
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2019-2020

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Abstraction / design patterns
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Compléments

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

COURS 12

A) Static variables/attributs/méthodes
B) Complément conteneurs/itérateurs
C) Exemples de prog. fonctionnelle

4

COURS 12

A) Static variables/attributs/méthodes
B) Complément conteneurs/itérateurs
C) Exemples de prog. fonctionnelle

5

static variables/attributs/méthodes

● Les variables statiques sont des variables définies
localement (à une fonction ou une méthode)

● se comportent comme une variable globale :

– valeur initialisée par défaut (comme une globale)
– valeur conservée d'un appel à l'autre :

la variable n'est pas détruite en fin d'appel

void fonction()
{
 static int compteur = 0;

 std::cout << "appel numero " << ++compteur << std::endl;
}

int main()
{
 fonction();
 fonction();
 fonction();
 ...

C ou C++

6

static variables/attributs/méthodes

● Utile en débogage, générer des identifiants…
● Pas possible d'accéder depuis l'extérieur de la fonction

à la ressource static pour la reset ou autres opérations
● Attention aux bricolages : bon potentiel d’abus !

/// HORRIBLE: bricolage, un seul pacman, pas accès aux données...

void bougerPacMan(int depx, int depy)
{
 static int posx=200, posy=100;

 posx += depx; posy += depy;

 std::cout << "le pacman est en x=" << posx
 << " y=" << posy << std::endl;
}

int main()
{
 bougerPacMan(+50, +10);
 bougerPacMan(0, +20);
 bougerPacMan(-20, 0);

C ou C++

7

static variables/attributs/méthodes

● L'abus de static indique une confusion fonction / classe
● Utiliser une fonction comme une classe ? => classe !

/// Correct
class PacMan
{
 public :
 PacMan() = default;
 void bouger(int depx, int depy) {
 m_posx += depx; m_posy += depy;
 std::cout << "le pacman est en"
 << " x=" << m_posx
 << " y=" << m_posy << std::endl; }
 private :
 int m_posx = 200; /// Init. par défaut des attributs
 int m_posy = 100;
};

int main()
{
 PacMan monPacMan;
 monPacMan.bouger(+50, +10);
 monPacMan.bouger(0, +20);
 monPacMan.bouger(-20, 0);

C++ only !

8

static variables/attributs/méthodes

● Exemple de cas d’usage légitime : détecter 1er passage
● Supposons un besoin de vitesse sur une fonction

mathématique lourde mais sans besoin de précision
/// Calcul du sinus d’un angle "au degré près" (pas très précis)
double slowSin(unsigned int deg)
{
 const double M_PI = 3.14159265358979323846;
 return sin(deg*M_PI/180);
}

int main()
{
 std::vector<double> vals(100000000);
 std::generate(vals.begin(), vals.end(),
 [v = -10] () mutable { return v+=10; });

 std::vector<double> result;
 std::transform(vals.cbegin(), vals.cend(),
 std::back_inserter(result), slowSin);

 for (size_t i=0; i<10; ++i)
 std::cout << "sin(" << vals[i] << ")="
 << result[i] << std::endl;

C++14

100 millions d’appels à sinus : ~5s

9

static variables/attributs/méthodes

● Plutôt que de recalculer à chaque fois la valeur de la
fonction f(x) en un ensemble de x finis, on peut pré-
calculer tous les f(x) dans une Lookup Table (LUT)

/// Calcul du sinus d’un angle "au degré près" (pas très précis)
double fastSin0(unsigned int deg)
{
 static const double lut[360] = {
 0.000000, 0.017452, 0.034899, 0.052336, 0.069756, 0.087156, 0.104528, 0.121869, 0.139173, 0.156434,
 0.173648, 0.190809, 0.207912, 0.224951, 0.241922, 0.258819, 0.275637, 0.292372, 0.309017, 0.325568,
 0.342020, 0.358368, 0.374607, 0.390731, 0.406737, 0.422618, 0.438371, 0.453990, 0.469472, 0.484810,
 0.500000, 0.515038, 0.529919, 0.544639, 0.559193, 0.573576, 0.587785, 0.601815, 0.615661, 0.629320,
 0.642788, 0.656059, 0.669131, 0.681998, 0.694658, 0.707107, 0.719340, 0.731354, 0.743145, 0.754710,
 0.766044, 0.777146, 0.788011, 0.798636, 0.809017, 0.819152, 0.829038, 0.838671, 0.848048, 0.857167,
 0.866025, 0.874620, 0.882948, 0.891007, 0.898794, 0.906308, 0.913545, 0.920505, 0.927184, 0.933580,
 0.939693, 0.945519, 0.951057, 0.956305, 0.961262, 0.965926, 0.970296, 0.974370, 0.978148, 0.981627,
 0.984808, 0.987688, 0.990268, 0.992546, 0.994522, 0.996195, 0.997564, 0.998630, 0.999391, 0.999848,
 1.000000, 0.999848, 0.999391, 0.998630, 0.997564, 0.996195, 0.994522, 0.992546, 0.990268, 0.987688,
 0.984808, 0.981627, 0.978148, 0.974370, 0.970296, 0.965926, 0.961262, 0.956305, 0.951057, 0.945519,
 0.939693, 0.933580, 0.927184, 0.920505, 0.913545, 0.906308, 0.898794, 0.891007, 0.882948, 0.874620,
 0.866025, 0.857167, 0.848048, 0.838671, 0.829038, 0.819152, 0.809017, 0.798636, 0.788011, 0.777146,
 0.766044, 0.754710, 0.743145, 0.731354, 0.719340, 0.707107, 0.694658, 0.681998, 0.669131, 0.656059,
 0.642788, 0.629320, 0.615661, 0.601815, 0.587785, 0.573576, 0.559193, 0.544639, 0.529919, 0.515038,
 0.500000, 0.484810, 0.469472, 0.453990, 0.438371, 0.422618, 0.406737, 0.390731, 0.374607, 0.358368,
 0.342020, 0.325568, 0.309017, 0.292372, 0.275637, 0.258819, 0.241922, 0.224951, 0.207912, 0.190809,
 0.173648, 0.156434, 0.139173, 0.121869, 0.104528, 0.087156, 0.069756, 0.052336, 0.034899, 0.017452,
 0.000000, -0.017452, -0.034899, -0.052336, -0.069756, -0.087156, -0.104528, -0.121869, -0.139173, -0.156434,
 -0.173648, -0.190809, -0.207912, -0.224951, -0.241922, -0.258819, -0.275637, -0.292372, -0.309017, -0.325568,
 -0.342020, -0.358368, -0.374607, -0.390731, -0.406737, -0.422618, -0.438371, -0.453990, -0.469472, -0.484810,
 -0.500000, -0.515038, -0.529919, -0.544639, -0.559193, -0.573576, -0.587785, -0.601815, -0.615661, -0.629320,
 -0.642788, -0.656059, -0.669131, -0.681998, -0.694658, -0.707107, -0.719340, -0.731354, -0.743145, -0.754710,
 -0.766044, -0.777146, -0.788011, -0.798636, -0.809017, -0.819152, -0.829038, -0.838671, -0.848048, -0.857167,
 -0.866025, -0.874620, -0.882948, -0.891007, -0.898794, -0.906308, -0.913545, -0.920505, -0.927184, -0.933580,
 -0.939693, -0.945519, -0.951057, -0.956305, -0.961262, -0.965926, -0.970296, -0.974370, -0.978148, -0.981627,
 -0.984808, -0.987688, -0.990268, -0.992546, -0.994522, -0.996195, -0.997564, -0.998630, -0.999391, -0.999848,
 -1.000000, -0.999848, -0.999391, -0.998630, -0.997564, -0.996195, -0.994522, -0.992546, -0.990268, -0.987688,
 -0.984808, -0.981627, -0.978148, -0.974370, -0.970296, -0.965926, -0.961262, -0.956305, -0.951057, -0.945519,
 -0.939693, -0.933580, -0.927184, -0.920505, -0.913545, -0.906308, -0.898794, -0.891007, -0.882948, -0.874620,
 -0.866025, -0.857167, -0.848048, -0.838671, -0.829038, -0.819152, -0.809017, -0.798636, -0.788011, -0.777146,
 -0.766044, -0.754710, -0.743145, -0.731354, -0.719340, -0.707107, -0.694658, -0.681998, -0.669131, -0.656059,
 -0.642788, -0.629320, -0.615661, -0.601815, -0.587785, -0.573576, -0.559193, -0.544639, -0.529919, -0.515038,
 -0.500000, -0.484810, -0.469472, -0.453990, -0.438371, -0.422618, -0.406737, -0.390731, -0.374607, -0.358368,
 -0.342020, -0.325568, -0.309017, -0.292372, -0.275637, -0.258819, -0.241922, -0.224951, -0.207912, -0.190809,
 -0.173648, -0.156434, -0.139173, -0.121869, -0.104528, -0.087156, -0.069756, -0.052336, -0.034899, -0.017452,
 };
 return lut[deg%360];
}

360 valeurs précalculées
 « en dur »

10

static variables/attributs/méthodes

● Plutôt que de recalculer à chaque fois la valeur de la
fonction f(x) en un ensemble de x finis, on peut pré-
calculer tous les f(x) dans une Lookup Table (LUT)

/// Calcul du sinus d’un angle "au degré près" (pas très précis)
double fastSin0(unsigned int deg)
{
 static const double lut[360] = {
 0.000000, 0.017452, 0.034899, 0.052336, 0.069756, ...
 0.173648, 0.190809, 0.207912, 0.224951, 0.241922, ...
 0.342020, 0.358368, 0.374607, 0.390731, 0.406737, ...
 0.500000, 0.515038, 0.529919, 0.544639, 0.559193, ...
 0.642788, 0.656059, 0.669131, 0.681998, 0.694658, ...
 0.766044, 0.777146, 0.788011, 0.798636, 0.809017, ...
 ... etc ...
 };

 return lut[deg%360];
} 100 millions de consultations

 d’un tableau : ~0.71s

C ou C++

11

static variables/attributs/méthodes

● Véloce mais pas pratique ! (alternatives => includes, rc files …)

● Détection static de 1er passage => générer au 1er appel

double fastSin1(unsigned int deg)
{
 const double M_PI = 3.14159265358979323846;
 const int nbSamples = 360;
 static bool firstCall = true;
 static double lut[nbSamples];

 if (firstCall)
 {
 for (size_t d=0; d<360; ++d)
 lut[d] = sin(d*M_PI/180);
 firstCall = false;
 }

 return lut[deg%nbSamples];
}

100 millions test + consultations
 d’un tableau : ~0.85s

C ou C++

 Ce calcul est déroulé
une seule fois au 1er appel

12

static variables/attributs/méthodes

● Avec les constexpr on peut demander au compilateur
d’exécuter un algorithme à la compilation

● Cette approche est (presque) aussi rapide que "en dur"
double fastSin2(unsigned int deg)
{
 constexpr auto M_PI = 3.14159265358979323846;
 constexpr size_t nbSamples = 360;

 constexpr auto makeLut = []() constexpr {
 std::array<double, nbSamples> lut{};

 for (size_t d=0; d<lut.size(); ++d)
 lut[d] = sin(d*M_PI/180);

 return lut;
 };

 static const auto lut = makeLut();

 return lut[deg%nbSamples];
}

100 millions de consultations
 d’un tableau : ~0.75s

C++ 17

Ce calcul est déroulé
 par le compilateur !

13

static variables/attributs/méthodes

● constexpr : exemple de philosophie « zero overhead »
● Une abstraction ne devrait pas coûter plus

qu’un code équivalent sans l’abstraction

https://isocpp.org/wiki/faq/big-picture#zero-overhead-principle

14

static variables/attributs/méthodes

● Dans une classe on peut déclarer un membre static
● Pour un attribut cela indique une donnée unique

de la classe plutôt que pour chaque objet de la classe
● Pour une méthode cela indique une action appelable

sans partir d’un objet cible (pas de this)
● Les seuls attributs accessibles à une méthode static

sont des attributs statics : il n’y a pas d’objet !
● Utilisations :

– Manager la classe
– Générer des identifiants uniques
– Actions de classe en l’absence d’objet cible

(fonctions auxiliaires, fabriques d’objets...)

15

static variables/attributs/méthodes

● Exemple d’usage classique : comptage d’instances

/// **** pacMan.h ****
class PacMan
{
 public :
 PacMan(int posx, int posy)
 : m_posx{posx}, m_posy{posy} {
 ++s_nbPacMan; }

 ~PacMan() {
 --s_nbPacMan; }

 static void printHowMany() {
 std::cout << "number of PacMan = "
 << s_nbPacMan << std::endl; }

 private :
 int m_posx, m_posy;
 static size_t s_nbPacMan;
};

/// **** pacMan.cpp ****
size_t PacMan::s_nbPacMan = 0;

16

static variables/attributs/méthodes

● Exemple d’usage classique : comptage d’instances

/// **** pacMan.h ****
class PacMan
{
 public :
 PacMan(int posx, int posy)
 : m_posx{posx}, m_posy{posy} {
 ++s_nbPacMan; }

 ~PacMan() {
 --s_nbPacMan; }

 static void printHowMany() {
 std::cout << "number of PacMan = "
 << s_nbPacMan << std::endl; }

 private :
 int m_posx, m_posy;
 inline static size_t s_nbPacMan = 0;
};

/// **** pacMan.cpp **** pas besoin de définition en .cpp (header only)

C++ 17

17

static variables/attributs/méthodes

● Exemple d’usage classique : comptage d’instances
void application()
{
 std::vector<PacMan*> dynaPac(3, nullptr);
 PacMan autoPac{10,20};

 PacMan::printHowMany();

 dynaPac[0] = new PacMan{30, 40};
 dynaPac[1] = new PacMan{50, 60};
 dynaPac[2] = new PacMan{70, 80};
 PacMan::printHowMany();

 delete dynaPac[0];
 delete dynaPac[2];
 PacMan::printHowMany();
}

int main()
{
 PacMan::printHowMany();
 application();
 PacMan::printHowMany();
 return 0;
}

Fuite mémoire repérée

18

static variables/attributs/méthodes

● Exemple plus complexe de « registering » d’instances
class PacMan {
 public :
 using Id = unsigned long long;

 PacMan(int posx, int posy)
 : m_posx{posx}, m_posy{posy}, m_id{s_nextId++} {
 s_allPacMan[m_id] = this; }

 ~PacMan() { s_allPacMan.erase(m_id); }

 static PacMan* getById(Id id) {
 auto it = s_allPacMan.find(id);
 return it!=s_allPacMan.end() ? it->second : nullptr; }

 static void printHowMany() {
 std::cout << "number of PacMan = "
 << s_allPacMan.size() << std::endl; }

 static void printById(Id id) {
 PacMan* pc = getById(id);
 if (pc) std::cout << pc->m_posx << " "
 << pc->m_posy << std::endl; }

 /// Attention dangereux avec des automatiques
 static void deleteAll() {
 while (s_allPacMan.size())
 delete s_allPacMan.begin()->second; }
 private :
 int m_posx, m_posy;
 Id m_id;

 inline static Id s_nextId;
 inline static std::map<Id, PacMan*> s_allPacMan;
};

ap
pro

ch
e

at
yp

iq
ue

! s
ta

tic
 ≈

 g
lo

bal
es

 !

19

static variables/attributs/méthodes

● Exemple plus complexe de « registering » d’instances

int main()
{
 new PacMan(10, 20);
 new PacMan(30, 40);
 new PacMan(50, 60);
 PacMan::printHowMany();

 PacMan::printById(0);
 PacMan::printById(1);
 PacMan::printById(2);

 delete PacMan::getById(1);
 PacMan::printHowMany();

 PacMan::deleteAll();
 PacMan::printHowMany();

 return 0;
}

ap
pro

ch
e

at
yp

iq
ue

! s
ta

tic
 ≈

 g
lo

bal
es

 !

20

static variables/attributs/méthodes

● ! confusion classe / groupe d’instances de la classe !
class PacManPack
{
 public :
 using Id = unsigned long long;

 ~PacManPack() {
 for (auto p : m_allPacMan)
 delete p.second; }

 void addPacMan(PacMan* pm) {
 m_allPacMan[m_nextId++] = pm; }

 PacMan* getById(Id id) {
 auto it = m_allPacMan.find(id);
 return it!=m_allPacMan.end() ? it->second : nullptr; }

 void deleteById(Id id) {
 PacMan* pc = getById(id);
 if (pc) {
 delete pc;
 m_allPacMan.erase(id); } }

 void printById(Id id) {
 PacMan* pc = getById(id);
 if (pc) pc->print(); }

 void printHowMany() {
 std::cout << "pack has " << m_allPacMan.size()
 << " PacMan" << std::endl; }

 private :
 Id m_nextId = 0;
 std::map<Id, PacMan*> m_allPacMan;
};

Utiliser une classe
comme un groupe ?
=> classe groupe

21

static variables/attributs/méthodes

● ! confusion classe / groupe d’instances de la classe !
void application()
{
 PacManPack pack;

 pack.addPacMan(new PacMan(10, 20));
 pack.addPacMan(new PacMan(30, 40));
 pack.addPacMan(new PacMan(50, 60));
 pack.printHowMany();

 pack.printById(0);
 pack.printById(1);
 pack.printById(2);

 pack.deleteById(1);
 pack.printHowMany();

 /// Le pack est une variable automatique !
}

int main()
{
 PacMan::printHowMany();
 application();
 PacMan::printHowMany();
 return 0;
}

Utiliser une classe
comme un groupe ?
=> classe groupe

Destruction du pack
=> libération des PacMan

22

COURS 12

A) Static variables/attributs/méthodes
B) Complément conteneurs/itérateurs
C) Exemples de prog. fonctionnelle

23

Complément conteneurs/itérateurs

● Le conteneur std::initializer_list permet de déclarer
des listes de données littérales de taille arbitraire

● Pratique pour définir des séquences de valeurs pour
automatiser des séquences répétitives avec littérales

struct Coords
{
 int x, y;
};

int main()
{

 for (auto val : {10, 20, 30, 40})
 std::cout << val << std::endl;

 for (const auto& param : {Coords{10, 20}, {30, 40}, {50, 60}})
 std::cout << param.x << " " << param.y << std::endl;

std::initializer_list<int> // type déduit !

std::initializer_list<Coords>

24

Complément conteneurs/itérateurs

● Le conteneur std::initializer_list permet de déclarer
des listes de données littérales de taille arbitraire

● Pratique pour définir des séquences de valeurs pour
automatiser des séquences répétitives avec littérales

struct Coords
{
 int x, y;
};

int main()
{
 PacManPack pack;

 pack.addPacMan(new PacMan(10, 20));
 pack.addPacMan(new PacMan(30, 40));
 pack.addPacMan(new PacMan(50, 60));

 for (const auto& param : {Coords{10, 20}, {30, 40}, {50, 60}})
 pack.addPacMan(new PacMan(param.x, param.y));

25

Complément conteneurs/itérateurs

● Le conteneur std::initializer_list permet de déclarer
des listes de données littérales de taille arbitraire

● Peut être passé en paramètre, permet de recevoir des
arguments en quantité variable, init. de conteneurs ...

class Etudiant
{
 public :
 Etudiant(std::string nom, std::initializer_list<float> notes)
 : m_nom{nom}, m_notes{notes} {}

 private :
 std::string m_nom;
 std::vector<float> m_notes;
};

int main()
{

 Etudiant etuA{"Paul Dupont" , {12.0, 8.5, 17.0} };
 Etudiant etuB{"Martine Martin", {16.0, 9.5} };

Initialisation directe d’un vector par
un initializer_list reçu en paramètre

26

Complément conteneurs/itérateurs

● Le conteneur std::initializer_list permet de déclarer
des listes de données littérales de taille arbitraire

struct Coords
{
 int x, y;
};

class PacManPack
{
 public :

 PacManPack(std::initializer_list<Coords> params) {
 makeMany(params); }

 void makeMany(std::initializer_list<Coords> params) {
 for (const auto& param : params)
 addPacMan(new PacMan(param.x, param.y)); }
 ...

};

int main()
{

 PacManPack pack{{10, 20}, {30, 40}, {50, 60}};

 pack.makeMany({{70, 80}, {90, 100}});

27

Complément conteneurs/itérateurs

● Le conteneur std::array est une alternative aux
tableaux natifs de tailles fixes...

● Avec des perfs. équivalentes, il transmet sa taille,
a une sémantique par valeur, s’intègre avec les itérateurs…
interface d’un conteneur standard, sans le coût d’un vector

void modifTab(double tab[5]) {
 Tab[0] *= 2; }

void modifArray(std::array<double, 5>& arr) {
 Arr[0] *= 2; }

int main()
{
 double tab[5] = {1.2, 2.3, 3.4, 4.5, 5.6};
 modifTab(tab);
 for (size_t i=0; i<sizeof(tab)/sizeof(*tab); ++i)
 std::cout << tab[i] << " ";
 std::cout << std::endl;

 std::array<double, 5> arr = {1.2, 2.3, 3.4, 4.5, 5.6};
 modifArray(arr);
 for (size_t i=0; i<arr.size(); ++i)
 std::cout << arr[i] << " ";
 std::cout << std::endl;

28

Complément conteneurs/itérateurs

● Pour être complet il faut mentionner l’allocation new[]
et delete[] dans le cas des tableaux dynamiques

● Compte tenu des problèmes de l’allocation dynamique
il est généralement très préférable d’adopter vector !

int main()
{
 size_t taille;
 std::cout << "Taille de votre tableau dynamique SVP : ";
 std::cin >> taille;

 double* tab = new double[taille];
 /// Utiliser tab ...
 for (size_t i=0; i<taille; ++i) tab[i] = 2*i;
 /// ...
 /// Libérer avec delete[]
 delete[] tab;

 std::vector<double> vec(taille);
 /// Utiliser vec ...
 for (size_t i=0; i<vec.size(); ++i) vec[i] = 2*i;
 /// ...
 /// Libération automatique (pas de new, pas de delete)

 return 0;
}

29

Complément conteneurs/itérateurs

● En C++ combien de façons de parcourir un conteneur
pour afficher les valeurs dedans ?

int main()
{
 /// voir https://www.techiedelight.com/print-vector-cpp/

 std::vector<double> vec{1.2, 2.3, 3.4, 4.5, 5.6};

 /// range-based for
 for (auto val : vec)
 std::cout << val << " ";
 std::cout << std::endl;

 /// algorithm and lambda
 std::for_each(vec.cbegin(), vec.cend(),
 [](auto v){std::cout << v << " ";});
 std::cout << std::endl;

 /// stream iterator
 std::copy(vec.begin(), vec.end(),
 std::ostream_iterator<double>(std::cout, " "));
 std::cout << std::endl;

 /// insertion operator overload
 std::cout << vec << std::endl;

 return 0;
}

!?

https://www.techiedelight.com/print-vector-cpp/

30

Complément conteneurs/itérateurs

● En C++ combien de façons de parcourir un conteneur
pour afficher les valeurs dedans ?

std::ostream& operator<<(std::ostream& os, const std::vector<double> &input)
{
 for (auto const& i: input) {
 os << i << " ";
 }
 return os;
}

int main()
{
 /// voir https://www.techiedelight.com/print-vector-cpp/

 std::vector vec<double>{1.2, 2.3, 3.4, 4.5, 5.6};

 /// stream iterator
 std::copy(vec.begin(), vec.end(),
 std::ostream_iterator<double>(std::cout, " "));
 std::cout << std::endl;

 /// insertion operator overload
 std::cout << vec << std::endl;

 return 0;
}

! Appel à une version
surchargée de l’insertion
vers un flot de sortie

31

Complément conteneurs/itérateurs

● Généralisation de la surcharge de l’opérateur
d’insertion vers flot de sortie pour tout type de vecteur

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T> &input)
{
 for (auto const& i: input) {
 os << i << " ";
 }
 return os;
}

class Etudiant
{
 public :
 Etudiant(std::string nom, std::initializer_list<float> notes)
 : m_nom{nom}, m_notes{notes} {}

 friend std::ostream& operator<<(std::ostream& os, const Etudiant& e) {
 os << "[etudiant " << e.m_nom << " : " << e.m_notes << "]";
 return os; }

 private :
 std::string m_nom;
 std::vector<float> m_notes;
};

32

Complément conteneurs/itérateurs

● Généralisation de la surcharge de l’opérateur
d’insertion vers flot de sortie pour tout type de vecteur

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T> &input)
{
 for (auto const& i: input) {
 os << i << " ";
 }
 return os;
}

int main()
{
 std::vector<int> vecInt{2, 3, 4};
 std::vector<float> vecFloat{5.4, 6.3, 7.2};
 std::vector<std::string> vecString{"Hello", "world", "!"};
 std::vector<Etudiant> vecEtudiant{
 {"Paul Dupont" , {12.0, 8.5, 17.0} },
 {"Martine Martin", {16.0, 9.5} } };

 std::cout << vecInt << std::endl;
 std::cout << vecFloat << std::endl;
 std::cout << vecString << std::endl;
 std::cout << vecEtudiant << std::endl;

 return 0;
}

33

Complément conteneurs/itérateurs

● Généralisation de la surcharge de l’opérateur
d’insertion vers flot de sortie pour tout type de vecteur

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T> &input)
{
 for (auto const& i: input) {
 os << i << (std::is_pod<T>::value ? " " : "\n");
 }
 return os;
}

int main()
{
 std::vector<int> vecInt{2, 3, 4};
 std::vector<float> vecFloat{5.4, 6.3, 7.2};
 std::vector<std::string> vecString{"Hello", "world", "!"};
 std::vector<Etudiant> vecEtudiant{
 {"Paul Dupont" , {12.0, 8.5, 17.0} },
 {"Martine Martin", {16.0, 9.5} } };

 std::cout << vecInt << std::endl;
 std::cout << vecFloat << std::endl;
 std::cout << vecString << std::endl;
 std::cout << vecEtudiant << std::endl;

 return 0;
}

Détection de type primitif (int, float, char…)
 pod = plain old data

34

Complément conteneurs/itérateurs

● Et qu’est-ce que c’est qu’un stream_iterator ?
Un moyen d’itérer sur des (éléments dans des) flots !

int main()
{
 std::vector<double> vec{1.2, 2.3, 3.4, 4.5, 5.6};

 /// ostream iterator
 std::copy(vec.begin(), vec.end(), std::ostream_iterator<double>(std::cout, " "));

 /// l'algorithme std::copy ci dessus est équivalent à
 std::ostream_iterator<double> outputIter(std::cout, " ");
 for (auto it=vec.cbegin(); it!=vec.cend(); ++it)
 {
 *outputIter = *it; /// écrire sur outputIter insert dans le flot associé
 outputIter++; /// ceci est inutile dans le cas particulier ostream_iterator
 }

 return 0;
}

35

Complément conteneurs/itérateurs

● Pour rappel grâce aux istringstream on peut traiter
une source textuelle (string) comme un flot entrant

int main()
{
 std::string stringData = "100 260 410 120";

 std::vector<int> vec;

 std::istringstream iss{stringData};
 int val;
 while (iss>>val)
 vec.push_back(val);

 std::cout << vec << std::endl;

 return 0;
}

36

Complément conteneurs/itérateurs

● Et une istringstream peut devenir itérable
avec un istream_iterator… ci dessous version longue

int main()
{
 std::string stringData = "100 260 410 120";

 std::vector<int> vec;

 std::istringstream iss{stringData};
 std::istream_iterator<int> inputIter{iss};
 std::istream_iterator<int> endOfInput;
 while (inputIter != endOfInput)
 {
 vec.push_back(*inputIter);
 inputIter++;
 }

 std::cout << vec << std::endl;

 return 0;
}

37

Complément conteneurs/itérateurs

● Ce qui est itérable est utilisable dans les algorithmes

int main()
{
 std::string stringData = "100 260 410 120";
 std::vector<int> vec;

 std::istringstream iss{stringData};
 std::copy(std::istream_iterator<int>{iss},
 std::istream_iterator<int>{},
 std::back_inserter(vec));

 std::cout << vec << std::endl;

 return 0;
}

Itérateur en insertion :
équivaut à une séquence de push_back

38

Complément conteneurs/itérateurs

● Ré-écriture des opérateurs surchargés génériques
sans boucle explicite

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T> &input)
{
 std::copy(input.begin(), input.end(),
 std::ostream_iterator<T>(os, " "));
 return os;
}

template<typename T>
std::istream& operator>>(std::istream& is, std::vector<T> &output)
{
 std::copy(std::istream_iterator<T>{is},
 std::istream_iterator<T>{},
 std::back_inserter(output));
 return is;
}

39

Complément conteneurs/itérateurs

● On a encore besoin d’un objet istringstream
intermédiaire...

int main()
{
 std::string stringData = "100 260 410 120";
 std::vector<int> vec;

 std::istringstream iss{stringData};
 iss >> vec;

 std::cout << vec << std::endl;

 return 0;
}

40

Complément conteneurs/itérateurs

● Encapsulons la séquence dans un wrapper générique,
l’objectif est de pouvoir passer de string à vector :

template<typename T>
std::vector<T> vecFromString(const std::string& str)
{
 std::vector<T> vec;
 std::istringstream iss{str};
 iss >> vec;
 return vec;
}

int main()
{
 std::string strInt = "2 3 4";
 std::string strFloat = "5.4 6.3 7.2";
 std::string strString = "Hello world !";

 auto vecInt = vecFromString<int>(strInt);
 auto vecFloat = vecFromString<float>(strFloat);
 auto vecString = vecFromString<std::string>(strString);

 std::cout << vecInt << std::endl;
 std::cout << vecFloat << std::endl;
 std::cout << vecString << std::endl;

 return 0;
}

41

COURS 12

A) Static variables/attributs/méthodes
B) Complément conteneurs/itérateurs
C) Exemples de prog. fonctionnelle

42

Exemples de prog. fonctionnelle

● Le polymorphisme permet d’encapsuler des actions
spécifiques dans des classes spécialisées avec
une interface d’utilisation définie par une classe mère
abstraite pure (classe interface, non instanciable)

● Soit l’énoncé suivant : réaliser un programme
permettant d’avoir un menu utilisateur avec
sélection d’un choix par valeur entière et différentes
actions associées sans test ni switch/case

● Le principe est de constituer une hiérarchie d’actions
de menu avec une classe interface parente, d’avoir
un vecteur d’objets spécialisés correspondant aux
choix : à chaque indice du vecteur est associé une
instance d’une classe spécifique avec l’action désignée
 => dispatch polymorphe (à la place du switch)

43

Exemples de prog. fonctionnelle

● Réaliser un programme permettant d’avoir un menu
utilisateur sans test ni switch/case

int main()
{
 Context ctx{3, 3.14, "pi"};

 std::vector<MenuEntry*> menu {
 new MenuQuitter,
 new MenuSaisir,
 new MenuAfficher
 };

 bool terminate = false;
 do
 {
 std::cout << "\n0/ Quitter\n1/ Saisir\n2/ Afficher\n\n";

 int choix;
 std::cin >> choix;

 /// Appel polymorphe !
 menu[choix]->action(ctx, terminate);
 }
 while (!terminate);

 for(auto m : menu) delete m;
 return 0;
}

struct Context
{
 int x;
 double y;
 std::string z;
};

44

Exemples de prog. fonctionnelle

● Réaliser un programme permettant d’avoir un menu
utilisateur sans test ni switch/case

class MenuEntry
{
 public :
 virtual ~MenuEntry() = default;
 virtual void action(Context& ctx, bool& terminate) = 0;
};

class MenuQuitter : public MenuEntry
{
 public :
 void action(Context& ctx, bool& terminate) {
 terminate = true; }
};

class MenuSaisir : public MenuEntry
{
 public :
 void action(Context& ctx, bool& terminate) {
 std::cin >> ctx.x >> ctx.y >> ctx.z; }
};

class MenuAfficher : public MenuEntry
{
 public :
 void action(Context& ctx, bool& terminate) {
 std::cout << ctx.x << " " << ctx.y
 << " " << ctx.z << "\n"; }
};

struct Context
{
 int x;
 double y;
 std::string z;
};

45

Exemples de prog. fonctionnelle

● Le pattern strategy est un usage particulier de
délégation : on délègue à une classe qui hérite
d’une interface.

https://sourcemaking.com/design_patterns/strategy

46

Exemples de prog. fonctionnelle

● On dispose d’une technique puissante
pour gérer des combinatoires sans multiplier
les codes croisés (m+n au lieu de m×n)

m=3
n=4

Trajectoire

Pointillés

47

Exemples de prog. fonctionnelle

● Néanmoins l’héritage introduit des couplages :
les classes filles concrètes dépendent des
classes mères. Peut on faire autrement ?

Trajectoire

+nextPosition()
...

Pointillé

+nextBlackOrWhite()
...

Tracé

+tracer()

...

Classes concrètes Classes concrètes

48

Exemples de prog. fonctionnelle

using namespace std::complex_literals;
using vec2d = std::complex<double>;

template<typename Trajectoire, typename Pointilles>
void tracer(Svgfile& svgout, vec2d depart, double distance,
 Trajectoire trajectoire, Pointilles pointilles)
{
 vec2d pos = depart;
 double s = 0.0; /// Abscisse curviligne

 while (abs(s) < distance)
 {
 vec2d step = trajectoire(s);
 double larg = pointilles(s);

 vec2d nextpos = pos + step;
 s += abs(step);

 svgout.addLine(pos.real(), pos.imag(),
 nextpos.real(), nextpos.imag(), larg);
 pos = nextpos;
 }
}

● Pas forcément besoin de classes, une stratégie
peut être donnée par des paramètres fonctionnels

Appels aux fonctions reçues en paramètres

49

Exemples de prog. fonctionnelle

int main()
{
 Svgfile svgout;
 svgout.addGrid();

 tracer(svgout, 100.+100.i, 750,
 [](double s) { return 1.0; },
 [](double s) { return 3.0; });

 tracer(svgout, 100.+150.i, 750,
 [](double s) { return 1.0; },
 [](double s) { return sin(0.1*s)<0 ? 0 : 3; });

 tracer(svgout, 100.+200.i, 1200,
 [](double s) { return 2.0i*sin(0.05*s) + 1.0; },
 [](double s) { return 3; });

 tracer(svgout, 100.+300.i, 1200,
 [](double s) { return 2.0i*sin(0.05*s) + 1.0; },
 [](double s) { return 5*sin(0.05*s); });

 tracer(svgout, 100.+400.i, 3000,
 [](double s) { return 0.2*exp(0.025i*s) + 0.1; },
 [](double s) { return sin(0.5*s)<0 ? 0 : s/1000; });

 const std::array<int, 15> points{2,2,2,2,0,0,0,0,0,2,0,0,0,0,0};
 tracer(svgout, 100.+500.i, 3000,
 [](double s) { return 0.2*exp(0.025i*s) + 0.1; },
 [&points](double s) {
 return points[points.size()*(.03*s-floor(.03*s))]; });

● Les lambdas sont des objets-fonctions anonymes qui
peuvent être utilisés comme des "littéraux fonctionnels"

50

Exemples de prog. fonctionnelle

● Ce qui permet une souplesse maximale dans
l’utilisation d’une fonction paramétrable en stratégies

51

Exemples de prog. fonctionnelle

● L’évolution du langage intègre les « patterns »
et les patterns finissent par disparaître dans le langage

Effective GoF Patterns - Tobias Darm (video)

https://accu.org/content/conf2013/Tobias_Darm_Effective_GoF_Patterns.pdf
https://www.infoq.com/presentations/gof-patterns-c-plus-plus-boost/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

