Robin FERCOQ

r|!| ECE PARIS NS ASENE

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

r POO -

10.Exceptions, flots, fichiers ..
11.Templates cote developpeur
12.Synthese, complement, révision

C++
I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des données
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Classes & collec. objets en C++
6. Classes & C++ : complements 6. UML et C++, associations
/. Conteneurs & C++ : la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Abstraction / design patterns 9. Framework, exemples 2 patterns

10.Flots / parsing / fichiers / except.
11.Suivi de projet
12.Soutenance de projet ...

COURS 1

A) Presentation C++ / contexte
B) Programmation Orientée Objet
C) Du C au C++ sur un exemple

COURS 1

A) Presentation C++ / contexte
B) Programmation Orientée Objet
C) Du C au C++ sur un exemple

Présentation C++ /| contexte

Développement de grosses applications
— Besoin de securite, re-utilisabilite, grosses equipes

Les types de données structurées se retrouvent
au centre de la conception : prog. « orientée objet »

Des langages font le choix de la rupture
— « orienté objet » comme approche exclusive

Le C++ fait un choix dans la continuite du C...
- Compatible (presque) avec le code source C
- Compile, fortement type, optimisations poussees
— L'orienté objet vient « en plus »
- Approche maximaliste : ++ de concepts !

F Présentation C++ |/ contexte

I * |nitié dans les annees 1980 ...

Bjarne Stroustrup, initiateur et grand gourou du C++

Présentation C++ /| contexte

Le C++ ne cesse d'evoluer

— Constructions natives du langage (primitives)
- Bibliotheques (boites a outils)

— Qutils et ecosysteme (compilateurs, IDES ...)
— Bonnes pratiques (expérience, expertise)

Les versions successives sont compatibles
mais attention les pratiques evoluent ...

C++98 1lere version normalisée du langage
C++11 evolution majeure, C++ « moderne »
C++14 C++17 C++20 (a venir)

3 schemas d'exécution de langages

|
r Présentation C++ |/ contexte

I * Les langages compilés produisent des exécutables
directement exploitables par le(s) processeur(s)
Performances optimales (si bien utilises !)

Compllatlon

Executlon Q

Processeur

XY C/C++e

Objective-C SWIFT

EXE

F Présentation C++ |/ contexte

I 3 schemas d'exécution de langages

I * Les langages interprétés exécutes indirectement
par une « machine virtuelle » qui est un executable
(le plus souvent code en C/C++) Plus souples et
confortables mais moins performants (plus lents/lourds)

Exécution virtuelle Exécution

S g

NGUON javaScript Machme virtuelle Processeur

Présentation C++ [contexte

I 3 schemas d'exécution de langages
* Les langages a bytecode et compilation JIT
I (Just In Time) qui sont des langages dits «manages>»
sont pré-compiles en un pseudo langage machine

(le bytecode) puis une machine virtuelle traduit
ce bytecode en code natif (exécutable) a la volee.

La machine virtuelle (ou « runtime ») n‘execute plus
par procuration, elle supervise et optimise la traduction
du bytecode en code natif exécute par le processeur

~— - |supervision
c # Pré-compilation by te code |Exécution Q
code natif Q 5
Java

Compilation Processeur
par morceaux

Présentation C++ [contexte

I 3 schemas d'exécution de langages
* Distinction traditionnelle compilé / interpréte brouillée
I * Le Java a commence comme un bytecode interprété

* Des langages historiguement interprétés comme
Python et Javascript se retrouvent aussi JIT compilés

Cos cs Vil Python Microsoft propose un bytecode intermédiaire CIL
Common Intermediate Language et architecture

\ la plateforme .NET pour étre « language agnostic »
Language compilers

Recompiler Chrome V8 (Chrome, Opera, Node.js ...)
/ ‘ | Moteur JavaScript avec compilateur JIT -
Just-in-ti il I: d f ource
ust{ nlmennmE ers ~.~":'“E generator Sour - =) st | TurboFan - oiat ARLE MEE,
x86 ARM N\ JavaScript 1 I i
architecture architeclure
JavaScript Processeur

Bytecode ‘ Bytecode
| Generator

Présentation C++ /| contexte

Trop complique ? A retenir :

Les langages « modernes » faciles a programmer
sont des langages interprétés et/ou « manages » :
IIs ont besoin d'une machinerie auxiliaire au runtime

Le C/C++ (et objective C, remplacé par Swift, Apple-centric)
sont compilés « a l'ancienne » ce qui offre la meilleure
performance pour I'exploitation des ressources

L 'absence d'intermediaire et de supervision lors de
'exécution d'un code compilé natif implique que le
developpeur C/C++ gere lui méme finement les
ressources, en particulier la mémoire allouée (dur!)

Tous ces langages (sauf le C) sont « orienté objet »

RN
w

Présentation C++ [contexte

Un vaste ecosysteme

A

hp’
-l &n

Desktop/Laptop/Mobile

Engines

Virtual Machines
Scient. comput.
HTML rendering

Client side apps Game engines P\
& Industr. process MATLAB
Server side scripting ,
Infrastructure @ ‘:\g /.
Servers Network e UNEEAL romtores
& unit

- Database - Routers
- Web - Encrypt.

| = | APACHE

e = CIC+

Majoritairement

HARDWARE

Présentation C++ /| contexte

I Ca veut dire que C/C++ recrute plus ?

I * Pas forcement ! Une majorité des cycles processeurs
executent du C/C++ compile (c'est le « carburant »)

* Mais la « couche applicative » recrute plus en total
(il y a plus d'emplois de chauffeurs que de mecanos)

* Typiquement il y a plus de lignes de code appelant
(client) que de code appelé (bas niveau / biblio.)
Faciliter le travail client est une des raison de l'objet...

Popularite 2017 (source)

Gewirtz/ZDNet Language Cluster Aggregation

objective-c |
.

https://www.zdnet.com/article/which-programming-languages-are-most-popular-and-what-does-that-even-mean/

COURS 1

A) Presentation C++ / contexte
B) Programmation Orientee Objet
C) Du C au C++ sur un exemple

Programmation Orientée Objet

I Prenons de la hauteur

I * Une majorité de ces langages de programmation
Industrielle ont une syntaxe + ou - derivee du C
(C++, objective C, Java, JavaScript, C#, PHP)

* |y a des if/felse des for des while des blocs { } etc...

* Avec quelques variantes ce sont des C orientes objet !

e Au fait qu'est-ce que c'est gue cette histoire d'objets ?

Programmation Orientée Objet

On programme pour un CDC

Dans I'industrie logicielle on ne développe pas
ni pour le fun ni pour faire plaisir a Stroustrup

On developpe pour fournir des solutions logicielles
qui correspondent a des demandes / besoins / buts

Ces buts sont spécifiés par un Cahier Des Charges
précisant les objectifs, le perimetre, les fonctionnalites

Partant d'un CDC comment arriver a la solution
de maniere sdre et efficace ? Il faut un plan !

Programmation Orientée Objet

I * Toutes les méethodes de conception distinguent

- Traitements : les actions, ordres du programme

I — Donneées : ce qui est transforme par les actions,
nombres ou symboles représentant
des informations réelles ou virtuelles

* Une phase analyse/conception articule ce binome

Données Traitements

—e saisie utilisateur 10 notes

10 notes &
\
/

maximum e—___

8 déterminer maximum

—e afficher maximum

Programmation Orientée Objet

I Programmes simples, le traitement est « au centre »

Données
initiales

entrées (saisie ou fichier)

< Traitements -

Données
résultat

sorties (affichage ou fichier)

Programmation Orientée Objet

I Algorithmes complexes : données intermédiaires

Données
initiales

fichier en entrée

K\«

< Traitements -

Données
intermédiaires

Données J

résultat

fichier en sortie

Programmation Orientée Objet

Modele "application” : on travaille sur un document

charger tout entrées clavier
- _m ode ,TIT'T . /\‘ souris
Données Données :
. \ e < Traitements
archivees a modifier
W._mode "w!"_-° >
sauver tout sorties
fichier(s) document monté apparence
document en memoire vive des données
pour l'utilisateur
N J \ J \)
Persistance Programme en cours d'exécution Interface utilisateur

IHM

Programmation Orientée Objet

Architecture Client/Serveur : site web dynamique

synchro g i o
'/'\‘ - - —— = clavier :
requetes . requetes : [g souris |

L]

L] . scripts coté serveur . scripts cote client :
] i Vue | |
SN 5 Eﬂ{ } Eﬂ{ }
5 reponses : reponses ; p ;

...... »- i..___.. » ecran
ﬁChlerS serveur de serveur web navigateur web apparence
__________________________ données | | navigaredr Wen | dpparenes
N J N J \ J

Persistance : Serveur site web Pages web consultées

Base de Données données partielles dans le navigateur

Programmation Orientée Objet

Ca se complique ! On peut toujours décomposer
un probleme de traitement en sous-problemes...

Analyse descendante

. Traitement
Probleme central <centra| du CDC>

e V

Sous-problémes { T1 } { T2 } { T3 }

ﬂ\\

Sous-sous-problémes { T2.1 } { T2.2 } { T2.3 } { T3.1 } { T3.2 }

™

Sous-sous-sous-problemes {T2.1.1 } {T2.1.2}

Programmation Orientée Objet

Bonjour Zorg le guerrier!
. Une bonne hache pour 15 piéces ?

Informations présentées a l'utilisateur
Messages / Images / Animations / Sons ...

Et decomposer les
données complexes en
donnees élémentaires

joueur - "Luc" 0 "magicien" -2.5214 3.2178 6.5789

perso — "Zorg" 1l "guérisseur" 5.7894 3.9000 2.1036

classe ~(2)———»(2)"guerrier" ~3.2181 -4.7411 3.7877
assocgiation

fortune - 12 S 1.6546 9.7865 6.5414

Types composes
Tableaux / Structures

'L' 'u' .. 12 -2427 .. -2.521423 7.354846e3 ..

Types scalaires fondamentaux
Caracteres / Entiers / Flottants / Pointeurs

. 01101110 11110100 00000001 01000000 10111000 10000010 10010100 ..
Représentation binaire (niveau machine)

Programmation Orientee Objet

Mais on arrive aux problématiqgues d'organisation et
d'assemblage d'ensembles "hetéerogenes" de donnees

/ ajout vol
aeroport ~ _— < madif. vol
avions -~ '
passagers - Ch$ntge
. . i pilote
ilotes
hom num. P ¥~ _ annonce
prenom | corresp. meécan. retard
adresse | date
hotes.
embarquements YO autoriser
décollage
données hétérogénes interdépendantes : \ .
comment organiser et structurer ?

27

__ﬁ

Programmation Orientée Objet

Comment articuler la relation étroite entre :
- les differents types de blocs de données
- les traitements qui leur sont associes

type Pilote

type Avion

nom = "Jeremy Smith"

age = 58

compagnie = "KLM"

void piloter(Avion a)

void d
Sante ¢

nom = "Monica Doe"
age = 37
compagnie = "Corsair"

void piloter(Avion a)

immat = "JA8089"
nb_passagers = 58
carburant = 12.65

void decoller(Param p)

void at
void vq immat = "N904DE"
nb_passagers = 165

void d
Sante ¢

nom = "Tom Dupont"
age =45

compagnie = "easyJet"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()

carburant = 22.25

void decoller(Param p)
void atterrir()
void voler(Gps dest)

Programmation Orientée Objet G

I * Un type structuré définit une classe
* | es entités concretes de cette classes

I sont des objets ou instances de la classe
type Pilote <& e classe
:;;n: 5"8Jeremy Smith" -< O bJ etS
compagnie = "KLW Instances
L’g:: S'IOte.r(,AfV'on) . (synonymes)
Sante ¢ :;;n: 37Monlca Doe /

compagnie = "Corsair"

void piloter(Avion a)
void d —
Sante ¢

nom = "Tom Dupont"
age =45
compagnie = "easydJet"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()

Programmation Orientée Objet a

I e | es Instances d'une méme classe ont
. méme structure de données (mais valeurs spécifiques)

I -~ méme ensemble de fonctions possibles
type Pilote .
attributs
nom = "Jeremy Smith" ,
age = 58 données membre
compagnie = "KLM" (synonymes)
void piloter(Avion a)
void dg—"
Sante ¢ "om = "Monica Doe"

age = 37
compagnie = "Corsair"

void piloter(Avion a)

;:ino:::(nom = "Tom Dupont” | meth Od eS
age =45 .
compagnie = "easydet" | fonctions membre
void piloter(Avion a) | (synonymes)
void dormir()
Sante ctrl_medic()

Programmation Orientée Objet 0

I * Le déclenchement d'un traitement passe par
l'appel d'une methode en partant d'une
I Instance spécifique

['action est centrée sur les valeurs spécifiques
de cette instance (cet objet spécifique agit)

Pilote monPilote;
Avion monAvion;

instance monPiIoteA/. monPilote.piloter (monA\‘r:Lon) ;
parameétre(s)
nom = "Tom Dupont” éventuel(s)

age =45
compagnie = "easydJet"

void piloter(Avion a) -
void dormir() appel de methode

Sante ctrl_medic()

Programmation Orientée Objet 0

I Une méthode de conception « orientée objet »

a partir de I'analyse du CDC et des exemples
I de cas d'usages

— repérer des exemples d'instances
Noms propres, entités concretes

— Identifier les classes (les categories d'entités)
Noms communs, groupes d'entités concretes homogenes

- leurs attributs (ce qui qualifie ces entités)
Adjectifs, quantites, enumérations de valeurs possibles

— leurs methodes (fonctions / traitements / actions)
Verbes, formes verbales

Programmation Orientée Objet 0

Une méthode de conception « orientée objet »

On s'efforcera d'encapsuler les attributs

— Le code client devra pouvoir utiliser
les objets sans accéder directement
aux donnees membres...

- Les méthodes constituent I'interface
cad. la facon normale d'utiliser les objets

L'objectif est de découpler le code client
(appelant) des "details" internes (appelé)

Programmation Orientée Objet 0

I Une méthode de conception « orientée objet »
Exemple :
I Un objet (de la classe) Avion comporte de

nombreuses données membre techniques
(poids embarqué, carburant aile gauche, pression hydraulique frein droit...)

Un objet (de la classe) TourDeControle n'a pas vocation
a mettre son nez dans tous ces detalils, elle va interagir
avec un objet avion avec un appel a la méthode

bool estPretAuDecollage ()

qui retourne un indicateur booleen Oui/Non a partir des
données internes a l'objet.

Programmation Orientée Objet G

Une méthode de conception « orientée objet »
v Interface

bool estPretAuDecollage ()
P void autoriserDecollage (Piste p)
XYZ getPosition()

Comm Address/Reporting Flat Panel D isp lavs
Flight Managem ent Head up display (HUD)
Cabin Pressure Cnirl HF Radio
Cabin Temp Cnirl Microwave Landing
Comm, Newv/D Emoke Detectlion
Airborne Flight Info W indow Heal Cntrl W eather
Detection
SATCOM Anteninse \ o
Integrated Preumatic System (ahes,
Leadin;ﬂ;t“;rﬂ:"gx: Heal Exchangers, Yalker Separators) /
Interior Lighting . -—— - Air Date
== Sengors
Emergency Power Turbing
/ Traffic
B | ; .G.Dert.f_‘ullism
ETMI Lightirg Ak o I'-hl:hu'{. oy Avoidance
Enhanced
= . AN 7 & Grouni
= e - _’a_l'_1 = a.:) F'I‘ﬂ}t
T " = Ez'nwnmrnenlalf_‘mn Warning
N {_--"'-.\?‘h i‘b, . x bl
a,r’ - 5@@ 3 @
1 e L5565 i -anti-lce Crtrl
L iliary P-:-l.«er Unit T
AFU Cndrls i
AFU Star b
; W heelzfBrakes

Altenators/Senerators Anti-Skid/Landing Gear ke Defection

ORLY'TDC3 Warinble Spesd
Constant Frequency

Hydraulic Pumps AlfematorsfSenerafors

H:.ru.‘fraulln.‘. Accumulaors Engine Critrl

Hydraul: Power Transfer Units Engine Starters

Fower Transfer Unit Macelle Subsysim

Ajrdrive Unit OillAir fFuel Coolers

VolcefFlight Data Recorders Thrust Reversers N904DE

Implémentation

Programmation Orientée Objet 0

I Une méthode de conception « orientée objet »

* L'objet lui méme est le mieux placé pour gerer ses propres
données et proposer a l'utilisateur des possibilites claires
et circonscrites

e ['Interface a vocation a rester stable

* L'Implémentation peut évoluer sans casser le protocole
d'utilisation de l'objet (le mode d'emploi reste le méme)
et donc sans casser le code utilisateur (code client)

Programmation Orientée Objet 0
I Une méthode de conception « orientée objet »
Ensuite/conjointement on définira les relations
entre les (objets des differentes) classes.
Avion
Avion Passager - ailerons
A
2 1 AvionDeLigne| |AvionMilitaire
Pilote CarteEmbrq - soute - armement
Agrégation Composition Spécialisation / Héritage
Un avion a 2 pilotes Un passager a une Un avion de ligne est
(qui peuvent changer) carte d'embarquement un avion (il a des ailerons)
nominale (non cessible) et en plus il a une soute

Programmation Orientée Objet

Une méthode de conception « orientée objet »

Cette étude aboutit a la mise en place d'un
modele objet du projet avec diagramme(s)
de classes. (notation normalisée UML - cours 2)

1
Customer I e — T?}ﬂt
1 I >
1.4
Piece of Luggage < 2 Coupan UH'HE"
%
(=)

- transports
MODELING
LANGUAGE -.

4|18 valid for}

Flight
*

is execution of ¥
1

Flight Nurnber

1.* 1.*

1| Start 1| Destination
Almport

source

https://sourcemaking.com/uml/modeling-it-systems/structural-view/constructing-class-diagrams

Programmation Orientée Objet

Une méthode de conception « orientée objet »

Frequent Flyer Card Alrplane
- et mmoioeaion | ON N€ connaitra
* o Lo pas tout de suite
0..1 "
1.* 1.*
| b - tous les aspects C++
stomer *0.1 e . ,
o e Dowcrpton pour implementer des
Name Airline -
i 1 diagrammes complexes
n:m Flight
Ticketing Code Boarding Time
Mumber E';?;’lmm Seat
1| Check-In Counter ﬁ;mm
1 1 Location
1.4
= ?ﬂuﬁmm G-1— Avilable Seat dia de ¢l
Date o - gramme de classes
Sandby d'un systéme d'information
1 "service passagers"
b source

Number
Weight

https://sourcemaking.com/uml/modeling-for-system-integration/the-static-view/constructing-class-diagrams

Programmation Orientée Objet 0

I Une méthode de conception « orientee objet »

I * Toute cette phase de conception / architecture
logicielle se fait indépendamment du(des)
langage(s) d'implementation (codage)

* Pour programmer en C++ il faut programmer
orienté objet donc connaitre ces méthodes
de conception en amont du code

 En tant que programmeurs de « C avec structs »

vous avez déja pris un bon départ :
la class du C++ dérive directement de

la struct du C !

COURS 1

A) Presentation C++ / contexte
B) Programmation Orientée Objet
C) Du C au C++ sur un exemple

Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

I © comptes :

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 1«
titulaire : Lucien<
Creation du compte Lucien

Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

1 comptes :
1 Titulaire Lucien Solde 0.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 2«
titulaire : Alexia<
montant du cadeau : 45«
Creation du compte Alexia

Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

2 comptes :
1 Titulaire Lucien Solde 0.00

2 Titulaire Alexia Solde 45.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 3«
compte numero : 1«
montant a crediter : 120.50+

Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

2 comptes :
1 Titulaire Lucien Solde 120.50

2 Titulaire Alexia Solde 45.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 4«

compte numero : 2«

montant a debiter : 50«
provisions insuffisantes Alexia !

Du C au C++ sur un exemple

Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

2 comptes :
1 Titulaire Lucien Solde 120.50
2 Titulaire Alexia Solde 45.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 4«
compte numero : 2«
montant a debiter : 40«

Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

2 comptes :
1 Titulaire Lucien Solde 120.50

2 Titulaire Alexia Solde 5.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 0«
Liberation du compte Lucien
Liberation du compte Alexia

Process returned 0 (0x0)

Du C au C++ sur un exemple

En termes de conception orientee objets
on identifie iImmediatement une classe centrale :
la classe Compte, avec 2 attributs

> titulaire : chaine de caracteres
> solde : une valeur flottante

et 5 méthodes

> Creer un compte avec solde initial paramétrable
> Libérer (la mémoire d') un compte

> Afficher un compte (pour I'affichage de la liste)
> Crediter un compte avec crédit en parametre

> Débiter un compte avec débit en parametre

Du C au C++ sur un exemple G

I La classe Compte en notation UML normalisée

Compte

- titulaire : String
- solde : Real

+ Compte (titulaire : String, solde _init : Real = 0.0)
+ ~Compte ()

+ afficher ()

+ crediter (credit : Real)

+ debiter (debit : Real)

Du C au C++ sur un exemple a

La classe Compte en notation UML normalisée

Membres privés 7839
Compte y }ributs
3Litu|aire - String
-/solde : Real Méthodes
+ Compte (titulaire : String, solde _init : Real = 0.0)
+|~Compte ()
+ [afficher ()
+/crediter (credit : Real)
+/ debiter (debit : Real)

Méthode créer : Constructeur&
Membres publics Méthode libérer : Destructeur

Du C au C++ sur un exemple

En C comme en C++

* ~méme nbr de lignes 150
+ méme IDE Code::Blocks

* méme compilateur GCC

« méme distinction fichiers
d'en-téte (.h) et fichiers
d''implementation (.c - .cpp)

* méme decoupage de projet

\Voyons ++ en détall
ce qui change ...

Projects = Symbols Files

&

—-'.' banque_c
—-E‘.: Sources

e compte.c

- main.c

- E? Headers

I I | =

- '.' banque_cpp
= E‘; Sources
: e coempte.cpp
. main.cpp

—-E? Headers

I I | =

Du C au C++ sur un exemple

En C d'un céte une struct, de l'autre des sous-
programmes qui recoivent cette struct en param.

compte.h

typedef struct compte
{
char *titulaire;
float solde;
}

t compte;

t compte * compteCreer (char *titu);

t compte * compteCreerAvecSolde (char *titu, float solde init);
void compteliberef (t compte * compte) ;

void compteAfficher (t compte * compte);

void compteCrediter (t compte * compte, float credit);

int compteDebiteri(t compte * compte, float debit);

Du C au C++ sur un exemple

En C++ |la classe groupe les données (attributs)
et traitements (méthodes) d'un méme type d'objets

compte.h

class Compte
{

private :
std::string m titulaire;
float m solde;

public :
Compte (std::string titulaire, float solde init=0.0f);
~Compte () ;
void afficher () const;
void crediter (float credit);
void debiter (float debit);
std: :string getTitulaire () const;

Du C au C++ sur un exemple

En C++ les méthodes (sous-progs. associes a
une classe) recoivent automatiquement l'objet

compte.h

class Compte
{

private :
std::string m titulaire;
float m solde;

public :
Compte (std::string titulaire, float solde init=0.0f);
~Compte () ;
void afficher () const;
void crediter (float credit);
void debiter (float debit);
std: :string getTitulaire () const;

Du C au C++ sur un exemple

En C++ on ne plaisante pas avec les types mais
on a des commodites : enfin des chaines pratiques

compte.h

class Compte
{

private :
std::string m titulaire;
float m solde;

public :
Compte (std::string titulaire, float solde init=0.0f);
~Compte () ;
void afficher () const;
void crediter (float credit);
void debiter (float debit);
std: :string getTitulaire () const;

Du C au C++ sur un exemple

En C le fichier .c donne I'implémentation des
sous-programmes déclarés dans l'interface .h

#include "compte.h compte.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

t compte * compteCreer (char *titu)

é_ééﬁpie * compteCreerAvecSolde (char *titu, float solde init)
éoi&.c;mpteLiberer(t_compte * compte)
ioi&.c;mpteAfficher(t_compte * compte)

{ ...}

void compteCrediter (t compte * compte, float credit)

{ ...}
int compteDebiter (t compte * compte, float debit)

{ ...}

Du C au C++ sur un exemple

En C++ le fichier .cpp donne I'implementation des
meéthodes de classe déclaréees dans l'interface .h

#include "compte.h compte.cpp
#include <iostream>

#include <string>

#include <stdexcept>

Compte: :Compte (std:)string titulaire, float solde init)
{ ...}

Compte: :~Compte ()

{ ... 1

void(Compte: vafficher () const

{ ...}

void Compte::crediter (float credit)

{ ...}

void Compte: :debiter (float debit)

{ ...}

std: :string Compte::getTitulaire () const

{ ...}

Du C au C++ sur un exemple

En C Il faut allouer explicitement les structs
qui doivent « survivre » a lI'appel d'un sous-prog.

{

}

{

compte.c

t compte * compteCreer (char *titu)

return compteCreerAvecSolde (titu, O);

t compte * compteCreerAvecSolde (char *titu, float solde init)

t compte * compte;

compte = (t compte *)malloc(l*sizeof (t compte));
compte->titulaire = (char *)malloc((strlen(titu)+1) * sizeof (char)) ;
strcpy (compte->titulaire, titu);

compte->solde = solde init;

return compte;

Du C au C++ sur un exemple

I En C++ la méthode constructeur ne gere pas
explicitement l'allocation de son propre espace

I compte.cpp

Compte: :Compte (std: :string titulaire, float solde init)
{

m titulaire = titulaire;

m solde = solde init;

class Compte

{ compte.h
private :
std::string m titulaire;
float m solde;
public :

Compte (std: :string titulaire, float solde init=0.0f);

Du C au C++ sur un exemple

I En C++ dans la méthode d'un objet on accede
aux attributs de celui-ci sans l'expliciter

I compte.cpp

Compte: :Compte (std: :string titulaire, float solde init)
{

m_titulaire(=) titulaire;

m solde)= solde init;

class Compte

{ compte.h
private :
std::string m titulaire;
float m solde;
public :

Compte (std: :string titulaire, float solde init=0.0f);

Du C au C++ sur un exemple

I En C ce qui a ete alloue explicitement dans le
constructeur doit étre libéré explicitement

compte.c
void compteliberer (t compte * compte)
{

free (compte->titulaire);

free (compte) ;

Du C au C++ sur un exemple

En C++ aussi ! Mais souvent le constructeur
ne fait aucune allocation explicite (pas besoin) ...

I {

}

compte.cpp

Compte: :~Compte ()

Du C au C++ sur un exemple

I En C les entrees/sorties consoles utilisent des
fonctions format-typees printf et scanf de stdio.h

compte.c
void compteAfficher (t compte * compte)

{
printf ("Titulaire %s \tSolde %.02f\n",
compte->titulaire, compte->solde);

Du C au C++ sur un exemple

I En C++ |les entrées/sorties consoles utilisent des
flots chainés std::cin et std::cout de iostream

compte.cpp
void Compte::afficher () const
{

std::cout << "Titulaire " << m titulaire
<< " \tSolde " << m solde << std::endl;

Du C au C++ sur un exemple

En C les conditions d'erreur sont souvent
retournees a l'appelant par valeur spéciale

compte.c
void compteCrediter (t compte * compte, float credit)

{

compte->solde += credit;

}

int compteDebiter (t compte * compte, float debit)

{
if (compte->solde - debit < 0.0)

return O;

compte->solde —-= debit;
return 1;

Du C au C++ sur un exemple

En C++ les conditions d'erreurs passent par un
nouveau mecanisme, les exceptions ...

compte.cpp
void Compte::crediter (float credit)

{

m solde += credit;

}

void Compte: :debiter (float debit)

{
if (m solde - debit < 0.0f)
throw)std::invalid argument ("provisions insuffisantes");

m solde -= debit;

Du C au C++ sur un exemple

I En « C objet » comme en C++
on distingue

I «_['Interface d'une classe et
I'mpléementation d'une classe
constituent le code utilisé

+ le code utilisateur du type | & ™ banque_cpp

ou code client ou appelant B Sources
, , . ----- compte.cpp
le developpeur d'une classe doit 2 maincpp

faciliter le travail du développeur | =& Header:
client de la classe : interface -] compteh
claire, stable, documentée,

bien séparee de I''implementation

Du C au C++ sur un exemple

I En C code client du main, ici on choisit d'utiliser
un tableau de pointeurs sur structs

main.c

#include "compte.h"
#include <stdio.h>
/// Gestion de quelques comptes (moins de 50)
int main ()
{
/// La collection des (pointeurs sur) comptes
/// Au démarrage il y a 0O compte
/// Il y en aura 50 au plus
t compte * comptes[50] = {NULL};
int nbComptes = 0;

/// Variables auxiliaires (saisies...)
int choix;

char nom[100];

float montant;

int id;

int debitOk;

Du C au C++ sur un exemple

En C++ code client du main, ici on peut utiliser
un conteneur standard : un vecteur de pointeurs...

#include "compte.h" main.cpp

#include <iostream>
#include <string>
#include <vector>

/// Gestion comptes (quantité non limitée)
int main ()
{
/// La collection des (pointeurs sur) comptes
/// Au démarrage il y a 0 compte
/// vector est comme un tableau mais extensible...
std: :vector<Compte*> comptes;

/// Variables auxiliaires (saisies...)
int choix;

std: :string nom;

float montant;

size t id;

Du C au C++ sur un exemple

En C a chaque passage en parametre de la
collection il faut envoyer tableau et nombre d'élem.

do main.c
{

afficherComptes (comptes, nbComptes) ;
afficherMenu () ;

saisirEntierBorne ("choix menu", &choix, 0, 4);
switch (choix)

{

case 0:
break;

}
}

while (choix != 0);
libererComptes (comptes, nbComptes) ;

return O;

Du C au C++ sur un exemple

En C++ |le passage en parametre de la collection
est référence par le vecteur qui encapsule tout

do main.cpp
{

afficherComptes (comptes) ;
afficherMenu() ;

salsirBorne ("choix menu", choix, 0, 4);
switch (choix)

{

case 0:
break;

}
}

while (choix != 0);
libererComptes (comptes) ;

return O;

Du C au C++ sur un exemple

En C I'ajout d'un eélement a la collection est simple
Si on ne gere pas la quantité limitée [50] !

main.c
case 1:
sailisirMotBorne ("titulaire", nom, ,) ;
comptes [nbComptes++] = compteCreer (nom) ;
break;
case ’:
salsirMotBorne ("titulaire", nom, ,) ;
salsirFlottantBorne ("montant du cadeau", &montant, 0.10, 55.90);
comptes [nbComptes++] = compteCreerAvecSolde (nom, montant);

break;

Du C au C++ sur un exemple

En C++ I'ajout d'un élement a la collection est
simple et la quantite « illimitee » (memoire vive...)

main.cpp
case 1:
salslirBorne<std::string>("titulaire", nom, "A", "ZzZZ");
comptes.push back(new Compte (nom));
break;
case 2:
saisirBorne<std::string>("titulaire", nom, "A", "ZzZZ");

sailisirBorne ("montant du cadeau", montant, 0.10f, 55.90f);
comptes.push back(new Compte (nom, montant));
break;

Du C au C++ sur un exemple

I En C l'appel a un traitement de l'objet passe

['objet en parametre

case 3:
salsirEntierBorne ("compte numero", &id, 1, nbComptes);
1d-—;
salsirFlottantBorne ("montant a crediter", &montant, O,

compteCrediter (comptes[1d)]), montant);
break;

main.c

FLT MAX) ;

Du C au C++ sur un exemple

I En C++ 'appel a un traitement de l'objet part
de l'objet, I'objet n'est pas dans les parametres

I main.cpp

case 3:
salsirBorne ("compte numero", id, 1lu, (comptes.size());
-—1d;
salsirBorne ("montant a crediter", montant, 0.0f);
comptes|[id]->crediter (montant);
break;

Du C au C++ sur un exemple

I En C la gestion d'une anomalie dans le sous-prog
appelé passe par le contréle d'un code retour...

I main.c

case 4:
salsirEntierBorne ("compte numero", &id, 1, nbComptes);
id-—;
saisirFlottantBorne ("montant a debiter", &montant, 0, FLT MAX);

debitOk = compteDebiter(comptes|[id], montant);

if (!debitOk)
printf("provisions insuffisantes %s !\n",
comptes[id]->titulaire);

break;

Du C au C++ sur un exemple

En C++ ['appele n'a pas besoin d'utiliser le canal
return pour signaler un probleme : exceptions !

main.cpp
case 4:
try
{
salsirBorne ("compte numero", id, 1lu, comptes.size());
-—id;
salisirBorne ("montant a debiter", montant, 0.0f);
comptes|[id] —>debiter (montant) ;
std: :cout << "debit ok" << std::endl;
}
catch) (const std::invalid argumentd& e)
{
std: :cout << e.what() << "™ "
<< comptes[id]->getTitulaire() << " !\n";

}

break;

Du C au C++ sur un exemple

I En C++ le respect du principe d'encapsulation
est Imposé par les attributs en private ...

I main.cpp
std: :string Compte::getTitulaire () const

{
return m titulaire;
) - compte.cpp

catch (const std::invalid argumentd& e)

{
std: :cout << e.what() << " "

<< ccomptes[id]->getTitulaire ()> << " !\n";
}

break;

Du C au C++ sur un exemple

En C++ comme en C Il est préférable d'anticiper
les anomalies avant I'appel quand c'est possible !

L 'utilisation du mecanisme d'exception du code precéedent main.cpp
etait illustrative, mais il est déconseillé d'utiliser des exceptions '
pour gérer des cas de « business logic ». L'approche suivante est préférable :

case 4:
salsirBorne ("compte numero", id, 1lu, comptes.size());
-—1d;
salsirBorne ("montant a debiter", montant, 0.0f);

if («comptes[id]->debitable (montant)>)

comptes|[id] —>debiter (montant) ;
std: :cout << "debit ok" << std::endl;

else
std: :cout << "provisions insuffisantes "
<< comptes[id]->getTitulaire() << " !\n";

break;

En C une procédure auxiliaire du main.c

Du C au C++ sur un exemple

void afficherMenu ()

{

printf ("0
printf ("1
printf ("2
printf ("3
printf ("4
printf ("\

: quitter\n");
: ajouter un compte\n");
: ajouter un compte avec cadeau\n");
: crediter un compte\n");
: debiter un compte\n");
n");

main.c

Du C au C++ sur un exemple

En C++ une procédure auxiliaire du main.cpp

void afficherMenu ()

{

std:
std:
std:
std:
std:
std:

:cout
:cout
:cout
:cout
:cout
:cout

<<
<<
<<
<<
<<
<<

"0
"1
"2
"3
"4

std:

main.cpp

: quitter" << std::endl;

: ajouter un compte" << std::endl;

: ajouter un compte avec cadeau" << std::endl;
: crediter un compte" << std::endl;

: debilter un compte" << std::endl;

:endl;

Du C au C++ sur un exemple

I En C le parcours d'une collection
dans un tableau

main.c
void afficherComptes (t compte * comptes[50], int nbComptes)
{

int i;

printf ("\n\n%d comptes :\n", nbComptes);
for (1=0; i<nbComptes; i++)
{

printf ("%$24d ", i+1);

compteAfficher (comptes|[1i]);

}
printf ("\n");

Du C au C++ sur un exemple

En C++ |le parcours d'une collection
dans un vecteur

void afficherComptes (const std::vector<Compte*X*&)comptes)

{

for (size t)i=0; i<comptes.size(); i++)
{
std: :cout << i+1 << " ";
comptes[i]->afficher () ;

}

main.cpp

std::cout << "\n\n" << comptes.size () << " comptes :\n";

std: :cout << std::endl; hey ! On déclare le compteur dans la boucle for !

Du C au C++ sur un exemple

En C le parcours d'une collection
dans un tableau pour libérer les objets

main.c

void libererComptes (t compte * comptes[50], int nbComptes)

{

int i;

for (1=0; i<nbComptes; i++)
compteliberer (comptes|[1]) ;

Du C au C++ sur un exemple

I En C++ |le parcours d'une collection
dans un vecteur pour libérer les objets

main.cpp
void libererComptes (std: :vector<Compte*>& comptes)
{

for (size t 1=0; i<comptes.size(); ++1)
delete) comptes|[i];

Du C au C++ sur un exemple

En C 3 codes presque identiques avec des types
distincts necessitent 3 sous-progs différents

void saisirEntierBorne (char *message, int *pe, int min, int max)

{ main.c
printf ("%$s : ", message);
scanf ("%d", pe):
while (*pe<min || *pe>max)

{
printf ("Saisie incorrecte, recommencer : ");
scanf ("%d", pe);
}
}

void saisirFlottantBorne (char *message, float *pf, float min, float max)

{

printf ("%$s : ", message);
scanf ("$f", pf);
while (*pf<min || *pf>max)

{

printf ("Saisie incorrecte, recommencer : ");

| scanf ("$£", pf); Le C permettrait
) d'eviter cette repétition
void saisirMotBorne (char *message, char *pc, char min, char max) maiS en Utilisant des
{
printf("%s : ", message); macros .
scanf ("%s", pc); - code peu lisible
while (*pc<min || *pc>max) Py
{ - piégeux
printf ("Saisie incorrecte, recommencer : "); - typage non Strict

scanf ("%s", pc);

Du C au C++ sur un exemple

En C++ le mécanisme de templates permet de
« parametrer en fonction du type »

main.cpp

template<typename T>
void saisirBorne (std::string message, T& res, T min, T max)
{
std: :cout << message << " " ;
std: :cin >> res;
while (res<min || res>max)
{
std: :cout << "Saisie incorrecte, recommencer : " ;
std: :cin >> res;

Du C au C++ sur un exemple

En C++ les templates permettent la programmation
generique : méme algo. independamment du type

main.cpp

template<typename T>
void saisirBorne (std::string message, T& res, T min,
T max=std::numeric limits<T>::max());

C'est un « paradigme » de programmation qui fait
partie des points forts du C++ mais qui est assez
eloigneé de ce qu'on connaissait :

on utilisera rapidement des templates en code client
mais l'implémentation des templates sera vu a la fin

Du C au C++ sur un exemple

I Les codes C et C++ de ce chapitre
sont disponibles intégralement
I en 2 projets Code::Blocks

panque_c version C
panque_cpp version C++

https://fercoq.bitbucket.io/cpp/cours/coursl/banque.zip

Pour compiler les exemples de code sous Code::Blocks
configurer C++14 dans menu deroulant - Settings — Compiler...

Hawve g++ follow the C++14 IS0 C++ language standard [-std=c++14] e
Have g++ follow the coming C++0x (aka c++11) IS0 C++ language stan []
Have g++ follow the coming C++1y (aka C++14) IS0 C++ language star []

https://fercoq.bitbucket.io/cpp/cours/cours1/banque.zip

Du C au C++ sur un exemple

Ca fait beaucoup trop pour un 1* cours !

* Pas d'inquiétude, il s'agissait d'un survol
de 2 monuments a la fois :
¢ conception objet / UML
* C++

» Tous les concepts présentés seront détailles
lors des prochains cours et pratiqués en TD/TP

* \/os professeurs se feront un plaisir de repondre
aux questions qui ne manqueront pas
de se poser

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89

