Robin FERCOQ

|-|!| ECE PARIS NS AR

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

r POO - C++

I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des donneées
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++ : complements 6. UML et C++, associations
/. Conteneurs & C++ : la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Abstraction / design patterns 9. Modele composite et graphismes

10.Exceptions, flots, fichiers ..
11.Templates cote developpeur
12.Compléments

10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

COURS 12

A) Static variables/attributs/methodes
B) Complement conteneurs/iterateurs
C) Exemples de prog. fonctionnelle

COURS 12

A) Static variables/attributs/methodes
B) Complement conteneurs/iterateurs
C) Exemples de prog. fonctionnelle

static variables/attributs/méthodes

I * Les variables statiques sont des variables définies
localement (a une fonction ou une méthode)

I * Se comportent comme une variable globale :

— valeur initialisée par déefaut (comme une globale)

- valeur conservée d'un appel a I'autre :
la variable n'est pas détruite en fin d'appel

void fonction()

{ C ou C++
int compteur = 0;
std: :cout << "appel numero " << ++compteur << std::endl;

}

int main() appel numero

' fonction(); appel numero :
fonction(); appel numero
fonction();

F static variables/attributs/Iméthodes

e Utile en débogage, générer des identifiants...

* Pas possible d'accéder depuis I'extérieur de la fonction
a la ressource static pour la reset ou autres opérations

* Attention aux bricolages : bon potentiel d’abus !

/// HORRIBLE: bricolage, un seul pacman, pas accés aux données...

void bougerPacMan(int depx, int depy)

{ ++
static int posx=200, posy=100; CouC

posx += depx; posy += depy;
std::cout << "le pacman est en x=" << posx

<< " y=" << posy << std::endl;

}

int main()

{

pacman est

bougerPacMan(+50, +10);
bougerPacMan(0, +20); pacman est
bougerPacMan(-20, 9); nacman est

static variables/attributs/méthodes

I * ['abus de static indique une confusion fonction / classe
* Utiliser une fonction comme une classe ? => classe !

/// Correct
I class PacMan C++ only!
{
public :
PacMan() = default;
void bouger(int depx, int depy) {
m_posx += depx; m_posy += depy;
std::cout << "le pacman est en”
<< " x=" << m_posx
<< " y=" << m_posy << std::endl; }
private :
int m_posx = 200;
int m_posy = 100;
¥
int main()
{
PacMan monPacMan; — _ _ I ——
monPacMan.bouger(+50, +10); le pacman est en =
monPacMan.bouger(06, +20); le pacman est en x=2
monPacMan.bouger(-20, 0); le pacman est en x=23

static variables/attributs/méthodes

* Exemple de cas d’usage legitime : détecter 1°" passage

* Supposons un besoin de vitesse sur une fonction

mathématique lourde mais sans besoin de précision

/// Calcul du sinus d’un angle "au degré prés" (pas trés précis)

double slowSin(unsigned int deg)

}

const double M PI = 3.14159265358979323846;

return sin(deg*M_PI/180);
\

—» 100 millions d’appels a sinus : ~5s

int main()

std
std

std
std

for

: :vector<double> vals(100000000);
: :generate(vals.begin(), vals.end(),
[v = -10] () mutable { return v+=10; });

: :vector<double> result;
: :transform(vals.cbegin(), vals.cend(),
std: :back_inserter(result), slowSin);

(size_t i=0; i<10; ++1)
std::cout << "sin(" << vals[i] << ")="
<< result[i] << std::endl;

C++14

.173648
.34202

L

-0.642788

=8.766844

static variables/attributs/iméthodes

* Plutot que de recalculer a chaque fois la valeur de la
fonction f(x) en un ensemble de x finis, on peut pre-
calculer tous les f(x) dans une Lookup Table (LUT)

/// Calcul du sinus d’un angle "au degré prés" (pas trés précis)
double fastSin@(unsigned int deg)

static const double lut[360] = {

0.000000, 0.017452, 0.034899, 0.052336, 0.069756, 0.087156, 0.104528, 0.121869, ©.139173,
0.173648, 0.190809, 0.207912, 0.224951, 0.241922, 0.258819, 0.275637, 0.292372, 0.309017,
0.342020, 0.358368, 0.374607, 0.390731, 0.406737, 0.422618, 0.438371, 0.453990, 0.469472,
0.500000, 0.515038, 0.529919, 0.544639, 0.559193, ©0.573576, 0.587785, 0.601815, 0.615661,
0.642788, 0.656059, 0.669131, 0.681998, 0.694658, 0.707107, 0.719340, 0.731354, 0.743145,
0.766044, 0.777146, 0.788011, 0.798636, 0.809017, ©0.819152, 0.829038, 0.838671, 0.848048,
0.866025, 0.874620, 0.882948, 0.891007, 0.898794, 0.906308, 0.913545, 0.920505, 0.927184,
0.939693, 0.945519, 0.951057, 0.956305, 0.961262, 0.965926, 0.970296, 0.974370, ©.978148,
0.984808, 0.987688, 0.990268, 0.992546, 0.994522, 0.996195, 0.997564, 0.998630, ©.999391,
1.000000, 0.999848, ©.999391, 0.998630, 0.997564, 0.996195, 0.994522, 0.992546, 0.990268,
0.984808, 0.981627, 0.978148, 0.974370, 0.970296, ©0.965926, 0.961262, 0.956305, ©.951057,
0.939693, 0.933580, 0.927184, 0.920505, 0.913545, 0.906308, 0.898794, 0.891007, 0.882948,
0.866025, 0.857167, 0.848048, 0.838671, 0.829038, ©0.819152, 0.809017, 0.798636, ©.788011,
0.766044, ©.754710, ©.743145, ©.731354, 0.719340, 0.707107, ©.694658, 0.681998, 0.669131,
0.642788, 0.629320, 0.615661, 0.601815, 0.587785, ©.573576, 0.559193, 0.544639, 0.529919,
0.500000, 0.484810, 0.469472, 0.453990, 0.438371, 0.422618, 0.406737, 0.390731, 0.374607,
0.342020, 0.325568, 0.309017, 0.292372, 0.275637, 0.258819, 0.241922, 0.224951, 0.207912,
0.173648, 0.156434, ©0.139173, 0.121869, 0.104528, ©0.087156, 0.069756, 0.052336, ©.034899,
0.000000, -0.017452, -0.034899, -0.052336, -0.069756, -0.087156, -0.104528, -0.121869, -0.
-0.173648, -0.190809, -0.207912, -0.224951, -0.241922, -0.258819, -0.275637, -0.292372, -0O.
-0.342020, -0.358368, -0.374607, -0.390731, -0.406737, -0.422618, -0.438371, -0.453990, -0.
-0.500000, -0.515038, -0.529919, -0.544639, -0.559193, -0.573576, -0.587785, -0.601815, -0.
-0.642788, -0.656059, -0.669131, -0.681998, -0.694658, -0.707107, -0.719340, -0.731354, -0.
-0.766044, -0.777146, -0.788011, -0.798636, -0.809017, -0.819152, -0.829038, -0.838671, -0O.
-0.866025, -0.874620, -0.882948, -0.891007, -0.898794, -0.906308, -0.913545, -0.920505, -0.
-0.939693, -0.945519, -0.951057, -0.956305, -0.961262, -0.965926, -0.970296, -0.974370, -0O.
-0.984808, -0.987688, -0.990268, -0.992546, -0.994522, -0.996195, -0.997564, -0.998630, -0O.
-1.000000, -0.999848, -0.999391, -0.998630, -0.997564, -0.996195, -0.994522, -0.992546, -0O.
-0.984808, -0.981627, -0.978148, -0.974370, -0.970296, -0.965926, -0.961262, -0.956305, -0O.
-0.939693, -0.933580, -0.927184, -0.920505, -0.913545, -0.906308, -0.898794, -0.891007, -0O.
-0.866025, -0.857167, -0.848048, -0.838671, -0.829038, -0.819152, -0.809017, -0.798636, -0O.
-0.766044, -0.754710, -0.743145, -0.731354, -0.719340, -0.707107, -0.694658, -0.681998, -0.
-0.642788, -0.629320, -0.615661, -0.601815, -0.587785, -0.573576, -0.559193, -0.544639, -0.
-0.500000, -0.484810, -0.469472, -0.453990, -0.438371, -0.422618, -0.406737, -0.390731, -0O.
-0.342020, -0.325568, -0.309017, -0.292372, -0.275637, -0.258819, -0.241922, -0.224951, -0.
-0.173648, -0.156434, -0.139173, -0.121869, -0.104528, -0.087156, -0.069756, -0.052336, -0O.
}s
return lut[deg%360];

0.156434,
0.325568,
0.484810,
0.629320,
0.754710,
0.857167,
0.933580,
0.981627,
0.999848,
0
0
0
0
0
0
0
0
0

360 valeurs précalculées
« en dur »

.987688,
.945519,
.874620,
.777146,
.656059,
.515038,
.358368,
.190809,
.017452,
139173, -0.156434,

309017, -0.325568,
469472, -0.484810,
615661, -0.629320,
743145, -0.754710,
848048, -0.857167,
927184, -0.933580,
978148, -0.981627,
999391, -0.999848,
990268, -0.987688,
951057, -0.945519,
882948, -0.874620,
788011, -0.777146,
669131, -0.656059,
529919, -0.515038,
374607, -0.358368,
207912, -0.190809,
034899, -0.017452,

static variables/attributs/iméthodes

I * Plutot que de recalculer a chaque fois la valeur de la
fonction f(x) en un ensemble de x finis, on peut pre-

s

return lut[degk360];

} S~——_

d’un tableau

—» 100 millions de consultations
: ~0.71s

calculer tous les f(x) dans une Lookup Table (LUT)
I /// Calcul du sinus d’un angle "au degré prés" (pas trés précis)
double fastSin@(unsigned int deg)
{ ++
static const double lut[360] = { CouC
0.000000, 0.017452, 0.034899, 0.052336, 0.069756,
0.173648, 0.190809, 0.207912, 0.224951, 0.241922,
0.342020, 0.358368, 0.374607, 0.390731, 0.406737,
©.500000, 0.515038, ©.529919, 0.544639, ©.559193,
0.642788, 0.656059, 0.669131, 0.681998, 0.694658,
0.766044, ©.777146, 0.788011, 0.798636, 0.809017,
. etc ...

static variables/attributs/iméthodes

I » Véloce mais pas pratique ! (alternatives => includes, rc files ...)

* Deétection static de 1° passage => géenérer au 1 appel

I double fastSinl(unsigned int deg)

{
const double M _PI = 3.14159265358979323846; C ou C++

const int nbSamples = 360;
static bool firstCall = true;
static double lut[nbSamples];

if (firstCall)

for (size_t d=0; d<360; ++d)] Ce calcul est déroulé

lut[d] = sin(d*M_PI/180) : er
firstCall = false: une seule fois au 1*" appel

¥

return lut[deginbSamples];
\

> 100 millions test + consultations
—> d’un tableau : ~0.85s

static variables/attributs/méthodes

* Avec les constexpr on peut demander au compilateur
d’exécuter un algorithme a la compilation

* Cette approche est (presque) aussi rapide que "en dur"

} —_—

double fastSin2(unsigned int deg)

{
constexpr auto M_PI = 3.14159265358979323846; C++ 17

constexpr size_t nbSamples = 360;

constexpr auto makelLut = []() constexpr {
std: :array<double, nbSamples> lut{};

for (size_t d=0; d<lut.size(); ++d)
lut[d] = sin(d*M_PI/180); Ce calcul est déroulé

' |
return lut; par le compilateur !

}s
static const auto lut = makelLut(); .///

return 1ut[deg%nb5amp1es]/> 100 millions de consultations
d’un tableau : ~0.75s

static variables/attributs/iméthodes

I * constexpr : exemple de philosophie « zero overhead »

* Une abstraction ne devrait pas codlter plus
I qu’un code équivalent sans l'abstraction

raQ What is the zero-overhead principle?

The zero-overhead principle is a guiding principle for the design of C++. It
states that: What you don't use, you don't pay for (in time or space) and further:

What you do use, you couldn’t hand code any better.

In other words, no feature should be added to C++ which would make any
existing code (not using the new feature) larger or slower, nor should any
feature be added for which the compiler would generate code that is not as good

as a programmer would create without using the feature.

https://isocpp.org/wiki/faq/big-picture#zero-overhead-principle

static variables/attributs/méthodes

I * Dans une classe on peut declarer un membre static

Pour un attribut cela indique une donnée unique
I de la classe plutot que pour chaque objet de la classe

* Pour une méthode cela indique une action appelable
sans partir d’un objet cible (pas de this)

e | es seuls attributs accessibles a une methode static
sont des attributs statics : il n’y a pas d’objet !

e Utilisations :

- Manager la classe
— Generer des identifiants uniques

— Actions de classe en I'absence d’objet cible
(fonctions auxiliaires, fabriques d’objets...)

static variables/attributs/iméthodes

 Exemple d’usage classique : comptage d’instances

/// 5k 5k 5k %k pacMan.h kk sk sk
class PacMan
{
public :
PacMan(int posx, int posy)
: m_posx{posx}, m_posy{posy} {
++s_nbPacMan; }

~PacMan() {
--s_nbPacMan; }

static void printHowMany() {
std: :cout << "number of PacMan = "
<< s_nbPacMan << std::endl; }

private :
int m_posx, m_posy;
static size_t s nbPacMan;

}s

size t PacMan::s _nbPacMan = 0;

static variables/attributs/iméthodes

 Exemple d’usage classique : comptage d’instances

/// %k %k %k %k paCMan.h %k 3k 3k k
class PacMan
{
public :
PacMan(int posx, int posy)
: m_posx{posx}, m_posy{posy} {
++s_nbPacMan; } C++ 17

~PacMan() {
--s_nbPacMan; }

static void printHowMany() {
std: :cout << "number of PacMan = "
<< s_nbPacMan << std::endl; }

private :
int m_posx, m_posy;
inline static size_t s nbPacMan = 0;

}s

/// **** paeMan-epp **** pas besoin de définition en .cpp (header only)

static variables/attributs/méthodes

 Exemple d’usage classique : comptage d’instances

int

void application()

std: :vector<PacMan*> dynaPac(3, nullptr);
PacMan autoPac{10,20};

PacMan: :printHowMany();

dynaPac[0@] = new PacMan{30, 40};
dynaPac[1] = new PacMan{50, 60};
dynaPac[Z].= new PacMan{70, 80};
PacMan: :printHowMany() ; number PacMan
delete dynaPac[0]; number PacMan
delete dynaPac[2]; number FacMan

PacMan: :printHowMany() ;

number PacMan
number PacMan

main()

PacMan: :printHowMany () ;

application(); _) _ o
PacMan: :printHowMany(); Fuite mémoire repérée
return 0;

static variables/attributs/iméthodes

* Exemple plus complexe de « registering » d’instances

class PacMan {
public :
using Id = unsigned long long;

PacMan(int posx, int posy) .\0? ‘.o\
: m_posx{posx}, m_posy{posy}, m_id{s_nextId++} { Q \0
s_allPacMan[m_id] = this; } %6‘00

~PacMan() { s_allPacMan.erase(m_id); } C:QQ g\o

p

static PacMan* getById(Id id) { <5>.(53
auto it = s_allPacMan.find(id); <§2 4$>
return it!=s_allPacMan.end() ? it->second : nullptr; } Y XN

\

static void printHowMany() {
std::cout << "number of PacMan =
<< s_allPacMan.size() << std::endl; }

static void printById(Id id) {
PacMan* pc = getById(id);
if (pc) std::cout << pc->m_posx << " "
<< pc->m_posy << std::endl; }

static void deleteAll() {
while (s_allPacMan.size())
delete s _allPacMan.begin()->second; }

private :
int m_posx, m_posy;
Id m_id;

inline static Id s _nextId;
inline static std::map<Id, PacMan*> s _allPacMan;

}s

static variables/attributs/méthodes

* Exemple plus complexe de « registering » d’instances

int main()

{ Z
new PacMan(10, 20); ‘QS?Q;‘
new PacMan(30, 40); \ﬁQ 'Z}Q
new PacMan(50, 60); 00\60
PacMan: :printHowMany () ; 060’?@

. O

PacMan: :printById(0); 6§Q<ﬁ>
PacMan: :printById(1); N

PacMan: :printById(2);

delete PacMan: :getById(1);

PacMan: :printHowMany () ; number of PacMan
18 28

PacMan: :deleteAll(); 38 40

PacMan: : printHowM ; o

acMan: :printHowMany(); —

return 0; number of PacMan

} number of PacMan

static variables/attributs/iméthodes

* I confusion classe / groupe d’instances de la classe !

class PacManPack

public : Utiliser une classe
using Id = unsigned long long; comme un groupe ?

~Pacl‘;lg:P€(3;IJéc)) é : m_allPacMan) => Classe grouPe

delete p.second; }

void addPacMan(PacMan* pm) {
m_allPacMan[m_nextId++] = pm; }

PacMan* getById(Id id) {
auto it = m_allPacMan.find(id);
return it!=m_allPacMan.end() ? it->second : nullptr; }

void deleteById(Id id) {
PacMan* pc = getById(id);
if (pc) {
delete pc;
m_allPacMan.erase(id); } }

void printById(Id id) {
PacMan* pc = getById(id);
if (pc) pc->print(); }

void printHowMany() {
std::cout << "pack has " << m_allPacMan.size()
<< " PacMan" << std::endl; }

private :
Id m_nextId = 0;
std: :map<Id, PacMan*> m_allPacMan;

static variables/attributs/méthodes

* I confusion classe / groupe d’instances de la classe !

void application()

PacManPack pack;

pack.printHowMany();

pack.printById(0);
pack.printById(1);
pack.printById(2);

pack.deleteById(1);
pack.printHowMany();

pack.addPacMan(new PacMan(10, 20));
pack.addPacMan(new PacMan(36, 40));
pack.addPacMan(new PacMan(50, 60));

(D—

int main()

PacMan: :printHowMany();
application();

PacMan: :printHowMany();
return 0O;

=

Destruction du pack
=> libération des PacMan

Utiliser une classe
comme un groupe ?
=> classe groupe

PacMan
PacMan

pack has 2 PacMan
number of PacMan =

22

R

COURS 12

A) Static variables/attributs/methodes
B) Complement conteneurs/iterateurs
C) Exemples de prog. fonctionnelle

Complément conteneursl/itérateurs

I * Le conteneur std::initializer _list permet de declarer
des listes de données littérales de taille arbitraire

* Pratique pour définir des sequences de valeurs pour
automatiser des sequences repetitives avec littérales

struct Coords

{
s

int main()

int x, y;

std::initializer list<int> // type déduit !
' N\

for (auto val : {10, 20, 30, 40})
std: :cout << val << std::endl;

std::initializer_list<Coords>
' B N\

for (const auto& param : {Coords{10, 20}, {30, 40}, {50, 60}})
std::cout << param.x << " " << param.y << std::endl;

Complément conteneursl/itérateurs

I * Le conteneur std::initializer _list permet de declarer
des listes de données littérales de taille arbitraire

* Pratique pour définir des sequences de valeurs pour
automatiser des sequences repetitives avec littérales

struct Coords

{
s

int main()

{

int x, y;

PacManPack pack;

pack.addPacMan(new P 10, 20));
pack.addPacMa PacMan(36, 40));
pack. cMan(new PacMan(50, 60));

for (const auto& param : {Coords{10, 20}, {30, 40}, {50, 60}})
pack.addPacMan(new PacMan(param.x, param.y));

Complément conteneursl/itérateurs

I * Le conteneur std::initializer _list permet de declarer
des listes de données littérales de taille arbitraire

* Peut étre passé en parametre, permet de recevoir des
arguments en quantité variable, init. de conteneurs ...

class Etudiant

{
public :
Etudiant(std::string nom, std::initializer list<float> notes)
: m_nom{nom}, m notes{notes} {}
) _/ Initialisation directe d’un vector par
private : un initializer_list reqcu en paramétre
std::string m_nom;
std: :vector<float> m_notes;
}s5

int main()

Etudiant etuA{"Paul Dupont" , {12.0, 8.5, 17.0} };
Etudiant etuB{"Martine Martin", {16.0, 9.5} };

Complément conteneursl/itérateurs

* Le conteneur std::initializer _list permet de declarer
des listes de données littérales de taille arbitraire

struct Coords

o
int x, y,;
¥
class PacManPack
{
public :
PacManPack(std: :initializer_list<Coords> params) {
makeMany(params); }
void makeMany(std::initializer_list<Coords> params) {
for (const auto& param : params)
addPacMan(new PacMan(param.x, param.y)); }
¥

int main()

PacManPack pack{{1e, 20}, {30, 40}, {50, 60}};

pack.makeMany({{70, 80}, {90, 100}});

Complément conteneursl/itérateurs

* Le conteneur std::array est une alternative aux
tableaux natifs de talilles fixes...

* Avec des perfs. equivalentes, il transmet sa taille,
a une semantique par valeur, s’integre avec les iterateurs...
Iinterface d’'un conteneur standard, sans le codt d’un vector

void modifTab(double tab[5]) {
Tab[0] *= 2; }

void modifArray(std::array<double, 5>& arr) {
Arr[0] *= 2;

int main()

double tab[5] = {1.2, 2.3, 3.4, 4.5, 5.6};

modifTab(tab);

for (size_t i=0; 1<51zeof(tab)/51zeof(*tab), ++1) g A T T S R |
std::cout << tab[i] << " "; -t T T T

std::cout << std::endl; 2.4 2.3 3.4 4.5

’;td::array<doub1e, 5;\ arr = {1.2, 2.3, 3.4, 4.5, 5.6};
modlfArray(arr),
for (size_t i=0; i<arr. 51ze(), ++1)
std::cout << arr[i] << " ";
std::cout << std::endl;

Complément conteneursl/itérateurs

* Pour étre complet il faut mentionner l'allocation newf |
et delete[| dans le cas des tableaux dynamiques

* Compte tenu des problemes de I'allocation dynamique
Il est généralement tres préféerable d’adopter vector !

¥

int main()

size t taille;
std::cout << "Taille de votre tableau dynamique SVP : ";
std::cin >> taille;

double* tab = Gew double[taille?;

for (size_t i=0; i<taille; ++i) tab[i] = 2*i;

delete[] tab;
—
std: :vector<double> vec(taille);

for (size_t i=0; i<vec.size(); ++i) vec[i] = 2*i;

return 0;

I Complement conteneursl/itérateurs

 En C++ combien de fagcons de parcourir un conteneur
pour afficher les valeurs dedans ?

int main()

/// voir https://www.techiedelight.com/print-vector-cpp/

std: :vector<double> vec{1.2, 2.3, 3.4, 4.5, 5.6};

/// range-based for

for (auto val : vec)
std::cout << val << " ";

std::cout << std::endl;

/// algorithm and lambda
std: :for_each(vec.cbegin(), vec.cend(),

[](auto v){std::cout << v << " ";});
std: :cout << std::endl;

/// stream iterator
std: :copy(vec.begin(), vec.end(),

std: :ostream_iterator<double>(std::cout, " "));
std: :cout << std::endl;

/// insertion operator overload ' ’;’
std: :cout << vec << std::endl; L

return O;

https://www.techiedelight.com/print-vector-cpp/

I Complement conteneursl/itérateurs

 En C++ combien de fagcons de parcourir un conteneur
pour afficher les valeurs dedans ?

std: :ostream& operator<<(std::ostream& os, const std::vector<double> &input)

{

for (auto const& i: input) {

0S << 1 << " "
}
return os;
}
int main()
{

/// voir https://www.techiedelight.com/print-vector-cpp/

std: :vector vec<double>{1.2, 2.3, 3.4, 4.5, 5.6};

/// stream iterator
std: :copy(vec.begin(), vec.end(),

std: :ostream_iterator<double>(std::cout, " "));
std: :cout << std::endl;

/// insertion operator overload Appel a une ver,s_ion :
std::cout << vec << std::endl; surchargee de | insertion
= vers un flot de sortie

return O;

Complément conteneursl/itérateurs

» Généralisation de la surcharge de I'operateur
d’insertion vers flot de sortie pour tout type de vecteur

template<typename T>
std: :ostream& operator<<(std::ostream& os, const std::vector<T> &input)

for (auto const& i: input) {
0S << 1 << " "
}

return os;

}

class Etudiant

public :
Etudiant(std::string nom, std::initializer_list<float> notes)
: m_nom{nom}, m _notes{notes} {}

friend std::ostream& operator<<(std::ostream& os, const Etudiant& e) {
0S << "[etudiant " << e.m_nom << " : " << e.m_notes << "]";

return os; } ——

private :
std::string m_nom;
std: :vector<float> m_notes;

s

I Complément conteneurs/iterateurs

» Généralisation de la surcharge de I'operateur
d’insertion vers flot de sortie pour tout type de vecteur

template<typename T>
std: :ostream& operator<<(std::ostream& os, const std::vector<T> &input)

{

for (auto const& i: input) {

¥

0S << 1 << ;
return os;

int main() [etudiant Martine Martin :
std: :vector<int> vecInt{2, 3, 4};
std: :vector<float> vecFloat{5.4, 6.3, 7.2};
std: :vector<std: :string> vecString{"Hello", "world", "!"};
std: :vector<Etudiant> vecEtudiant{

{"Paul Dupont"” , {12.0, 8.5, 17.0} },

{"Martine Martin", {16.0, 9.5} } };

std: :cout << vecInt << std::endl;

std: :cout << vecFloat << std::endl;
std: :cout << vecString << std::endl;
std::cout << vecEtudiant << std::endl;

return O;

I Complément conteneurs/iterateurs

» Généralisation de la surcharge de I'operateur
d’insertion vers flot de sortie pour tout type de vecteur

template<typename T>
std: :ostream& operator<<(std::ostream& os, const std::vector<T> &input)

{

for (auto const& i: input) {

0S << 1 << (std::is pod<T>::value ?» " " : "\n");
} 1\ J
return os; Détection de type primitif (int, float, char...)
} pod = plain old data

int main()

std: :vector<int> vecInt{2, 3, 4};
std: :vector<float> vecFloat{5.4, 6.3, 7.2};
std: :vector<std: :string> vecString{"Hello", "world", "!"};
std: :vector<Etudiant> vecEtudiant{
{"Paul Dupont"” , {12.0, 8.5, 17.0} }, g
{"Martine Martin", {16.0, 9.5} } };

std: :cout << vecInt << std::endl;

std: :cout << vecFloat << std::endl;
std: :cout << vecString << std::endl;
std::cout << vecEtudiant << std::endl;

[etudiant Paul Dupont :
[etudiant Martine Martin :

return O;

Complément conteneursl/itérateurs

* Et qu’est-ce que c’est qu’un stream_iterator ?
Un moyen d’iterer sur des (élements dans des) flots !

int main()

{

std: :vector<double> vec{1.2, 2.3, 3.4, 4.5, 5.6};

std: :copy(vec.begin(), vec.end(), std::ostream_iterator<double>(std::cout, "

std: :ostream_iterator<double> outputIter(std::cout, " ");
for (auto it=vec.cbegin(); it!=vec.cend(); ++it)

{
*outputIter = *it;
outputIter++;

¥

return O;

"))

Complément conteneursl/itérateurs

* Pour rappel grace aux istringstream on peut traiter
une source textuelle (string) comme un flot entrant

int main()

{
std::string stringData = "100 260 410 120";

std: :vector<int> vec;

std::istringstream iss{stringData};

int val;

while (iss>>val)
vec.push_back(val);

std::cout << vec << std::endl; 1868 2608 4168 126

return 0;

Complément conteneursl/itérateurs

I * Et une istringstream peut devenir itérable
avec un istream_iterator... ci dessous version longue

int main()

{
std::string stringData = "100 260 410 120";
std: :vector<int> vec;

std::istringstream iss{stringData};
std::istream_iterator<int> inputIter{iss};
std::istream iterator<int> endOfInput;
while (inputIter != endOfInput)

vec.push_back(*inputIter); 1868 2668 4168 126
inputIter++;

¥

std: :cout << vec << std::endl;

return 0O;

Complément conteneursl/itérateurs

I * Ce qui est iterable est utilisable dans les algorithmes

int main()
{
std::string stringData = "100 260 410 120";
std: :vector<int> vec;
std: :istringstream iss{stringData};
std::copy(std::istream_iterator<int>{iss},
std::istream_iterator<int>{},
std: :back_inserter(vec));
\ J

Itérateur en insertion :
équivaut a une séquence de push_back

std::cout << vec << std::endl;

return O;

Complément conteneursl/itérateurs

I * Re-écriture des opérateurs surcharges generiques
sans boucle explicite

template<typename T>
std: :ostream& operator<<(std::ostream& os, const std::vector<T> &input)
std: :copy(input.begin(), input.end(),
std::ostream_iterator<T>(os, " "));
return os;

}

template<typename T>
std::istream& operator>>(std::istream& is, std::vector<T> &output)

std::copy(std::istream_iterator<T>{is},
std: :istream_iterator<T>{},
std: :back_inserter(output));
return is;

}

39 |

Complément conteneursl/itérateurs

I * On a encore besoin d’un objet istringstream
Intermediaire...

int main()

std::string stringData = "100 260 410 120";
std: :vector<int> vec;

std::istringstream iss{stringData};
iss >> vec;
std::cout << vec << std::endl;

return 0O;

108 260 410 128

I Complément conteneurs/iterateurs

* Encapsulons la sequence dans un wrapper generique,
l'objectif est de pouvoir passer de string a vector :

template<typename T>
std::vector<T> vecFromString(const std::string& str)

{
std: :vector<T> vec;
std: :istringstream iss{str};
iss >> vec;
return vec;
}

int main()

{
std::string strInt = "2 3 4";
std::string strFloat = "5.4 6.3 7.2";
std: :string strString = "Hello world !";

auto vecInt = vecFromString<int>(strint);
auto vecFloat = vecFromString<float>(strFloat);
auto vecString = vecFromString<std::string>(strString);

std: :cout << vecInt << std::endl;
std::cout << vecFloat << std::endl;
std: :cout << vecString << std::endl;

return O;

COURS 12

A) Static variables/attributs/methodes
B) Complement conteneurs/iterateurs
C) Exemples de prog. fonctionnelle

Exemples de prog. fonctionnelle

Le polymorphisme permet d’encapsuler des actions
specifiques dans des classes specialisees avec

une interface d’utilisation définie par une classe mere
abstraite pure (classe interface, non instanciable)

Soit I’énoncé suivant : réaliser un programme
permettant d’avoir un menu utilisateur avec
sélection d’un choix par valeur entiere et differentes
actions associees sans test ni switch/case

Le principe est de constituer une hiérarchie d’actions

de menu avec une classe interface parente, d’avoir

un vecteur d’'objets spécialisés correspondant aux

choix : a chaque indice du vecteur est associé une

Instance d’'une classe spécifique avec l'action designee
=> dispatch polymorphe (a la place du switch)

I@gll
r Exemples de prog. fonctionnelle

* Reéaliser un programme permettant d’avoir un menu

- =] / Quitter
utilisateur sans test ni switch/case e
int main() struct Context 2/ Afficher
{
Context ctx{3, 3.14, "pi"}; int x; L.
double y; 3 3.14 1
std: :vector<MenuEntry*> menu { std: :string z; : _ _
new MenuQuitter, }; / Quitter
new MenuSaisir, e
new MenuAfficher [Afficher
¥
bool terminate = false; 2.125 hop
do
{ / Quitter
std::cout << "\n@/ Quitter\nl/ Saisir\n2/ Afficher\n\n"; 1/ Saisir
2/ Afficher
int choix;
std::cin >> choix;
2.125 hop
menu[choix]->action(ctx, terminate); / Quitter
1/ Saisir
while (!terminate); 2/ Afficher
for(auto m : menu) delete m; B8
return O;
} Process returned @

r Exemples de prog. fonctionnelle

* Reéaliser un programme permettant d’avoir un menu
utilisateur sans test ni switch/case

class MenuEntry struct Context
. {
public : int x;
virtual ~MenuEntry() = default; double y;
virtual void action(Context& ctx, bool& terminate) = 0; std: :string z;
}s ¥
J

class MenuQuitter : public MenuEntry

public :
void action(Context& ctx, bool& terminate) {
terminate = true; }

}s

class MenuSaisir : public MenuEntry

{

public :
void action(Context& ctx, bool& terminate) {
std::cin >> ctx.x >> ctx.y >> ctx.z; }

}s

class MenuAfficher : public MenuEntry

{

public :
void action(Context& ctx, bool& terminate) {
std::cout << ctx.x << " " << ctx.y
<« "M o<< ctx.z << "\n"; }

1

Exemples de prog. fonctionnelle

I * Le pattern strategy est un usage particulier de
delégation : on délegue a une classe qui hérite

I d’'une interface.

Client

context Interface
-slrategy

<

+algaorithmi)

| T |

ImplementationOne ImplementationTwo

+algorithmi) +algorithm()

https://sourcemaking.com/design_patterns/strategy

Exemples de prog. fonctionnelle

* On dispose d’'une technique puissante
pour gerer des combinatoires sans multiplier

les codes croisés (m+n au lieu de mxn)

Trajectoire

Pointilles
>

----- /‘*"..) . - <

\ / I s

=~ < “I

I‘/ //I /\/

_ v

I“_': I__1..' |:_ ':- :

P - :
........ ! L.l : C— __, |

Exemples de prog. fonctionnelle

I * Néanmoins I'héritage introduit des couplages
les classes filles concretes dependent des

I classes meres. Peut on faire autrement ?
Traceé
> _ _ > Pointillé
+tracer() >——> [rajectoire .
. +nextBlackOrWhite()
+nextPosition() N\
N\

T
G RART |

Classes concretes Classes concretes

Iﬁﬂl
r Exemples de prog. fonctionnelle

* Pas forcement besoin de classes, une stratégie
peut étre donnée par des parametres fonctionnels

using namespace std::complex literals;
using vec2d = std::complex<double>;

template<typename Trajectoire, typename Pointilles>

void tracer(Svgfile& svgout, vec2d depart, double distance,
Trajectoire trajectoire, Pointilles pointilles)

{

vec2d pos = depart;
double s = 0.0;

while (abs(s) < distance)

vec2d step
double larg

trajectoire(s);

pointilles(s): Appels aux fonctions recues en paramétres

vec2d nextpos = pos + step;
s += abs(step);

svgout.addLine(pos.real(), pos.imag(),
nextpos.real(), nextpos.imag(), larg);
pos = nextpos;

r Exemples de prog. fonctionnelle

* Les lambdas sont des objets-fonctions anonymes qui
peuvent étre utilisés comme des "littéraux fonctionnels"

int main()

Svgfile svgout;
svgout.addGrid();

tracer(svgout, 100.+100.1i, 750,
[](double s) { return 1.0; },
[](double s) { return 3.0; });

tracer(svgout, 100.+150.i, 750,
[](double s) { return 1.0; },
[](double s) { return sin(©.1*s)<6 ? @ : 3; });

tracer(svgout, 100.+200.1i, 1200,
[](double s) { return 2.0i*sin(©.05*s) + 1.0; },
[](double s) { return 3; });

tracer(svgout, 100.+300.1, 1200,
[](double s) { return 2.0i*sin(©.05*s) + 1.0; },
[](double s) { return 5*sin(©.05*s); });

tracer(svgout, 100.+400.1i, 3000,
[](double s) { return 0.2*exp(0.025i*s) + 0.1; },
[](double s) { return sin(©.5*s)<0 ? @ : s/1000; });

const std::array<int, 15> points{2,2,2,2,0,0,0,0,0,2,0,0,0,0,0};
tracer(svgout, 100.+500.1i, 3000,
[](double s) { return 0.2*exp(0.025i*s) + 0.1; },
[&points](double s) {
return points[points.size()*(.03*s-floor(.03*s))]; }).

Exemples de prog. fonctionnelle

I * Ce qui permet une souplesse maximale dans
I'utilisation d’une fonction paramétrable en strategies

A\VAVAVAVAVAVAVAVAVAN
NS N U N N O N (R RN

—— —— -
- - - - - - - - el - - - - - - -
- Sy e, ™,
L "'}.J\ "‘:.-\ . \.‘ "P‘.
/ s s s, L4 ’ L
by pt A b b
i \ F ')

. .
] vy, v/
] 1 1 []
I 1 h] i []] 1 !
! ‘ ’ s P ’

> _ - — ~ \-f

'l - -.,(_—, et m, L = ‘f — ."—-lw‘,_.,I - — - — - _‘-:_---_ =
’ N T - N Ny \ 7 PN . v L0
l. v 7 |' v 7 N g - ! . p \ C \
) \ ' / - / ' ! \ ! ey ! ,

e / - b - - - — h g e

Exemples de prog. fonctionnelle

I L’évolution du langage integre les « patterns »
et les patterns finissent par disparaitre dans le langage

Assembler

C
C++

C++11

Effective GoF Patterns - Tobias Darm (video)

Evolution

- if/else, do-while, ...
class, polymorphism, ...

9
- Strategy, Command, ...
9

https://accu.org/content/conf2013/Tobias_Darm_Effective_GoF_Patterns.pdf
https://www.infoq.com/presentations/gof-patterns-c-plus-plus-boost/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

