...
        0.173648, 0.190809, 0.207912, 0.224951, 0.241922, ...
        0.342020, 0.358368, 0.374607, 0.390731, 0.406737, ...
        0.500000, 0.515038, 0.529919, 0.544639, 0.559193, ...
        0.642788, 0.656059, 0.669131, 0.681998, 0.694658, ...
        0.766044, 0.777146, 0.788011, 0.798636, 0.809017, ...
        ... etc ...
    };

    return lut[deg%360];
} 100 millions de consultations 

       d’un tableau : ~0.71s

C ou C++
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static variables/attributs/méthodes

● Véloce mais pas pratique ! (alternatives => includes, rc files …)

● Détection static de 1er passage => générer au 1er appel

double fastSin1(unsigned int deg)
{
    const double M_PI = 3.14159265358979323846;
    const int nbSamples = 360;
    static bool firstCall = true;
    static double lut[nbSamples];

    if (firstCall)
    {
        for (size_t d=0; d<360; ++d)
            lut[d] = sin(d*M_PI/180);
        firstCall = false;
    }

    return lut[deg%nbSamples];
}

100 millions test + consultations 
       d’un tableau : ~0.85s

C ou C++

    Ce calcul est déroulé 
une seule fois au 1er appel
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static variables/attributs/méthodes

● Avec les constexpr on peut demander au compilateur 
d’exécuter un algorithme à la compilation 

● Cette approche est (presque) aussi rapide que "en dur"
double fastSin2(unsigned int deg)
{
    constexpr auto M_PI = 3.14159265358979323846;
    constexpr size_t nbSamples = 360;

    constexpr auto makeLut = []() constexpr {
        std::array<double, nbSamples> lut{};

        for (size_t d=0; d<lut.size(); ++d)
            lut[d] = sin(d*M_PI/180);

        return lut;
    };

    static const auto lut = makeLut();

    return lut[deg%nbSamples];
}

100 millions de consultations 
       d’un tableau : ~0.75s

C++ 17

Ce calcul est déroulé 
 par le compilateur !
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static variables/attributs/méthodes

● constexpr : exemple de philosophie « zero overhead »
● Une abstraction ne devrait pas coûter plus 

qu’un code équivalent sans l’abstraction

https://isocpp.org/wiki/faq/big-picture#zero-overhead-principle
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static variables/attributs/méthodes

● Dans une classe on peut déclarer un membre static
● Pour un attribut cela indique une donnée unique 

de la classe plutôt que pour chaque objet de la classe
● Pour une méthode cela indique une action appelable 

sans partir d’un objet cible (pas de this)
● Les seuls attributs accessibles à une méthode static 

sont des attributs statics : il n’y a pas d’objet !
● Utilisations : 

– Manager la classe
– Générer des identifiants uniques
– Actions de classe en l’absence d’objet cible

( fonctions auxiliaires, fabriques d’objets...)
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static variables/attributs/méthodes

● Exemple d’usage classique : comptage d’instances

/// **** pacMan.h ****
class PacMan
{
    public :
        PacMan(int posx, int posy)
            : m_posx{posx}, m_posy{posy} {
            ++s_nbPacMan;                }

        ~PacMan()           {
            --s_nbPacMan;   }

        static void printHowMany() {
            std::cout << "number of PacMan = "
                      << s_nbPacMan << std::endl; }

    private :
        int m_posx, m_posy;
        static size_t s_nbPacMan;
};

/// **** pacMan.cpp ****
size_t PacMan::s_nbPacMan = 0;
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static variables/attributs/méthodes

● Exemple d’usage classique : comptage d’instances

/// **** pacMan.h ****
class PacMan
{
    public :
        PacMan(int posx, int posy)
            : m_posx{posx}, m_posy{posy} {
            ++s_nbPacMan;                }

        ~PacMan()           {
            --s_nbPacMan;   }

        static void printHowMany() {
            std::cout << "number of PacMan = "
                      << s_nbPacMan << std::endl; }

    private :
        int m_posx, m_posy;
        inline static size_t s_nbPacMan = 0;
};

/// **** pacMan.cpp **** pas besoin de définition en .cpp (header only)

C++ 17
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static variables/attributs/méthodes

● Exemple d’usage classique : comptage d’instances
void application()
{
    std::vector<PacMan*> dynaPac(3, nullptr);
    PacMan autoPac{10,20};

    PacMan::printHowMany();

    dynaPac[0] = new PacMan{30, 40};
    dynaPac[1] = new PacMan{50, 60};
    dynaPac[2] = new PacMan{70, 80};
    PacMan::printHowMany();

    delete dynaPac[0];
    delete dynaPac[2];
    PacMan::printHowMany();
}

int main()
{
    PacMan::printHowMany();
    application();
    PacMan::printHowMany();
    return 0;
}

Fuite mémoire repérée
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static variables/attributs/méthodes

● Exemple plus complexe de « registering » d’instances
class PacMan {
    public :
        using Id = unsigned long long;

        PacMan(int posx, int posy)
            : m_posx{posx}, m_posy{posy}, m_id{s_nextId++} {
            s_allPacMan[m_id] = this; }

        ~PacMan() { s_allPacMan.erase(m_id); }

        static PacMan* getById(Id id) {
            auto it = s_allPacMan.find(id);
            return it!=s_allPacMan.end() ? it->second : nullptr; }

        static void printHowMany() {
            std::cout << "number of PacMan = "
                      << s_allPacMan.size() << std::endl; }

        static void printById(Id id) {
            PacMan* pc = getById(id);
            if (pc) std::cout << pc->m_posx << " "
                              << pc->m_posy << std::endl; }

        /// Attention dangereux avec des automatiques
        static void deleteAll() {
            while ( s_allPacMan.size() )
                delete s_allPacMan.begin()->second; }
    private :
        int m_posx, m_posy;
        Id m_id;

        inline static Id s_nextId;
        inline static std::map<Id, PacMan*> s_allPacMan;
};
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static variables/attributs/méthodes

● Exemple plus complexe de « registering » d’instances

int main()
{
    new PacMan(10, 20);
    new PacMan(30, 40);
    new PacMan(50, 60);
    PacMan::printHowMany();

    PacMan::printById(0);
    PacMan::printById(1);
    PacMan::printById(2);

    delete PacMan::getById(1);
    PacMan::printHowMany();

    PacMan::deleteAll();
    PacMan::printHowMany();

    return 0;
}
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static variables/attributs/méthodes

● ! confusion classe / groupe d’instances de la classe !
class PacManPack
{
    public :
        using Id = unsigned long long;

        ~PacManPack() {
            for (auto p : m_allPacMan)
                delete p.second;   }

        void addPacMan(PacMan* pm) {
            m_allPacMan[m_nextId++] = pm; }

        PacMan* getById(Id id) {
            auto it = m_allPacMan.find(id);
            return it!=m_allPacMan.end() ? it->second : nullptr; }

        void deleteById(Id id) {
            PacMan* pc = getById(id);
            if (pc) {
                delete pc;
                m_allPacMan.erase(id); } }

        void printById(Id id) {
            PacMan* pc = getById(id);
            if (pc) pc->print(); }

        void printHowMany() {
            std::cout << "pack has " << m_allPacMan.size()
                      << " PacMan" << std::endl; }

    private :
        Id m_nextId = 0;
        std::map<Id, PacMan*> m_allPacMan;
};

Utiliser une classe 
comme un groupe ? 
=> classe groupe 
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static variables/attributs/méthodes

● ! confusion classe / groupe d’instances de la classe !
void application()
{
    PacManPack pack;

    pack.addPacMan( new PacMan(10, 20) );
    pack.addPacMan( new PacMan(30, 40) );
    pack.addPacMan( new PacMan(50, 60) );
    pack.printHowMany();

    pack.printById(0);
    pack.printById(1);
    pack.printById(2);

    pack.deleteById(1);
    pack.printHowMany();

    /// Le pack est une variable automatique !
}

int main()
{
    PacMan::printHowMany();
    application();
    PacMan::printHowMany();
    return 0;
}

Utiliser une classe 
comme un groupe ? 
=> classe groupe 

Destruction du pack
=> libération des PacMan
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Complément conteneurs/itérateurs

● Le conteneur std::initializer_list permet de déclarer 
des listes de données littérales de taille arbitraire

● Pratique pour définir des séquences de valeurs pour 
automatiser des séquences répétitives avec littérales

struct Coords
{
    int x, y;
};

int main()
{

    for (auto val : {10, 20, 30, 40} )
        std::cout << val << std::endl;

    for (const auto& param : {Coords{10, 20}, {30, 40}, {50, 60}} )
        std::cout << param.x << " " << param.y << std::endl;

std::initializer_list<int> // type déduit !

std::initializer_list<Coords>
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Complément conteneurs/itérateurs

● Le conteneur std::initializer_list permet de déclarer 
des listes de données littérales de taille arbitraire

● Pratique pour définir des séquences de valeurs pour 
automatiser des séquences répétitives avec littérales

struct Coords
{
    int x, y;
};

int main()
{
    PacManPack pack;

    pack.addPacMan( new PacMan(10, 20) );
    pack.addPacMan( new PacMan(30, 40) );
    pack.addPacMan( new PacMan(50, 60) );

    for (const auto& param : {Coords{10, 20}, {30, 40}, {50, 60}} )
        pack.addPacMan( new PacMan(param.x, param.y) );



25

Complément conteneurs/itérateurs

● Le conteneur std::initializer_list permet de déclarer 
des listes de données littérales de taille arbitraire

● Peut être passé en paramètre, permet de recevoir des 
arguments en quantité variable, init. de conteneurs ...

class Etudiant
{
    public :
        Etudiant(std::string nom, std::initializer_list<float> notes)
            : m_nom{nom}, m_notes{notes} {}

    private :
        std::string m_nom;
        std::vector<float> m_notes;
};

int main()
{

    Etudiant etuA{"Paul Dupont"   , {12.0, 8.5, 17.0} };
    Etudiant etuB{"Martine Martin", {16.0, 9.5} };

Initialisation directe d’un vector par 
un initializer_list reçu en paramètre
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Complément conteneurs/itérateurs

● Le conteneur std::initializer_list permet de déclarer 
des listes de données littérales de taille arbitraire

struct Coords
{
    int x, y;
};

class PacManPack
{
    public :

        PacManPack(std::initializer_list<Coords> params) {
            makeMany(params); }

        void makeMany(std::initializer_list<Coords> params) {
            for (const auto& param : params)
                addPacMan( new PacMan(param.x, param.y) ); }
    ...

};

int main()
{

    PacManPack pack{{10, 20}, {30, 40}, {50, 60}};

    pack.makeMany( {{70, 80}, {90, 100}} );
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Complément conteneurs/itérateurs

● Le conteneur std::array est une alternative aux 
tableaux natifs de tailles fixes...

● Avec des perfs. équivalentes, il transmet sa taille, 
a une sémantique par valeur, s’intègre avec les itérateurs…
interface d’un conteneur standard, sans le coût d’un vector

void modifTab(double tab[5]) {
    Tab[0] *= 2;             }

void modifArray(std::array<double, 5>& arr) {
    Arr[0] *= 2;                            }

int main()
{
    double tab[5] = {1.2, 2.3, 3.4, 4.5, 5.6};
    modifTab(tab);
    for (size_t i=0; i<sizeof(tab)/sizeof(*tab); ++i)
        std::cout << tab[i] << " ";
    std::cout << std::endl;

    std::array<double, 5>  arr = {1.2, 2.3, 3.4, 4.5, 5.6};
    modifArray(arr);
    for (size_t i=0; i<arr.size(); ++i)
        std::cout << arr[i] << " ";
    std::cout << std::endl;
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Complément conteneurs/itérateurs

● Pour être complet il faut mentionner l’allocation new[ ]
et delete[ ] dans le cas des tableaux dynamiques

● Compte tenu des problèmes de l’allocation dynamique
il est généralement très préférable d’adopter vector !

int main()
{
    size_t taille;
    std::cout << "Taille de votre tableau dynamique SVP : ";
    std::cin >> taille;

    double* tab = new double[taille];
    /// Utiliser tab ...
    for (size_t i=0; i<taille; ++i) tab[i] = 2*i;
    /// ...
    /// Libérer avec delete[]
    delete[] tab;

    std::vector<double> vec(taille);
    /// Utiliser vec ...
    for (size_t i=0; i<vec.size(); ++i) vec[i] = 2*i;
    /// ...
    /// Libération automatique (pas de new, pas de delete)

    return 0;
}
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Complément conteneurs/itérateurs

● En C++ combien de façons de parcourir un conteneur 
pour afficher les valeurs dedans ?

int main()
{
    /// voir https://www.techiedelight.com/print-vector-cpp/

    std::vector<double> vec{1.2, 2.3, 3.4, 4.5, 5.6};

    /// range-based for
    for (auto val : vec)
        std::cout << val << " ";
    std::cout << std::endl;

    /// algorithm and lambda
    std::for_each(vec.cbegin(), vec.cend(),
                  [](auto v){std::cout << v << " ";});
    std::cout << std::endl;

    /// stream iterator
    std::copy(vec.begin(), vec.end(),
            std::ostream_iterator<double>(std::cout, " "));
    std::cout << std::endl;

    /// insertion operator overload
    std::cout << vec << std::endl;

    return 0;
}

!?

https://www.techiedelight.com/print-vector-cpp/
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Complément conteneurs/itérateurs

● En C++ combien de façons de parcourir un conteneur 
pour afficher les valeurs dedans ?

std::ostream& operator<<(std::ostream& os, const std::vector<double> &input)
{
    for (auto const& i: input) {
        os << i << " ";
    }
    return os;
}

int main()
{
    /// voir https://www.techiedelight.com/print-vector-cpp/

    std::vector vec<double>{1.2, 2.3, 3.4, 4.5, 5.6};

    /// stream iterator
    std::copy(vec.begin(), vec.end(),
            std::ostream_iterator<double>(std::cout, " "));
    std::cout << std::endl;

    /// insertion operator overload
    std::cout << vec << std::endl;

    return 0;
}

! Appel à une version
surchargée de l’insertion
vers un flot de sortie
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Complément conteneurs/itérateurs

● Généralisation de la surcharge de l’opérateur 
d’insertion vers flot de sortie pour tout type de vecteur 

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T> &input)
{
    for (auto const& i: input) {
        os << i << " ";
    }
    return os;
}

class Etudiant
{
    public :
        Etudiant(std::string nom, std::initializer_list<float> notes)
            : m_nom{nom}, m_notes{notes} {}

        friend std::ostream& operator<<(std::ostream& os, const Etudiant& e) {
            os << "[etudiant " << e.m_nom << " : " << e.m_notes << "]";
            return os; }

    private :
        std::string m_nom;
        std::vector<float> m_notes;
};
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Complément conteneurs/itérateurs

● Généralisation de la surcharge de l’opérateur 
d’insertion vers flot de sortie pour tout type de vecteur 

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T> &input)
{
    for (auto const& i: input) {
        os << i << " ";
    }
    return os;
}

int main()
{
    std::vector<int> vecInt{2, 3, 4};
    std::vector<float> vecFloat{5.4, 6.3, 7.2};
    std::vector<std::string> vecString{"Hello", "world", "!"};
    std::vector<Etudiant> vecEtudiant{
        {"Paul Dupont"   , {12.0, 8.5, 17.0} },
        {"Martine Martin", {16.0, 9.5} }  };

    std::cout << vecInt << std::endl;
    std::cout << vecFloat << std::endl;
    std::cout << vecString << std::endl;
    std::cout << vecEtudiant << std::endl;

    return 0;
}
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Complément conteneurs/itérateurs

● Généralisation de la surcharge de l’opérateur 
d’insertion vers flot de sortie pour tout type de vecteur 

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T> &input)
{
    for (auto const& i: input) {
        os << i << (std::is_pod<T>::value ? " " : "\n");
    }
    return os;
}

int main()
{
    std::vector<int> vecInt{2, 3, 4};
    std::vector<float> vecFloat{5.4, 6.3, 7.2};
    std::vector<std::string> vecString{"Hello", "world", "!"};
    std::vector<Etudiant> vecEtudiant{
        {"Paul Dupont"   , {12.0, 8.5, 17.0} },
        {"Martine Martin", {16.0, 9.5} }  };

    std::cout << vecInt << std::endl;
    std::cout << vecFloat << std::endl;
    std::cout << vecString << std::endl;
    std::cout << vecEtudiant << std::endl;

    return 0;
}

Détection de type primitif (int, float, char…)
                     pod = plain old data
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Complément conteneurs/itérateurs

● Et qu’est-ce que c’est qu’un stream_iterator ?
Un moyen d’itérer sur des (éléments dans des) flots !

int main()
{
    std::vector<double> vec{1.2, 2.3, 3.4, 4.5, 5.6};

    /// ostream iterator
    std::copy(vec.begin(), vec.end(), std::ostream_iterator<double>(std::cout, " "));

    /// l'algorithme std::copy ci dessus est équivalent à
    std::ostream_iterator<double> outputIter(std::cout, " ");
    for (auto it=vec.cbegin(); it!=vec.cend(); ++it)
    {
        *outputIter = *it; /// écrire sur outputIter insert dans le flot associé
        outputIter++; /// ceci est inutile dans le cas particulier ostream_iterator
    }

    return 0;
}
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Complément conteneurs/itérateurs

● Pour rappel grâce aux istringstream on peut traiter 
une source textuelle (string) comme un flot entrant

int main()
{
    std::string stringData = "100 260 410 120";

    std::vector<int> vec;

    std::istringstream iss{stringData};
    int val;
    while (iss>>val)
        vec.push_back(val);

    std::cout << vec << std::endl;

    return 0;
}
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Complément conteneurs/itérateurs

● Et une istringstream peut devenir itérable
avec un istream_iterator… ci dessous version longue

int main()
{
    std::string stringData = "100 260 410 120";

    std::vector<int> vec;

    std::istringstream iss{stringData};
    std::istream_iterator<int> inputIter{iss};
    std::istream_iterator<int> endOfInput;
    while ( inputIter != endOfInput )
    {
        vec.push_back(*inputIter);
        inputIter++;
    }

    std::cout << vec << std::endl;

    return 0;
}
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Complément conteneurs/itérateurs

● Ce qui est itérable est utilisable dans les algorithmes

int main()
{
    std::string stringData = "100 260 410 120";
    std::vector<int> vec;

    std::istringstream iss{stringData};
    std::copy(std::istream_iterator<int>{iss},
              std::istream_iterator<int>{},
              std::back_inserter(vec));

    std::cout << vec << std::endl;

    return 0;
}

Itérateur en insertion : 
équivaut à une séquence de push_back
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Complément conteneurs/itérateurs

● Ré-écriture des opérateurs surchargés génériques
sans boucle explicite

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T> &input)
{
    std::copy(input.begin(), input.end(),
              std::ostream_iterator<T>(os, " "));
    return os;
}

template<typename T>
std::istream& operator>>(std::istream& is, std::vector<T> &output)
{
    std::copy(std::istream_iterator<T>{is},
              std::istream_iterator<T>{},
              std::back_inserter(output));
    return is;
}
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Complément conteneurs/itérateurs

● On a encore besoin d’un objet istringstream 
intermédiaire...

int main()
{
    std::string stringData = "100 260 410 120";
    std::vector<int> vec;

    std::istringstream iss{stringData};
    iss >> vec;

    std::cout << vec << std::endl;

    return 0;
}
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Complément conteneurs/itérateurs

● Encapsulons la séquence dans un wrapper générique,
l’objectif est de pouvoir passer de string à vector :

template<typename T>
std::vector<T> vecFromString(const std::string& str)
{
    std::vector<T> vec;
    std::istringstream iss{str};
    iss >> vec;
    return vec;
}

int main()
{
    std::string strInt = "2 3 4";
    std::string strFloat = "5.4 6.3 7.2";
    std::string strString = "Hello world !";

    auto vecInt = vecFromString<int>(strInt);
    auto vecFloat = vecFromString<float>(strFloat);
    auto vecString = vecFromString<std::string>(strString);

    std::cout << vecInt << std::endl;
    std::cout << vecFloat << std::endl;
    std::cout << vecString << std::endl;

    return 0;
}
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A)  Static variables/attributs/méthodes
B)  Complément conteneurs/itérateurs
C)  Exemples de prog. fonctionnelle
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Exemples de prog. fonctionnelle

● Le polymorphisme permet d’encapsuler des actions 
spécifiques dans des classes spécialisées avec 
une interface d’utilisation définie par une classe mère
abstraite pure (classe interface, non instanciable)

● Soit l’énoncé suivant : réaliser un programme 
permettant d’avoir un menu utilisateur avec 
sélection d’un choix par valeur entière et différentes 
actions associées sans test ni switch/case

● Le principe est de constituer une hiérarchie d’actions
de menu avec une classe interface parente, d’avoir 
un vecteur d’objets spécialisés correspondant aux 
choix : à chaque indice du vecteur est associé une 
instance d’une classe spécifique avec l’action désignée
       => dispatch polymorphe (à la place du switch)
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Exemples de prog. fonctionnelle

● Réaliser un programme permettant d’avoir un menu 
utilisateur sans test ni switch/case

int main()
{
    Context ctx{3, 3.14, "pi"};

    std::vector<MenuEntry*> menu {
        new MenuQuitter,
        new MenuSaisir,
        new MenuAfficher
    };

    bool terminate = false;
    do
    {
        std::cout << "\n0/ Quitter\n1/ Saisir\n2/ Afficher\n\n";

        int choix;
        std::cin >> choix;

        /// Appel polymorphe !
        menu[choix]->action(ctx, terminate);
    }
    while (!terminate);

    for(auto m : menu) delete m;
    return 0;
}

struct Context
{
    int x;
    double y;
    std::string z;
};
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Exemples de prog. fonctionnelle

● Réaliser un programme permettant d’avoir un menu 
utilisateur sans test ni switch/case

class MenuEntry
{
    public :
        virtual ~MenuEntry() = default;
        virtual void action(Context& ctx, bool& terminate) = 0;
};

class MenuQuitter : public MenuEntry
{
    public :
        void action(Context& ctx, bool& terminate) {
            terminate = true; }
};

class MenuSaisir : public MenuEntry
{
    public :
        void action(Context& ctx, bool& terminate) {
            std::cin >> ctx.x >> ctx.y >> ctx.z; }
};

class MenuAfficher : public MenuEntry
{
    public :
        void action(Context& ctx, bool& terminate) {
            std::cout << ctx.x << " " << ctx.y
                      << " " << ctx.z << "\n"; }
};

struct Context
{
    int x;
    double y;
    std::string z;
};
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Exemples de prog. fonctionnelle

● Le pattern strategy est un usage particulier de 
délégation : on délègue à une classe qui hérite 
d’une interface.

https://sourcemaking.com/design_patterns/strategy
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Exemples de prog. fonctionnelle

● On dispose d’une technique puissante
pour gérer des combinatoires sans multiplier 
les codes croisés (m+n au lieu de m×n)

m=3
n=4

Trajectoire

Pointillés
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Exemples de prog. fonctionnelle

● Néanmoins l’héritage introduit des couplages :
les classes filles concrètes dépendent des 
classes mères. Peut on faire autrement ?

Trajectoire

+nextPosition()
...

Pointillé

+nextBlackOrWhite()
...

Tracé

+tracer()

...

Classes concrètes Classes concrètes
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Exemples de prog. fonctionnelle

using namespace std::complex_literals;
using vec2d = std::complex<double>;

template<typename Trajectoire, typename Pointilles>
void tracer(Svgfile& svgout, vec2d depart, double distance,
            Trajectoire trajectoire, Pointilles pointilles)
{
    vec2d pos = depart;
    double s = 0.0; /// Abscisse curviligne

    while ( abs(s) < distance )
    {
        vec2d step  = trajectoire(s);
        double larg = pointilles(s);

        vec2d nextpos = pos + step;
        s += abs(step);

        svgout.addLine( pos.real(),     pos.imag(),
                        nextpos.real(), nextpos.imag(), larg );
        pos = nextpos;
    }
}

● Pas forcément besoin de classes, une stratégie
peut être donnée par des paramètres fonctionnels

Appels aux fonctions reçues en paramètres
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Exemples de prog. fonctionnelle

int main()
{
    Svgfile svgout;
    svgout.addGrid();

    tracer(svgout, 100.+100.i, 750,
           [](double s) { return 1.0; },
           [](double s) { return 3.0; }  );

    tracer(svgout, 100.+150.i, 750,
           [](double s) { return 1.0; },
           [](double s) { return sin(0.1*s)<0 ? 0 : 3; }  );

    tracer(svgout, 100.+200.i, 1200,
           [](double s) { return 2.0i*sin(0.05*s) + 1.0; },
           [](double s) { return 3; }  );

    tracer(svgout, 100.+300.i, 1200,
           [](double s) { return 2.0i*sin(0.05*s) + 1.0; },
           [](double s) { return 5*sin(0.05*s); }  );

    tracer(svgout, 100.+400.i, 3000,
           [](double s) { return 0.2*exp(0.025i*s) + 0.1; },
           [](double s) { return sin(0.5*s)<0 ? 0 : s/1000; }  );

    const std::array<int, 15> points{2,2,2,2,0,0,0,0,0,2,0,0,0,0,0};
    tracer(svgout, 100.+500.i, 3000,
           [](double s) { return 0.2*exp(0.025i*s) + 0.1; },
           [&points](double s) {
               return points[points.size()*(.03*s-floor(.03*s))]; }  );

● Les lambdas sont des objets-fonctions anonymes qui 
peuvent être utilisés comme des "littéraux fonctionnels"
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Exemples de prog. fonctionnelle

● Ce qui permet une souplesse maximale dans 
l’utilisation d’une fonction paramétrable en stratégies



51

Exemples de prog. fonctionnelle

● L’évolution du langage intègre les « patterns » 
et les patterns finissent par disparaître dans le langage

Effective GoF Patterns - Tobias Darm ( video )

https://accu.org/content/conf2013/Tobias_Darm_Effective_GoF_Patterns.pdf
https://www.infoq.com/presentations/gof-patterns-c-plus-plus-boost/
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