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Présentation C++ /| contexte

Développement de grosses applications
— Besoin de securite, re-utilisabilite, grosses equipes

Les types de données structurées se retrouvent
au centre de la conception : prog. « orientée objet »

Des langages font le choix de la rupture
— « orienté objet » comme approche exclusive

Le C++ fait un choix dans la continuite du C...
- Compatible (presque) avec le code source C
- Compile, fortement type, optimisations poussees
— L'orienté objet vient « en plus »
- Approche maximaliste : ++ de concepts !



F Présentation C++ |/ contexte

I * |nitié dans les annees 1980 ...

Bjarne Stroustrup, initiateur et grand gourou du C++



Présentation C++ /| contexte

Le C++ ne cesse d'evoluer

— Constructions natives du langage (primitives)
- Bibliotheques (boites a outils)

— Qutils et ecosysteme (compilateurs, IDES ...)
— Bonnes pratiques (expérience, expertise)

Les versions successives sont compatibles
mais attention les pratiques evoluent ...

C++98 1lere version normalisée du langage
C++11 evolution majeure, C++ « moderne »
C++14 C++17 C++20 (a venir)



3 schemas d'exécution de langages

|
r Présentation C++ |/ contexte

I * Les langages compilés produisent des exécutables
directement exploitables par le(s) processeur(s)
Performances optimales (si bien utilises !)

Compllatlon

Executlon Q

Processeur

XY C/C++e

Objective-C SWIFT

EXE



F Présentation C++ |/ contexte

I 3 schemas d'exécution de langages

I * Les langages interprétés exécutes indirectement
par une « machine virtuelle » qui est un executable
(le plus souvent code en C/C++) Plus souples et
confortables mais moins performants (plus lents/lourds)

Exécution virtuelle Exécution

S g

NGUON javaScript Machme virtuelle Processeur



Présentation C++ [ contexte

I 3 schemas d'exécution de langages
* Les langages a bytecode et compilation JIT
I (Just In Time) qui sont des langages dits «manages>»
sont pré-compiles en un pseudo langage machine

(le bytecode) puis une machine virtuelle traduit
ce bytecode en code natif (exécutable) a la volee.

La machine virtuelle (ou « runtime » ) n‘execute plus
par procuration, elle supervise et optimise la traduction
du bytecode en code natif exécute par le processeur

~— - |supervision
c # Pré-compilation by te code |Exécution Q
code natif Q 5
Java

Compilation Processeur
par morceaux




Présentation C++ [ contexte

I 3 schemas d'exécution de langages
* Distinction traditionnelle compilé / interpréte brouillée
I * Le Java a commence comme un bytecode interprété

* Des langages historiguement interprétés comme
Python et Javascript se retrouvent aussi JIT compilés

Cos cs Vil Python Microsoft propose un bytecode intermédiaire CIL
Common Intermediate Language et architecture

\ la plateforme .NET pour étre « language agnostic »
Language compilers

Recompiler Chrome V8 ( Chrome, Opera, Node.js ...)
/ ‘ | Moteur JavaScript avec compilateur JIT -
Just-in-ti il I: d f ource
ust{ nlmennmE ers ~.~":'“E generator Sour - = ) st | TurboFan - oiat ARLE MEE,
x86 ARM N\ JavaScript 1 I i
architecture architeclure
JavaScript Processeur

Bytecode ‘ Bytecode
| Generator



Présentation C++ /| contexte

Trop complique ? A retenir :

Les langages « modernes » faciles a programmer
sont des langages interprétés et/ou « manages » :
IIs ont besoin d'une machinerie auxiliaire au runtime

Le C/C++ (et objective C, remplacé par Swift, Apple-centric)
sont compilés « a l'ancienne » ce qui offre la meilleure
performance pour I'exploitation des ressources

L 'absence d'intermediaire et de supervision lors de
'exécution d'un code compilé natif implique que le
developpeur C/C++ gere lui méme finement les
ressources, en particulier la mémoire allouée (dur!)

Tous ces langages (sauf le C) sont « orienté objet »
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Présentation C++ [ contexte

Un vaste ecosysteme

A

hp’
-l &n

Desktop/Laptop/Mobile

Engines

Virtual Machines
Scient. comput.
HTML rendering

Client side apps Game engines P\
& Industr. process MATLAB
Server side scripting ,
Infrastructure @ ‘:\g /.
Servers Network e UNEEAL  romtores
& unit

- Database - Routers
- Web - Encrypt.

| = | APACHE

e = CIC+

Majoritairement

HARDWARE




Présentation C++ /| contexte

I Ca veut dire que C/C++ recrute plus ?

I * Pas forcement ! Une majorité des cycles processeurs
executent du C/C++ compile (c'est le « carburant »)

* Mais la « couche applicative » recrute plus en total
(il y a plus d'emplois de chauffeurs que de mecanos )

* Typiquement il y a plus de lignes de code appelant
(client) que de code appelé (bas niveau / biblio.)
Faciliter le travail client est une des raison de l'objet...




Popularite 2017 (source)

Gewirtz/ZDNet Language Cluster Aggregation

objective-c |
.


https://www.zdnet.com/article/which-programming-languages-are-most-popular-and-what-does-that-even-mean/

COURS 1

A) Presentation C++ / contexte
B) Programmation Orientee Objet
C) Du C au C++ sur un exemple



Programmation Orientée Objet

I Prenons de la hauteur

I * Une majorité de ces langages de programmation
Industrielle ont une syntaxe + ou - derivee du C
( C++, objective C, Java, JavaScript, C#, PHP )

* |y a des if/felse des for des while des blocs { } etc...

* Avec quelques variantes ce sont des C orientes objet !

e Au fait qu'est-ce que c'est gue cette histoire d'objets ?



Programmation Orientée Objet

On programme pour un CDC

Dans I'industrie logicielle on ne développe pas
ni pour le fun ni pour faire plaisir a Stroustrup

On developpe pour fournir des solutions logicielles
qui correspondent a des demandes / besoins / buts

Ces buts sont spécifiés par un Cahier Des Charges
précisant les objectifs, le perimetre, les fonctionnalites

Partant d'un CDC comment arriver a la solution
de maniere sdre et efficace ? Il faut un plan !



Programmation Orientée Objet

I * Toutes les méethodes de conception distinguent

- Traitements : les actions, ordres du programme

I — Donneées : ce qui est transforme par les actions,
nombres ou symboles représentant
des informations réelles ou virtuelles

* Une phase analyse/conception articule ce binome

Données Traitements

—e saisie utilisateur 10 notes

10 notes &
\
/

maximum e—___

8 déterminer maximum

—e afficher maximum




Programmation Orientée Objet

I Programmes simples, le traitement est « au centre »

Données
initiales

entrées (saisie ou fichier)

< Traitements -

Données
résultat

sorties (affichage ou fichier)




Programmation Orientée Objet

I Algorithmes complexes : données intermédiaires

Données
initiales

fichier en entrée

K\«

< Traitements -

Données
intermédiaires

Données J

résultat

fichier en sortie




Programmation Orientée Objet

Modele "application” : on travaille sur un document

charger tout entrées clavier
- _m ode ,TIT'T . /\‘ souris
Données Données :
. \ e < Traitements
archivees a modifier
W._mode "w!"_-° >
sauver tout sorties
fichier(s) document monté apparence
document en memoire vive des données
pour l'utilisateur
N J \ J \ )
Persistance Programme en cours d'exécution Interface utilisateur

IHM




Programmation Orientée Objet

Architecture Client/Serveur : site web dynamique

synchro g i o
'/'\‘ - - —— = clavier :
requetes . requetes : [ g souris |

L]

L] . scripts coté serveur . scripts cote client :
] i Vue | |
SN 5 Eﬂ{ } Eﬂ{ }
5 reponses : reponses ; p ;

...... »- i..___.. » ecran
ﬁChlerS serveur de serveur web navigateur web apparence
__________________________ données | | navigaredr Wen | dpparenes
N J N J \ J

Persistance : Serveur site web Pages web consultées

Base de Données données partielles dans le navigateur




Programmation Orientée Objet

Ca se complique ! On peut toujours décomposer
un probleme de traitement en sous-problemes...

Analyse descendante

. Traitement
Probleme central <centra| du CDC>

e V

Sous-problémes { T1 } { T2 } { T3 }

ﬂ\\

Sous-sous-problémes { T2.1 } { T2.2 } { T2.3 } { T3.1 } { T3.2 }

™

Sous-sous-sous-problemes {T2.1.1 } {T2.1.2}




Programmation Orientée Objet

Bonjour Zorg le guerrier!
. Une bonne hache pour 15 piéces ?

Informations présentées a l'utilisateur
Messages / Images / Animations / Sons ...

Et decomposer les
données complexes en
donnees élémentaires

joueur - "Luc" 0 "magicien" -2.5214 3.2178 6.5789

perso — "Zorg" 1l "guérisseur" 5.7894 3.9000 2.1036

classe ~(2)———»(2)"guerrier" ~3.2181 -4.7411 3.7877
assocgiation

fortune - 12 S 1.6546 9.7865 6.5414

Types composes
Tableaux / Structures

'L' 'u' .. 12 -2427 .. -2.521423 7.354846e3 ..

Types scalaires fondamentaux
Caracteres / Entiers / Flottants / Pointeurs

. 01101110 11110100 00000001 01000000 10111000 10000010 10010100 ..
Représentation binaire (niveau machine)




Programmation Orientee Objet

Mais on arrive aux problématiqgues d'organisation et
d'assemblage d'ensembles "hetéerogenes" de donnees

/ ajout vol
aeroport ~ _— < madif. vol
avions -~ '
passagers - Ch$ntge
. . i pilote
ilotes
hom num. P ¥~ _ annonce
prenom | corresp. meécan. retard
adresse | date
hotes.
embarquements YO autoriser
décollage
données hétérogénes interdépendantes : \ .
comment organiser et structurer ?
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Programmation Orientée Objet

Comment articuler la relation étroite entre :
- les differents types de blocs de données
- les traitements qui leur sont associes

type Pilote

type Avion

nom = "Jeremy Smith"

age = 58

compagnie = "KLM"

void piloter(Avion a)

void d
Sante ¢

nom = "Monica Doe"
age = 37
compagnie = "Corsair"

void piloter(Avion a)

immat = "JA8089"
nb_passagers = 58
carburant = 12.65

void decoller(Param p)

void at
void vq immat = "N904DE"
nb_passagers = 165

void d
Sante ¢

nom = "Tom Dupont"
age =45

compagnie = "easyJet"

void piloter(Avion a)
void dormir( )
Sante ctrl_medic()

carburant = 22.25

void decoller(Param p)
void atterrir()
void voler(Gps dest)




Programmation Orientée Objet G

I * Un type structuré définit une classe
* | es entités concretes de cette classes

I sont des objets ou instances de la classe
type Pilote <& e classe
:;;n: 5"8Jeremy Smith" -< O bJ etS
compagnie = "KLW Instances
L’g:: S'IOte.r(,AfV'on ) . ( synonymes )
Sante ¢ :;;n: 37Monlca Doe /

compagnie = "Corsair"

void piloter(Avion a)
void d —
Sante ¢

nom = "Tom Dupont"
age =45
compagnie = "easydJet"

void piloter(Avion a)
void dormir( )
Sante ctrl_medic()




Programmation Orientée Objet a

I e | es Instances d'une méme classe ont
. méme structure de données (mais valeurs spécifiques)

I -~ méme ensemble de fonctions possibles
type Pilote .
attributs
nom = "Jeremy Smith" ,
age = 58 données membre
compagnie = "KLM" ( synonymes )
void piloter(Avion a)
void dg—"
Sante ¢ "om = "Monica Doe"

age = 37
compagnie = "Corsair"

void piloter(Avion a)

;:ino:::( nom = "Tom Dupont” | meth Od eS
age =45 .
compagnie = "easydet" | fonctions membre
void piloter(Avion a) | ( synonymes )
void dormir( )
Sante ctrl_medic()




Programmation Orientée Objet 0

I * Le déclenchement d'un traitement passe par
l'appel d'une methode en partant d'une
I Instance spécifique

[ 'action est centrée sur les valeurs spécifiques
de cette instance (cet objet spécifique agit)

Pilote monPilote;
Avion monAvion;

instance monPiIoteA/. monPilote.piloter (monA\‘r:Lon) ;
parameétre(s)
nom = "Tom Dupont” éventuel(s)

age =45
compagnie = "easydJet"

void piloter(Avion a) -
void dormir( ) appel de methode

Sante ctrl_medic()




Programmation Orientée Objet 0

I Une méthode de conception « orientée objet »

a partir de I'analyse du CDC et des exemples
I de cas d'usages

— repérer des exemples d'instances
Noms propres, entités concretes

— Identifier les classes (les categories d'entités)
Noms communs, groupes d'entités concretes homogenes

- leurs attributs (ce qui qualifie ces entités)
Adjectifs, quantites, enumérations de valeurs possibles

— leurs methodes ( fonctions / traitements / actions )
Verbes, formes verbales



Programmation Orientée Objet 0

Une méthode de conception « orientée objet »

On s'efforcera d'encapsuler les attributs

— Le code client devra pouvoir utiliser
les objets sans accéder directement
aux donnees membres...

- Les méthodes constituent I'interface
cad. la facon normale d'utiliser les objets

L'objectif est de découpler le code client
(appelant) des "details" internes (appelé)



Programmation Orientée Objet 0

I Une méthode de conception « orientée objet »
Exemple :
I Un objet (de la classe) Avion comporte de

nombreuses données membre techniques
(poids embarqué, carburant aile gauche, pression hydraulique frein droit...)

Un objet (de la classe) TourDeControle n'a pas vocation
a mettre son nez dans tous ces detalils, elle va interagir
avec un objet avion avec un appel a la méthode

bool estPretAuDecollage ()

qui retourne un indicateur booleen Oui/Non a partir des
données internes a l'objet.



Programmation Orientée Objet G

Une méthode de conception « orientée objet »
v Interface

bool estPretAuDecollage ()
P void autoriserDecollage (Piste p)
XYZ getPosition()

Comm Address/Reporting Flat Panel D isp lavs
Flight Managem ent Head up display (HUD)
Cabin Pressure Cnirl HF Radio
Cabin Temp Cnirl Microwave Landing
Comm, Newv/D Emoke Detectlion
Airborne Flight Info W indow Heal Cntrl W eather
Detection
SATCOM Anteninse \ o
Integrated Preumatic System (ahes,
Leadin;ﬂ;t“;rﬂ:"gx: Heal Exchangers, Yalker Separators) /
Interior Lighting . -—— - Air Date
== Sengors
Emergency Power Turbing
/ Traffic
B | ; .G.Dert.f_‘ullism
ETMI Lightirg Ak o I'-hl:hu'{. oy Avoidance
Enhanced
= . AN 7 & Grouni
= e - _’a_l'_1 = a.: ) F'I‘ﬂ}t
T " = Ez'nwnmrnenlalf_‘mn Warning
N {_--"'-.\?‘h i‘b, . x bl
a,r’ - 5@@ 3 @
1 e L5565 i -anti-lce Crtrl
L iliary P-:-l.«er Unit T
AFU Cndrls i
AFU Star b
; W heelzfBrakes

Altenators/Senerators Anti-Skid/Landing Gear ke Defection

ORLY'TDC3 Warinble Spesd
Constant Frequency

Hydraulic Pumps AlfematorsfSenerafors

H:.ru.‘fraulln.‘. Accumulaors Engine Critrl

Hydraul: Power Transfer Units Engine Starters

Fower Transfer Unit Macelle Subsysim

Ajrdrive Unit OillAir fFuel Coolers

VolcefFlight Data Recorders Thrust Reversers N904DE

Implémentation



Programmation Orientée Objet 0

I Une méthode de conception « orientée objet »

* L'objet lui méme est le mieux placé pour gerer ses propres
données et proposer a l'utilisateur des possibilites claires
et circonscrites

e [ 'Interface a vocation a rester stable

* L'Implémentation peut évoluer sans casser le protocole
d'utilisation de l'objet (le mode d'emploi reste le méme)
et donc sans casser le code utilisateur ( code client )



Programmation Orientée Objet 0
I Une méthode de conception « orientée objet »
Ensuite/conjointement on définira les relations
entre les (objets des differentes) classes.
Avion
Avion Passager - ailerons
A
2 1 AvionDeLigne| |AvionMilitaire
Pilote CarteEmbrq - soute - armement
Agrégation Composition Spécialisation / Héritage
Un avion a 2 pilotes Un passager a une Un avion de ligne est
(qui peuvent changer) carte d'embarquement un avion (il a des ailerons)
nominale (non cessible) et en plus il a une soute




Programmation Orientée Objet

Une méthode de conception « orientée objet »

Cette étude aboutit a la mise en place d'un
modele objet du projet avec diagramme(s)
de classes. (notation normalisée UML - cours 2)

1
Customer I e — T?}ﬂt
1 I >
1.4
Piece of Luggage < 2 Coupan UH'HE"
%
(=)

- transports
MODELING
LANGUAGE -.

4|18 valid for}

Flight
*

is execution of ¥
1

Flight Nurnber

1.* 1.*

1| Start 1| Destination
Almport

source



https://sourcemaking.com/uml/modeling-it-systems/structural-view/constructing-class-diagrams

Programmation Orientée Objet

Une méthode de conception « orientée objet »

Frequent Flyer Card Alrplane
- et mmoioeaion | ON N€ connaitra
* o Lo pas tout de suite
0..1 "
1.* 1.*
| b - tous les aspects C++
stomer *0.1 e . ,
o e Dowcrpton pour implementer des
Name Airline -
i 1 diagrammes complexes
n:m Flight
Ticketing Code Boarding Time
Mumber E';?;’lmm Seat
1| Check-In Counter ﬁ;mm
1 1 Location
1.4
= ?ﬂuﬁmm G-1—  Avilable Seat dia de ¢l
Date o - gramme de classes
Sandby d'un systéme d'information
1 "service passagers"
b source

Number
Weight



https://sourcemaking.com/uml/modeling-for-system-integration/the-static-view/constructing-class-diagrams

Programmation Orientée Objet 0

I Une méthode de conception « orientee objet »

I * Toute cette phase de conception / architecture
logicielle se fait indépendamment du(des)
langage(s) d'implementation ( codage )

* Pour programmer en C++ il faut programmer
orienté objet donc connaitre ces méthodes
de conception en amont du code

 En tant que programmeurs de « C avec structs »

vous avez déja pris un bon départ :
la class du C++ dérive directement de

la struct du C !



COURS 1

A) Presentation C++ / contexte
B) Programmation Orientée Objet
C) Du C au C++ sur un exemple



Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

I © comptes :

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 1«
titulaire : Lucien<
Creation du compte Lucien



Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

1 comptes :
1 Titulaire Lucien Solde 0.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 2«
titulaire : Alexia<
montant du cadeau : 45«
Creation du compte Alexia



Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

2 comptes :
1 Titulaire Lucien Solde 0.00

2 Titulaire Alexia Solde 45.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 3«
compte numero : 1«
montant a crediter : 120.50+



Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

2 comptes :
1 Titulaire Lucien Solde 120.50

2 Titulaire Alexia Solde 45.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 4«

compte numero : 2«

montant a debiter : 50«
provisions insuffisantes Alexia !



Du C au C++ sur un exemple

Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

2 comptes :
1 Titulaire Lucien Solde 120.50
2 Titulaire Alexia Solde 45.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 4«
compte numero : 2«
montant a debiter : 40«



Du C au C++ sur un exemple

I Un probleme classique : gestion de collection
d'entités homogenes - ajouter / voir / modifier

2 comptes :
1 Titulaire Lucien Solde 120.50

2 Titulaire Alexia Solde 5.00

: quitter

: ajouter un compte

: ajouter un compte avec cadeau
: crediter un compte

: debiter un compte

PWNERO®

choix menu : 0«
Liberation du compte Lucien
Liberation du compte Alexia

Process returned 0 (0x0)



Du C au C++ sur un exemple

En termes de conception orientee objets
on identifie iImmediatement une classe centrale :
la classe Compte, avec 2 attributs

> titulaire : chaine de caracteres
> solde : une valeur flottante

et 5 méthodes

> Creer un compte avec solde initial paramétrable
> Libérer (la mémoire d') un compte

> Afficher un compte ( pour I'affichage de la liste )
> Crediter un compte avec crédit en parametre

> Débiter un compte avec débit en parametre




Du C au C++ sur un exemple G

I La classe Compte en notation UML normalisée

Compte

- titulaire : String
- solde : Real

+ Compte (titulaire : String, solde _init : Real = 0.0)
+ ~Compte ()

+ afficher ()

+ crediter ( credit : Real )

+ debiter ( debit : Real )




Du C au C++ sur un exemple a

La classe Compte en notation UML normalisée

Membres privés 7839
Compte y }ributs
3Litu|aire - String
-/solde : Real Méthodes
+ Compte (titulaire : String, solde _init : Real = 0.0)
+|~Compte ()
+ [afficher ()
+/crediter ( credit : Real )
+/ debiter ( debit : Real )

Méthode créer : Constructeur&
Membres publics Méthode libérer : Destructeur




Du C au C++ sur un exemple

En C comme en C++

* ~méme nbr de lignes 150
+ méme IDE Code::Blocks

* méme compilateur GCC

« méme distinction fichiers
d'en-téte (.h) et fichiers
d''implementation (.c - .cpp)

* méme decoupage de projet

\Voyons ++ en détall
ce qui change ...

Projects = Symbols Files

&

—-'.' banque_c
—-E‘.: Sources

e compte.c

- main.c

- E? Headers

I I | =
-----

- '.' banque_cpp
= E‘; Sources
: e coempte.cpp
. main.cpp

—-E? Headers

I I | =
-----



Du C au C++ sur un exemple

En C d'un céte une struct, de l'autre des sous-
programmes qui recoivent cette struct en param.

compte.h

typedef struct compte
{
char *titulaire;
float solde;
}

t compte;

t compte * compteCreer (char *titu);

t compte * compteCreerAvecSolde (char *titu, float solde init);
void compteliberef (t compte * compte) ;

void compteAfficher (t compte * compte);

void compteCrediter (t compte * compte, float credit);

int compteDebiteri(t compte * compte, float debit);



Du C au C++ sur un exemple

En C++ |la classe groupe les données (attributs)
et traitements (méthodes) d'un méme type d'objets

compte.h

class Compte
{

private :
std::string m titulaire;
float m solde;

public :
Compte (std::string titulaire, float solde init=0.0f);
~Compte () ;
void afficher () const;
void crediter (float credit);
void debiter (float debit);
std: :string getTitulaire () const;



Du C au C++ sur un exemple

En C++ les méthodes ( sous-progs. associes a
une classe ) recoivent automatiquement l'objet

compte.h

class Compte
{

private :
std::string m titulaire;
float m solde;

public :
Compte (std::string titulaire, float solde init=0.0f);
~Compte () ;
void afficher () const;
void crediter (float credit);
void debiter (float debit);
std: :string getTitulaire () const;



Du C au C++ sur un exemple

En C++ on ne plaisante pas avec les types mais
on a des commodites : enfin des chaines pratiques

compte.h

class Compte
{

private :
std::string m titulaire;
float m solde;

public :
Compte (std::string titulaire, float solde init=0.0f);
~Compte () ;
void afficher () const;
void crediter (float credit);
void debiter (float debit);
std: :string getTitulaire () const;



Du C au C++ sur un exemple

En C le fichier .c donne I'implémentation des
sous-programmes déclarés dans l'interface .h

#include "compte.h compte.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

t compte * compteCreer (char *titu)

é_ééﬁpie * compteCreerAvecSolde (char *titu, float solde init)
éoi&.c;mpteLiberer(t_compte * compte)
ioi&.c;mpteAfficher(t_compte * compte)

{ ...}

void compteCrediter (t compte * compte, float credit)

{ ...}
int compteDebiter (t compte * compte, float debit)

{ ...}



Du C au C++ sur un exemple

En C++ le fichier .cpp donne I'implementation des
meéthodes de classe déclaréees dans l'interface .h

#include "compte.h compte.cpp
#include <iostream>

#include <string>

#include <stdexcept>

Compte: :Compte (std: )string titulaire, float solde init)
{ ...}

Compte: :~Compte ()

{ ... 1

void(Compte: vafficher () const

{ ...}

void Compte::crediter (float credit)

{ ...}

void Compte: :debiter (float debit)

{ ...}

std: :string Compte::getTitulaire () const

{ ...}



Du C au C++ sur un exemple

En C Il faut allouer explicitement les structs
qui doivent « survivre » a lI'appel d'un sous-prog.

{

}

{

compte.c

t compte * compteCreer (char *titu)

return compteCreerAvecSolde (titu, O);

t compte * compteCreerAvecSolde (char *titu, float solde init)

t compte * compte;

compte = (t compte *)malloc( l*sizeof (t compte) );
compte->titulaire = (char *)malloc( (strlen(titu)+1) * sizeof (char) ) ;
strcpy (compte->titulaire, titu);

compte->solde = solde init;

return compte;



Du C au C++ sur un exemple

I En C++ la méthode constructeur ne gere pas
explicitement l'allocation de son propre espace

I compte.cpp

Compte: :Compte (std: :string titulaire, float solde init)
{

m titulaire = titulaire;

m solde = solde init;

class Compte

{ compte.h
private :
std::string m titulaire;
float m solde;
public :

Compte (std: :string titulaire, float solde init=0.0f);




Du C au C++ sur un exemple

I En C++ dans la méthode d'un objet on accede
aux attributs de celui-ci sans l'expliciter

I compte.cpp

Compte: :Compte (std: :string titulaire, float solde init)
{

m_titulaire(=) titulaire;

m solde)= solde init;

class Compte

{ compte.h
private :
std::string m titulaire;
float m solde;
public :

Compte (std: :string titulaire, float solde init=0.0f);




Du C au C++ sur un exemple

I En C ce qui a ete alloue explicitement dans le
constructeur doit étre libéré explicitement

compte.c
void compteliberer (t compte * compte)
{

free (compte->titulaire);

free (compte) ;




Du C au C++ sur un exemple

En C++ aussi ! Mais souvent le constructeur
ne fait aucune allocation explicite (pas besoin) ...

I {

}

compte.cpp

Compte: :~Compte ()



Du C au C++ sur un exemple

I En C les entrees/sorties consoles utilisent des
fonctions format-typees printf et scanf de stdio.h

compte.c
void compteAfficher (t compte * compte)

{
printf ("Titulaire %s \tSolde %.02f\n",
compte->titulaire, compte->solde);




Du C au C++ sur un exemple

I En C++ |les entrées/sorties consoles utilisent des
flots chainés std::cin et std::cout de iostream

compte.cpp
void Compte::afficher () const
{

std::cout << "Titulaire " << m titulaire
<< " \tSolde " << m solde << std::endl;




Du C au C++ sur un exemple

En C les conditions d'erreur sont souvent
retournees a l'appelant par valeur spéciale

compte.c
void compteCrediter (t compte * compte, float credit)

{

compte->solde += credit;

}

int compteDebiter (t compte * compte, float debit)

{
if ( compte->solde - debit < 0.0 )

return O;

compte->solde —-= debit;
return 1;



Du C au C++ sur un exemple

En C++ les conditions d'erreurs passent par un
nouveau mecanisme, les exceptions ...

compte.cpp
void Compte::crediter (float credit)

{

m solde += credit;

}

void Compte: :debiter (float debit)

{
if ( m solde - debit < 0.0f )
throw)std::invalid argument ("provisions insuffisantes");

m solde -= debit;



Du C au C++ sur un exemple

I En « C objet » comme en C++
on distingue

I «_['Interface d'une classe et
I'mpléementation d'une classe
constituent le code utilisé

+ le code utilisateur du type | & ™ banque_cpp

ou code client ou appelant B Sources
, , . ----- compte.cpp
le developpeur d'une classe doit 2 maincpp

faciliter le travail du développeur | =& Header:
client de la classe : interface -] compteh
claire, stable, documentée,

bien séparee de I''implementation




Du C au C++ sur un exemple

I En C code client du main, ici on choisit d'utiliser
un tableau de pointeurs sur structs

main.c

#include "compte.h"
#include <stdio.h>
/// Gestion de quelques comptes (moins de 50)
int main ()
{
/// La collection des (pointeurs sur) comptes
/// Au démarrage il y a 0O compte
/// Il y en aura 50 au plus
t compte * comptes[50] = {NULL};
int nbComptes = 0;

/// Variables auxiliaires (saisies...)
int choix;

char nom[100];

float montant;

int id;

int debitOk;




Du C au C++ sur un exemple

En C++ code client du main, ici on peut utiliser
un conteneur standard : un vecteur de pointeurs...

#include "compte.h" main.cpp

#include <iostream>
#include <string>
#include <vector>

/// Gestion comptes (quantité non limitée)
int main ()
{
/// La collection des (pointeurs sur) comptes
/// Au démarrage il y a 0 compte
/// vector est comme un tableau mais extensible...
std: :vector<Compte*> comptes;

/// Variables auxiliaires (saisies...)
int choix;

std: :string nom;

float montant;

size t id;



Du C au C++ sur un exemple

En C a chaque passage en parametre de la
collection il faut envoyer tableau et nombre d'élem.

do main.c
{

afficherComptes (comptes, nbComptes) ;
afficherMenu () ;

saisirEntierBorne ("choix menu", &choix, 0, 4);
switch (choix)

{

case 0:
break;

}
}

while (choix != 0);
libererComptes (comptes, nbComptes) ;

return O;



Du C au C++ sur un exemple

En C++ |le passage en parametre de la collection
est référence par le vecteur qui encapsule tout

do main.cpp
{

afficherComptes (comptes) ;
afficherMenu() ;

salsirBorne ("choix menu", choix, 0, 4);
switch (choix)

{

case 0:
break;

}
}

while (choix != 0);
libererComptes (comptes) ;

return O;



Du C au C++ sur un exemple

En C I'ajout d'un eélement a la collection est simple
Si on ne gere pas la quantité limitée [50] !

main.c
case 1:
sailisirMotBorne ("titulaire", nom, , ) ;
comptes [nbComptes++] = compteCreer (nom) ;
break;
case ’:
salsirMotBorne ("titulaire", nom, , ) ;
salsirFlottantBorne ("montant du cadeau", &montant, 0.10, 55.90);
comptes [nbComptes++] = compteCreerAvecSolde (nom, montant);

break;



Du C au C++ sur un exemple

En C++ I'ajout d'un élement a la collection est
simple et la quantite « illimitee » (memoire vive...)

main.cpp
case 1:
salslirBorne<std::string>("titulaire", nom, "A", "ZzZZ" );
comptes.push back( new Compte (nom) );
break;
case 2:
saisirBorne<std::string>("titulaire", nom, "A", "ZzZZ" );

sailisirBorne ("montant du cadeau", montant, 0.10f, 55.90f);
comptes.push back( new Compte (nom, montant) );
break;



Du C au C++ sur un exemple

I En C l'appel a un traitement de l'objet passe

['objet en parametre

case 3:
salsirEntierBorne ("compte numero", &id, 1, nbComptes);
1d-—;
salsirFlottantBorne ("montant a crediter", &montant, O,

compteCrediter (comptes[1d)]), montant);
break;

main.c

FLT MAX) ;



Du C au C++ sur un exemple

I En C++ 'appel a un traitement de l'objet part
de l'objet, I'objet n'est pas dans les parametres

I main.cpp

case 3:
salsirBorne ("compte numero", id, 1lu, (comptes.size());
-—1d;
salsirBorne ("montant a crediter", montant, 0.0f);
comptes|[id]->crediter (montant);
break;




Du C au C++ sur un exemple

I En C la gestion d'une anomalie dans le sous-prog
appelé passe par le contréle d'un code retour...

I main.c

case 4:
salsirEntierBorne ("compte numero", &id, 1, nbComptes);
id-—;
saisirFlottantBorne ("montant a debiter", &montant, 0, FLT MAX);

debitOk = compteDebiter(comptes|[id], montant);

if (!debitOk)
printf("provisions insuffisantes %s !\n",
comptes[id]->titulaire);

break;




Du C au C++ sur un exemple

En C++ ['appele n'a pas besoin d'utiliser le canal
return pour signaler un probleme : exceptions !

main.cpp
case 4:
try
{
salsirBorne ("compte numero", id, 1lu, comptes.size());
-—id;
salisirBorne ("montant a debiter", montant, 0.0f);
comptes|[id] —>debiter (montant) ;
std: :cout << "debit ok" << std::endl;
}
catch) ( const std::invalid argumentd& e )
{
std: :cout << e.what() << "™ "
<< comptes[id]->getTitulaire() << " !\n";

}

break;



Du C au C++ sur un exemple

I En C++ le respect du principe d'encapsulation
est Imposé par les attributs en private ...

I main.cpp
std: :string Compte::getTitulaire () const

{
return m titulaire;
) - compte.cpp

catch ( const std::invalid argumentd& e )

{
std: :cout << e.what() << " "

<< ccomptes[id]->getTitulaire ()> << " !\n";
}

break;




Du C au C++ sur un exemple

En C++ comme en C Il est préférable d'anticiper
les anomalies avant I'appel quand c'est possible !

L 'utilisation du mecanisme d'exception du code precéedent main.cpp
etait illustrative, mais il est déconseillé d'utiliser des exceptions '
pour gérer des cas de « business logic ». L'approche suivante est préférable :

case 4:
salsirBorne ("compte numero", id, 1lu, comptes.size());
-—1d;
salsirBorne ("montant a debiter", montant, 0.0f);

if ( «comptes[id]->debitable (montant)>)

comptes|[id] —>debiter (montant) ;
std: :cout << "debit ok" << std::endl;

else
std: :cout << "provisions insuffisantes "
<< comptes[id]->getTitulaire() << " !\n";

break;



En C une procédure auxiliaire du main.c

Du C au C++ sur un exemple

void afficherMenu ()

{

printf ("0
printf ("1
printf ("2
printf ("3
printf ("4
printf ("\

: quitter\n");
: ajouter un compte\n");
: ajouter un compte avec cadeau\n");
: crediter un compte\n");
: debiter un compte\n");
n");

main.c



Du C au C++ sur un exemple

En C++ une procédure auxiliaire du main.cpp

void afficherMenu ()

{

std:
std:
std:
std:
std:
std:

:cout
:cout
:cout
:cout
:cout
:cout

<<
<<
<<
<<
<<
<<

"0
"1
"2
"3
"4

std:

main.cpp

: quitter" << std::endl;

: ajouter un compte" << std::endl;

: ajouter un compte avec cadeau" << std::endl;
: crediter un compte" << std::endl;

: debilter un compte" << std::endl;

:endl;



Du C au C++ sur un exemple

I En C le parcours d'une collection
dans un tableau

main.c
void afficherComptes (t compte * comptes[50], int nbComptes)
{

int i;

printf ("\n\n%d comptes :\n", nbComptes);
for (1=0; i<nbComptes; i++)
{

printf ("%$24d ", i+1);

compteAfficher (comptes|[1i]);

}
printf ("\n");




Du C au C++ sur un exemple

En C++ |le parcours d'une collection
dans un vecteur

void afficherComptes (const std::vector<Compte*X*&)comptes)

{

for (size t)i=0; i<comptes.size(); i++)
{
std: :cout << i+1 << " ";
comptes[i]->afficher () ;

}

main.cpp

std::cout << "\n\n" << comptes.size () << " comptes :\n";

std: :cout << std::endl; hey ! On déclare le compteur dans la boucle for !



Du C au C++ sur un exemple

En C le parcours d'une collection
dans un tableau pour libérer les objets

main.c

void libererComptes (t compte * comptes[50], int nbComptes)

{

int i;

for (1=0; i<nbComptes; i++)
compteliberer (comptes|[1]) ;



Du C au C++ sur un exemple

I En C++ |le parcours d'une collection
dans un vecteur pour libérer les objets

main.cpp
void libererComptes (std: :vector<Compte*>& comptes)
{

for (size t 1=0; i<comptes.size(); ++1)
delete) comptes|[i];




Du C au C++ sur un exemple

En C 3 codes presque identiques avec des types
distincts necessitent 3 sous-progs différents

void saisirEntierBorne (char *message, int *pe, int min, int max)

{ main.c
printf ("%$s : ", message);
scanf ("%d", pe):
while (*pe<min || *pe>max)

{
printf ("Saisie incorrecte, recommencer : ");
scanf ("%d", pe);
}
}

void saisirFlottantBorne (char *message, float *pf, float min, float max)

{

printf ("%$s : ", message);
scanf ("$f", pf);
while (*pf<min || *pf>max)

{

printf ("Saisie incorrecte, recommencer : ");

| scanf ("$£", pf); Le C permettrait
) d'eviter cette repétition
void saisirMotBorne (char *message, char *pc, char min, char max) maiS en Utilisant des
{
printf("%s : ", message); macros .
scanf ("%s", pc); - code peu lisible
while (*pc<min || *pc>max) Py
{ - piégeux
printf ("Saisie incorrecte, recommencer : "); - typage non Strict

scanf ("%s", pc);



Du C au C++ sur un exemple

En C++ le mécanisme de templates permet de
« parametrer en fonction du type »

main.cpp

template<typename T>
void saisirBorne (std::string message, T& res, T min, T max)
{
std: :cout << message << " " ;
std: :cin >> res;
while (res<min || res>max)
{
std: :cout << "Saisie incorrecte, recommencer : " ;
std: :cin >> res;



Du C au C++ sur un exemple

En C++ les templates permettent la programmation
generique : méme algo. independamment du type

main.cpp

template<typename T>
void saisirBorne (std::string message, T& res, T min,
T max=std::numeric limits<T>::max());

C'est un « paradigme » de programmation qui fait
partie des points forts du C++ mais qui est assez
eloigneé de ce qu'on connaissait :

on utilisera rapidement des templates en code client
mais l'implémentation des templates sera vu a la fin




Du C au C++ sur un exemple

I Les codes C et C++ de ce chapitre
sont disponibles intégralement
I en 2 projets Code::Blocks

panque_c  version C
panque_cpp version C++

https://fercoq.bitbucket.io/cpp/cours/coursl/banque.zip

Pour compiler les exemples de code sous Code::Blocks
configurer C++14 dans menu deroulant - Settings — Compiler...

Hawve g++ follow the C++14 IS0 C++ language standard [-std=c++14] e
Have g++ follow the coming C++0x (aka c++11) IS0 C++ language stan [ ]
Have g++ follow the coming C++1y (aka C++14) IS0 C++ language star [ ]


https://fercoq.bitbucket.io/cpp/cours/cours1/banque.zip

Du C au C++ sur un exemple

Ca fait beaucoup trop pour un 1* cours !

* Pas d'inquiétude, il s'agissait d'un survol
de 2 monuments a la fois :
¢ conception objet / UML
* C++

» Tous les concepts présentés seront détailles
lors des prochains cours et pratiqués en TD/TP

* \/os professeurs se feront un plaisir de repondre
aux questions qui ne manqueront pas
de se poser
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