
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2017-2018

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Abstraction / design patterns
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Synthèse, complément, révision

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Classes & collec. objets en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Framework, exemples 2 patterns
10.Flots / parsing / fichiers / except.
11.Suivi de projet
12.Soutenance de projet ...

Semaine suivante

3

COURS 1

A) Présentation C++ / contexte
B) Programmation Orientée Objet
C) Du C au C++ sur un exemple

4

COURS 1

A) Présentation C++ / contexte
B) Programmation Orientée Objet
C) Du C au C++ sur un exemple

5

Présentation C++ / contexte

● Développement de grosses applications
→ Besoin de sécurité, ré-utilisabilité, grosses équipes

● Les types de données structurées se retrouvent
au centre de la conception : prog. « orientée objet »

● Des langages font le choix de la rupture
→ « orienté objet » comme approche exclusive

● Le C++ fait un choix dans la continuité du C...

– Compatible (presque) avec le code source C
– Compilé, fortement typé, optimisations poussées
– L'orienté objet vient « en plus »
– Approche maximaliste : ++ de concepts !

6

Présentation C++ / contexte

● Initié dans les années 1980 …

Bjarne Stroustrup, initiateur et grand gourou du C++

7

Présentation C++ / contexte

● Le C++ ne cesse d'évoluer

– Constructions natives du langage (primitives)
– Bibliothèques (boites à outils)
– Outils et écosystème (compilateurs, IDEs …)
– Bonnes pratiques (expérience, expertise)

● Les versions successives sont compatibles
mais attention les pratiques évoluent ...

● C++98 1ère version normalisée du langage
● C++11 évolution majeure, C++ « moderne »
● C++14 C++17 C++20 (à venir)

8

Présentation C++ / contexte

3 schémas d'exécution de langages

● Les langages compilés produisent des exécutables
directement exploitables par le(s) processeur(s)
Performances optimales (si bien utilisés !)

Compilation Exécution

Processeur

9

Présentation C++ / contexte

3 schémas d'exécution de langages

● Les langages interprétés exécutés indirectement
par une « machine virtuelle » qui est un exécutable
(le plus souvent codé en C/C++) Plus souples et
confortables mais moins performants (plus lents/lourds)

ExécutionExécution virtuelle

ProcesseurMachine virtuelle

10

Présentation C++ / contexte

3 schémas d'exécution de langages
● Les langages à bytecode et compilation JIT

(Just In Time) qui sont des langages dits «managés»
sont pré-compilés en un pseudo langage machine
(le bytecode) puis une machine virtuelle traduit
ce bytecode en code natif (exécutable) à la volée.

La machine virtuelle (ou « runtime ») n'exécute plus
par procuration, elle supervise et optimise la traduction
du bytecode en code natif exécuté par le processeur

ExécutionPré-compilation

Processeur
JIT

Compilation
par morceaux

byte
code

code
natif

supervision

11

Présentation C++ / contexte

3 schémas d'exécution de langages
● Distinction traditionnelle compilé / interprété brouillée
● Le Java a commencé comme un bytecode interprété
● Des langages historiquement interprétés comme

Python et Javascript se retrouvent aussi JIT compilés

Microsoft propose un bytecode intermédiaire CIL
Common Intermediate Language et architecture
la plateforme .NET pour être « language agnostic »

JavaScript
Processeur

Chrome V8 (Chrome, Opera, Node.js ...)
Moteur JavaScript avec compilateur JIT

12

Présentation C++ / contexte

Trop compliqué ? A retenir :
● Les langages « modernes » faciles à programmer

sont des langages interprétés et/ou « managés » :
ils ont besoin d'une machinerie auxiliaire au runtime

● Le C/C++ (et objective C, remplacé par Swift, Apple-centric)

sont compilés « à l'ancienne » ce qui offre la meilleure
performance pour l'exploitation des ressources

● L'absence d'intermédiaire et de supervision lors de
l'exécution d'un code compilé natif implique que le
développeur C/C++ gère lui même finement les
ressources, en particulier la mémoire allouée (dur!)

● Tous ces langages (sauf le C) sont « orienté objet »

13

Présentation C++ / contexte

 Un vaste écosystème

DRIVERS

KERNEL

Desktop/Laptop/Mobile
Client side apps

&
Server side scripting

HARDWARE

OS system
(filesystem...)

Infrastructure

OS apps
(notepad, finder...)

see apps

Servers
- Database
- Web

Network
- Routers

 - Encrypt.

Engines
 Virtual Machines
 Scient. comput.
 HTML rendering
 Game engines
 Industr. process

...

VMs

JIT

EXEC

EXEC

EXEC

EXEC

EXEC

EXEC

Majoritairement

14

Présentation C++ / contexte

 Ça veut dire que C/C++ recrute plus ?

● Pas forcément ! Une majorité des cycles processeurs
exécutent du C/C++ compilé (c'est le « carburant »)

● Mais la « couche applicative » recrute plus en total
(il y a plus d'emplois de chauffeurs que de mécanos)

● Typiquement il y a plus de lignes de code appelant
(client) que de code appelé (bas niveau / biblio.)
Faciliter le travail client est une des raison de l'objet...

15

Présentation C++ / contexte

Popularité 2017 (source)

https://www.zdnet.com/article/which-programming-languages-are-most-popular-and-what-does-that-even-mean/

16

COURS 1

A) Présentation C++ / contexte
B) Programmation Orientée Objet
C) Du C au C++ sur un exemple

17

Programmation Orientée Objet

 Prenons de la hauteur

● Une majorité de ces langages de programmation
industrielle ont une syntaxe + ou - dérivée du C
(C++, objective C, Java, JavaScript, C#, PHP)

● Il y a des if/else des for des while des blocs { } etc...

● Avec quelques variantes ce sont des C orientés objet !

● Au fait qu'est-ce que c'est que cette histoire d'objets ?

18

Programmation Orientée Objet

On programme pour un CDC

● Dans l'industrie logicielle on ne développe pas
ni pour le fun ni pour faire plaisir à Stroustrup

● On développe pour fournir des solutions logicielles
qui correspondent à des demandes / besoins / buts

● Ces buts sont spécifiés par un Cahier Des Charges
précisant les objectifs, le périmètre, les fonctionnalités

● Partant d'un CDC comment arriver à la solution
de manière sûre et efficace ? Il faut un plan !

19

Programmation Orientée Objet

● Toutes les méthodes de conception distinguent

– Traitements : les actions, ordres du programme
– Données : ce qui est transformé par les actions,

 nombres ou symboles représentant
 des informations réelles ou virtuelles

● Une phase analyse/conception articule ce binôme

Données Traitements

10 notes

maximum

saisie utilisateur 10 notes

déterminer maximum

afficher maximum

20

Programmation Orientée Objet

Programmes simples, le traitement est « au centre »

Traitements

Données
initiales

Données
résultat

entrées (saisie ou fichier)

sorties (affichage ou fichier)

21

Programmation Orientée Objet

Algorithmes complexes : données intermédiaires

Données
intermédiaires Traitements

Données
initiales

Données
résultat

fichier en entrée

fichier en sortie

22

Programmation Orientée Objet

Modèle "application" : on travaille sur un document

Données
archivées

Données
à modifier

Traitements Vue

charger tout

sauver tout

Persistance

fichier(s)
document

document monté
en mémoire vive

 apparence
 des données
pour l'utilisateur

entrées

sorties

clavier
souris

écran

Programme en cours d'exécution Interface utilisateur
 IHM

mode "r"

mode "w"

23

Programmation Orientée Objet

Architecture Client/Serveur : site web dynamique

mode "r"

mode "w"

Vue

requêtes

Persistance :
Base de Données

fichiers
apparence

clavier
souris

écran

 Serveur site web :
 données partielles

serveur de
données

synchro

réponses

serveur web
fichiers

scripts coté serveur

Pages web consultées
 dans le navigateur

navigateur web

scripts coté client

requêtes

réponses

24

Programmation Orientée Objet

Ça se complique ! On peut toujours décomposer
un problème de traitement en sous-problèmes...

Traitement
central du CDC

T1 T2 T3

T2.1 T2.2 T2.3 T3.1 T3.2

T2.1.1 T2.1.2

Problème central

Sous-problèmes

Sous-sous-problèmes

Sous-sous-sous-problèmes

Analyse descendante

25

Programmation Orientée Objet

… 01101110 11110100 00000001 01000000 10111000 10000010 10010100 …

'L' 'u' … 12 -2427 … -2.521423 7.354846e3 …

Représentation binaire (niveau machine)

 Types scalaires fondamentaux
Caractères / Entiers / Flottants / Pointeurs

joueur → "Luc"

classe → 2

perso → "Zorg"

 Types composés
Tableaux / Structures

fortune → 12

-2.5214 3.2178 6.5789

 2.1036 3.9000 5.7894

-3.2181 -4.7411 3.7877

 6.5414 9.7865 1.6546

 Informations présentées à l'utilisateur
 Messages / Images / Animations / Sons ...

"magicien"

"guérisseur"

"guerrier"

0

1

2
...

...

Bonjour Zorg le guerrier !
Une bonne hache pour 15 pièces ?

Et décomposer les
données complexes en
données élémentaires

association

26

Programmation Orientée Objet

Mais on arrive aux problématiques d'organisation et
d'assemblage d'ensembles "hétérogènes" de données

données hétérogènes interdépendantes :
comment organiser et structurer ?

avions

vols

embarquements

pistes

hotes.

pilotes

mécan.

navig.
passagers

nom
prénom
adresse
...

num.
corresp.
date
...

id billet

aéroport

ajout vol

modif. vol

etc...

change
pilote

annonce
retard

autoriser
décollage

27

Programmation Orientée Objet

Comment articuler la relation étroite entre :
→ les différents types de blocs de données
→ les traitements qui leur sont associés

type Pilote

nom = "Jeremy Smith"
age = 58
compagnie = "KLM"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()nom = "Monica Doe"

age = 37
compagnie = "Corsair"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()nom = "Tom Dupont"

age = 45
compagnie = "easyJet"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()

type Avion

immat = "JA8089"
nb_passagers = 58
carburant = 12.65

void decoller(Param p)
void atterrir()
void voler(Gps dest)immat = "N904DE"

nb_passagers = 165
carburant = 22.25

void decoller(Param p)
void atterrir()
void voler(Gps dest)

28

Programmation Orientée Objet

● Un type structuré définit une classe
● Les entités concrètes de cette classes

sont des objets ou instances de la classe
type Pilote

nom = "Jeremy Smith"
age = 58
compagnie = "KLM"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()nom = "Monica Doe"

age = 37
compagnie = "Corsair"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()nom = "Tom Dupont"

age = 45
compagnie = "easyJet"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()

!

classe
objets
instances
(synonymes)

29

Programmation Orientée Objet

● Les instances d'une même classe ont
→ même structure de données (mais valeurs spécifiques)

→ même ensemble de fonctions possibles

type Pilote

nom = "Jeremy Smith"
age = 58
compagnie = "KLM"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()nom = "Monica Doe"

age = 37
compagnie = "Corsair"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()nom = "Tom Dupont"

age = 45
compagnie = "easyJet"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()

!

attributs
données membre
(synonymes)

méthodes
fonctions membre
(synonymes)

30

Programmation Orientée Objet

● Le déclenchement d'un traitement passe par
l'appel d'une méthode en partant d'une
instance spécifique

● L'action est centrée sur les valeurs spécifiques
de cette instance (cet objet spécifique agit)

nom = "Tom Dupont"
age = 45
compagnie = "easyJet"

void piloter(Avion a)
void dormir()
Sante ctrl_medic()

!

Pilote monPilote;
Avion monAvion;
...
monPilote.piloter(monAvion);

instance monPilote

appel de méthode

paramètre(s)
éventuel(s)

31

Programmation Orientée Objet

Une méthode de conception « orientée objet »

à partir de l'analyse du CDC et des exemples
de cas d'usages

→ repérer des exemples d'instances
 Noms propres, entités concrètes

→ identifier les classes (les catégories d'entités)
 Noms communs, groupes d'entités concrètes homogènes

→ leurs attributs (ce qui qualifie ces entités)
 Adjectifs, quantités, énumérations de valeurs possibles

→ leurs méthodes (fonctions / traitements / actions)
 Verbes, formes verbales

!

32

Programmation Orientée Objet

Une méthode de conception « orientée objet »

On s'efforcera d'encapsuler les attributs

→ Le code client devra pouvoir utiliser
 les objets sans accéder directement
 aux données membres...

→ Les méthodes constituent l'interface
 càd. la façon normale d'utiliser les objets

L'objectif est de découpler le code client
(appelant) des "détails" internes (appelé)

!

33

Programmation Orientée Objet

Une méthode de conception « orientée objet »

Exemple :

Un objet (de la classe) Avion comporte de
nombreuses données membre techniques
(poids embarqué, carburant aile gauche, pression hydraulique frein droit…)

Un objet (de la classe) TourDeControle n'a pas vocation
à mettre son nez dans tous ces détails, elle va interagir
avec un objet avion avec un appel à la méthode

 bool estPretAuDecollage()

qui retourne un indicateur booléen Oui/Non à partir des
données internes à l'objet.

!

34

Programmation Orientée Objet

Une méthode de conception « orientée objet »

!

N904DE

ORLY-TDC3

bool estPretAuDecollage()
void autoriserDecollage(Piste p)
XYZ getPosition()

✔

✘

Interface

Implémentation

35

Programmation Orientée Objet

Une méthode de conception « orientée objet »

● L'objet lui même est le mieux placé pour gérer ses propres
données et proposer à l'utilisateur des possibilités claires
et circonscrites

● L'interface à vocation à rester stable

● L'implémentation peut évoluer sans casser le protocole
d'utilisation de l'objet (le mode d'emploi reste le même)
et donc sans casser le code utilisateur (code client)

!

36

Programmation Orientée Objet

Une méthode de conception « orientée objet »

Ensuite/conjointement on définira les relations
entre les (objets des différentes) classes.

!

Avion

Pilote

Passager

CarteEmbrq

- ailerons

- soute - armement

Agrégation
Un avion a 2 pilotes
(qui peuvent changer)

Composition
Un passager a une
carte d'embarquement
nominale (non cessible)

Spécialisation / Héritage
Un avion de ligne est
un avion (il a des ailerons)
et en plus il a une soute

Avion

AvionDeLigne AvionMilitaire2 1

37

Programmation Orientée Objet

Une méthode de conception « orientée objet »

Cette étude aboutit à la mise en place d'un
modèle objet du projet avec diagramme(s)
de classes. (notation normalisée UML → cours 2)

source

https://sourcemaking.com/uml/modeling-it-systems/structural-view/constructing-class-diagrams

38

Programmation Orientée Objet

Une méthode de conception « orientée objet »

diagramme de classes
d'un système d'information
"service passagers"

source

On ne connaîtra
pas tout de suite
tous les aspects C++
pour implémenter des
diagrammes complexes

https://sourcemaking.com/uml/modeling-for-system-integration/the-static-view/constructing-class-diagrams

39

Programmation Orientée Objet

 Une méthode de conception « orientée objet »

● Toute cette phase de conception / architecture
logicielle se fait indépendamment du(des)
langage(s) d'implémentation (codage)

● Pour programmer en C++ il faut programmer
orienté objet donc connaître ces méthodes
de conception en amont du code

● En tant que programmeurs de « C avec structs »
vous avez déjà pris un bon départ :
la class du C++ dérive directement de
la struct du C !

!

40

COURS 1

A) Présentation C++ / contexte
B) Programmation Orientée Objet
C) Du C au C++ sur un exemple

41

Du C au C++ sur un exemple

Un problème classique : gestion de collection
d'entités homogènes → ajouter / voir / modifier
0 comptes :

0 : quitter
1 : ajouter un compte
2 : ajouter un compte avec cadeau
3 : crediter un compte
4 : debiter un compte

choix menu : 1↵
titulaire : Lucien↵
Creation du compte Lucien

42

Du C au C++ sur un exemple

Un problème classique : gestion de collection
d'entités homogènes → ajouter / voir / modifier
1 comptes :
 1 Titulaire Lucien Solde 0.00

0 : quitter
1 : ajouter un compte
2 : ajouter un compte avec cadeau
3 : crediter un compte
4 : debiter un compte

choix menu : 2↵
titulaire : Alexia↵
montant du cadeau : 45↵
Creation du compte Alexia

43

Du C au C++ sur un exemple

Un problème classique : gestion de collection
d'entités homogènes → ajouter / voir / modifier
2 comptes :
 1 Titulaire Lucien Solde 0.00
 2 Titulaire Alexia Solde 45.00

0 : quitter
1 : ajouter un compte
2 : ajouter un compte avec cadeau
3 : crediter un compte
4 : debiter un compte

choix menu : 3↵
compte numero : 1↵
montant a crediter : 120.50↵

44

Du C au C++ sur un exemple

Un problème classique : gestion de collection
d'entités homogènes → ajouter / voir / modifier
2 comptes :
 1 Titulaire Lucien Solde 120.50
 2 Titulaire Alexia Solde 45.00

0 : quitter
1 : ajouter un compte
2 : ajouter un compte avec cadeau
3 : crediter un compte
4 : debiter un compte

choix menu : 4↵
compte numero : 2↵
montant a debiter : 50↵
provisions insuffisantes Alexia !

45

Du C au C++ sur un exemple

Un problème classique : gestion de collection
d'entités homogènes → ajouter / voir / modifier
2 comptes :
 1 Titulaire Lucien Solde 120.50
 2 Titulaire Alexia Solde 45.00

0 : quitter
1 : ajouter un compte
2 : ajouter un compte avec cadeau
3 : crediter un compte
4 : debiter un compte

choix menu : 4↵
compte numero : 2↵
montant a debiter : 40↵

46

Du C au C++ sur un exemple

Un problème classique : gestion de collection
d'entités homogènes → ajouter / voir / modifier
2 comptes :
 1 Titulaire Lucien Solde 120.50
 2 Titulaire Alexia Solde 5.00

0 : quitter
1 : ajouter un compte
2 : ajouter un compte avec cadeau
3 : crediter un compte
4 : debiter un compte

choix menu : 0↵
Liberation du compte Lucien
Liberation du compte Alexia

Process returned 0 (0x0)

47

Du C au C++ sur un exemple

En termes de conception orientée objets
on identifie immédiatement une classe centrale :
la classe Compte, avec 2 attributs
➔ titulaire : chaîne de caractères
➔ solde : une valeur flottante

et 5 méthodes
➔ Créer un compte avec solde initial paramétrable
➔ Libérer (la mémoire d') un compte
➔ Afficher un compte (pour l'affichage de la liste)
➔ Créditer un compte avec crédit en paramètre
➔ Débiter un compte avec débit en paramètre

48

Du C au C++ sur un exemple

La classe Compte en notation UML normalisée

Compte
- titulaire : String
- solde : Real
+ Compte (titulaire : String, solde_init : Real = 0.0)
+ ~Compte ()
+ afficher ()
+ crediter (credit : Real)
+ debiter (debit : Real)

!

49

Du C au C++ sur un exemple

La classe Compte en notation UML normalisée

Compte
- titulaire : String
- solde : Real
+ Compte (titulaire : String, solde_init : Real = 0.0)
+ ~Compte ()
+ afficher ()
+ crediter (credit : Real)
+ debiter (debit : Real)

Classe

Attributs

Méthodes

Membres privés

Membres publics

Méthode créer : Constructeur

Méthode libérer : Destructeur

!

50

Du C au C++ sur un exemple

En C comme en C++
 ~ même nbr de lignes 150
 même IDE Code::Blocks
 même compilateur GCC
 même distinction fichiers

d'en-tête (.h) et fichiers
d'implémentation (.c → .cpp)

 même découpage de projet

Voyons ++ en détail
ce qui change ...

51

Du C au C++ sur un exemple

En C d'un côté une struct, de l'autre des sous-
programmes qui reçoivent cette struct en param.

/// Définition d'un type "compte en banque"
typedef struct compte
{
 char *titulaire; // Nom du titulaire
 float solde; // Montant actuel
}
t_compte;

/// Déclaration des traitements associés au type
t_compte * compteCreer(char *titu);
t_compte * compteCreerAvecSolde(char *titu, float solde_init);
void compteLiberer(t_compte * compte);
void compteAfficher(t_compte * compte);
void compteCrediter(t_compte * compte, float credit);
int compteDebiter(t_compte * compte, float debit);

compte.h

Noter la redondance : tous les sous-progs associés
au type t_compte prennent un même 1er paramètre

52

Du C au C++ sur un exemple

En C++ la classe groupe les données (attributs)
et traitements (méthodes) d'un même type d'objets

compte.h/// Définition d'un type "compte en banque"
class Compte
{
 /// Attributs (données associées à un objet)
 private :
 std::string m_titulaire; // Nom du titulaire
 float m_solde; // Montant actuel

 /// Méthodes (déclarations des traitements associés)
 public :
 Compte(std::string _titulaire, float _solde_init=0.0f);
 ~Compte();
 void afficher() const;
 void crediter(float _credit);
 void debiter(float _debit);
 std::string getTitulaire() const;
};

Seules les méthodes de l'objet
ont accès aux données internes
déclarées « private »

53

Du C au C++ sur un exemple

En C++ les méthodes (sous-progs. associés à
une classe) reçoivent automatiquement l'objet

compte.h/// Définition d'un type "compte en banque"
class Compte
{
 /// Attributs (données associées à un objet)
 private :
 std::string m_titulaire; // Nom du titulaire
 float m_solde; // Montant actuel

 /// Méthodes (déclarations des traitements associés)
 public :
 Compte(std::string _titulaire, float _solde_init=0.0f);
 ~Compte();
 void afficher() const;
 void crediter(float _credit);
 void debiter(float _debit);
 std::string getTitulaire() const;
};

L'objet de type Compte (cible du traitement)
n'est plus mentionné explicitement :
il est transmis implicitement à la méthode

Valeur par défaut d'un paramètre

Constructeur→

Destructeur→

Accesseur en lecture, oublié dans l'analyse UML mais nécessaire pour
permettre au code client d'afficher le titulaire lors d'un débit à découvert...

54

Du C au C++ sur un exemple

En C++ on ne plaisante pas avec les types mais
on a des commodités : enfin des chaînes pratiques

compte.h/// Définition d'un type "compte en banque"
class Compte
{
 /// Attributs (données associées à un objet)
 private :
 std::string m_titulaire; // Nom du titulaire
 float m_solde; // Montant actuel

 /// Méthodes (déclarations des traitements associés)
 public :
 Compte(std::string _titulaire, float _solde_init=0.0f);
 ~Compte();
 void afficher() const;
 void crediter(float _credit);
 void debiter(float _debit);
 std::string getTitulaire() const;
};

Ni un affichage ni la récupération du nom
d'un titulaire ne doivent modifier l'objet
sur lequel porte l'opération :
on déclare que l'objet y restera constant

float ≠ double

Le type string de la bibliothèque standard gère
tout seul des chaînes de taille variable !

On peut retourner une chaîne aussi simplement
qu'un vulgaire int ! (sémantique par valeur)

55

Du C au C++ sur un exemple

En C le fichier .c donne l'implémentation des
sous-programmes déclarés dans l'interface .h

compte.c#include "compte.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/// Définition des traitements associés au type

t_compte * compteCreer(char *titu)
{ ... }
t_compte * compteCreerAvecSolde(char *titu, float solde_init)
{ ... }
void compteLiberer(t_compte * compte)
{ ... }
void compteAfficher(t_compte * compte)
{ ... }
void compteCrediter(t_compte * compte, float credit)
{ ... }
int compteDebiter(t_compte * compte, float debit)
{ ... }

56

Du C au C++ sur un exemple

En C++ le fichier .cpp donne l'implémentation des
méthodes de classe déclarées dans l'interface .h

compte.cpp
#include "compte.h"

#include <iostream>
#include <string>
#include <stdexcept>

/// Méthodes (définitions des traitements associés)

Compte::Compte(std::string _titulaire, float _solde_init)
{ ... }
Compte::~Compte()
{ ... }
void Compte::afficher() const
{ ... }
void Compte::crediter(float _credit)
{ ... }
void Compte::debiter(float _debit)
{ ... }
std::string Compte::getTitulaire() const
{ ... }

Opérateur de résolution de portée :
on parle bien de la méthode afficher de la classe Compte

Opérateur de résolution de portée :
on parle de la classe string de la bibliothèque standard

57

Du C au C++ sur un exemple

En C il faut allouer explicitement les structs
qui doivent « survivre » à l'appel d'un sous-prog.

compte.c/// Constructeurs d'objet de type compte
t_compte * compteCreer(char *titu)
{
 return compteCreerAvecSolde(titu, 0);
}

t_compte * compteCreerAvecSolde(char *titu, float solde_init)
{
 // Pointeur sur et allocation d'un nouveau compte
 t_compte * compte;
 compte = (t_compte *)malloc(1*sizeof(t_compte));

 // Initialisation des données
 compte->titulaire = (char *)malloc((strlen(titu)+1) * sizeof(char));
 strcpy(compte->titulaire, titu);
 compte->solde = solde_init;

 // Retour à l'appelant du compte alloué & initialisé
 return compte;
}

58

Du C au C++ sur un exemple

En C++ la méthode constructeur ne gère pas
explicitement l'allocation de son propre espace

compte.cpp

Pas d'allocation explicite de l'objet ici (voir appelant...)
Pas d'allocation explicite des attributs
qui ont une « sémantique par valeur »

/// Constructeur d'objet de type compte (avec ou sans solde_init)
Compte::Compte(std::string _titulaire, float _solde_init)
{
 m_titulaire = _titulaire;
 m_solde = _solde_init;
}

class Compte
{
 private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string _titulaire, float _solde_init=0.0f);
 ...

compte.h

59

Du C au C++ sur un exemple

En C++ dans la méthode d'un objet on accède
aux attributs de celui-ci sans l'expliciter

compte.cpp

pour éviter les confusion on peut par convention
préfixer les données membre par m_
préfixer les paramètres par _

copie de la chaîne en paramètre dans l'attribut
(les chaînes strings s'utilisent comme des scalaires !)

/// Constructeur d'objet de type compte (avec ou sans solde_init)
Compte::Compte(std::string _titulaire, float _solde_init)
{
 m_titulaire = _titulaire;
 m_solde = _solde_init;
}

class Compte
{
 private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string _titulaire, float _solde_init=0.0f);
 ...

on écrit directement l'attribut de l'objet (l'objet est implicite)

compte.h

60

Du C au C++ sur un exemple

En C ce qui a été alloué explicitement dans le
constructeur doit être libéré explicitement

compte.c/// Destructeur d'objet de type compte
void compteLiberer(t_compte * compte)
{
 // Le champ titulaire a été alloué -> libération
 free(compte->titulaire);

 // L'objet lui même a été alloué -> libération
 free(compte);
}

61

Du C au C++ sur un exemple

En C++ aussi ! Mais souvent le constructeur
ne fait aucune allocation explicite (pas besoin) ...

compte.cpp/// Destructeur d'objet de type compte
Compte::~Compte()
{
 // Rien à faire ici
 // (car aucune allocation explicite dans le constructeur)
}

62

Du C au C++ sur un exemple

En C les entrées/sorties consoles utilisent des
fonctions format-typées printf et scanf de stdio.h

compte.c/// Opération d'affichage d'un objet de type compte
void compteAfficher(t_compte * compte)
{
 printf("Titulaire %s \tSolde %.02f\n",
 compte->titulaire, compte->solde);
}

63

Du C au C++ sur un exemple

En C++ les entrées/sorties consoles utilisent des
flots chaînés std::cin et std::cout de iostream

compte.cpp/// Opération d'affichage d'un objet de type compte
void Compte::afficher() const
{
 std::cout << "Titulaire " << m_titulaire
 << " \tSolde " << m_solde << std::endl;
}

64

Du C au C++ sur un exemple

En C les conditions d'erreur sont souvent
retournées à l'appelant par valeur spéciale

compte.c/// Opération de créditer un objet de type compte
void compteCrediter(t_compte * compte, float credit)
{
 compte->solde += credit;
}

/// Opération de débiter un objet de type compte
// Valeur de retour == 0 indique un compte pas approvisionné
// (dans ce cas le compte n'est pas débité ...)
int compteDebiter(t_compte * compte, float debit)
{
 if (compte->solde - debit < 0.0)
 return 0;

 compte->solde -= debit;
 return 1;
}

65

Du C au C++ sur un exemple

En C++ les conditions d'erreurs passent par un
nouveau mécanisme, les exceptions ...

compte.cpp// Opération de créditer un objet de type compte
void Compte::crediter(float _credit)
{
 m_solde += _credit;
}

// Opération de débiter un objet de type compte
// Exception invalid_argument si le compte n'est pas approvisionné
// (dans ce cas le compte n'est pas débité ...)
void Compte::debiter(float _debit)
{
 if (m_solde - _debit < 0.0f)
 throw std::invalid_argument("provisions insuffisantes");

 m_solde -= _debit;
}

Anomalie : on interrompt l'exécution ici, on reprend au niveau
de l'appelant, ou de l'appelant de l'appelant... jusqu'à trouver
un niveau qui déclare savoir s'occuper de ce problème
en ayant précisé un bloc try / catch

66

Du C au C++ sur un exemple

En « C objet » comme en C++
on distingue
 l'interface d'une classe et

l'implémentation d'une classe
constituent le code utilisé

 le code utilisateur du type
ou code client ou appelant

le développeur d'une classe doit
faciliter le travail du développeur
client de la classe : interface
claire, stable, documentée,
bien séparée de l'implémentation

67

Du C au C++ sur un exemple

En C code client du main, ici on choisit d'utiliser
un tableau de pointeurs sur structs

main.c// Utilisation de la "bibliothèque" gestion de compte
#include "compte.h"
#include <stdio.h>
...
/// Gestion de quelques comptes (moins de 50)
int main()
{
 /// La collection des (pointeurs sur) comptes
 /// Au démarrage il y a 0 compte
 /// Il y en aura 50 au plus
 t_compte * comptes[50] = {NULL};
 int nbComptes = 0;

 /// Variables auxiliaires (saisies...)
 int choix;
 char nom[100];
 float montant;
 int id;
 int debitOk;

alternatives en C :
- malloc/realloc
- liste chaînée

68

Du C au C++ sur un exemple

En C++ code client du main, ici on peut utiliser
un conteneur standard : un vecteur de pointeurs...

main.cpp

Le vecteur reçoit le type « pointeur sur Compte »
en paramètre, on utilise un template ...

// Utilisation de la "bibliothèque" gestion de compte
#include "compte.h"

#include <iostream>
#include <string>
#include <vector>
...
/// Gestion comptes (quantité non limitée)
int main()
{
 /// La collection des (pointeurs sur) comptes
 /// Au démarrage il y a 0 compte
 /// vector est comme un tableau mais extensible...
 std::vector<Compte*> comptes;

 /// Variables auxiliaires (saisies...)
 int choix;
 std::string nom;
 float montant;
 size_t id;

69

Du C au C++ sur un exemple

En C à chaque passage en paramètre de la
collection il faut envoyer tableau et nombre d'élém.

main.c

valeur paramètre modifiée par l'appel :
passage par adresse (syntaxe spécifique)

 do /// Boucle interactive de menu
 {
 afficherComptes(comptes, nbComptes);
 afficherMenu();

 saisirEntierBorne("choix menu", &choix, 0, 4);

 switch(choix)
 {
 case 0:
 break;
 ...
 }
 }
 while (choix != 0);

 libererComptes(comptes, nbComptes);

 return 0;
}

on borne des entrées
entiers, flottants...
un sous-prog. par type

70

Du C au C++ sur un exemple

En C++ le passage en paramètre de la collection
est référencé par le vecteur qui encapsule tout

main.cpp

valeur paramètre modifiée par l'appel :
passage par référence
(syntaxe spécifique seulement pour
le code appelé, rien dans le code appelant)

 do /// Boucle interactive de menu
 {
 afficherComptes(comptes);
 afficherMenu();

 saisirBorne("choix menu", choix, 0, 4);

 switch(choix)
 {
 case 0:
 break;
 ...
 }
 }
 while (choix != 0);

 libererComptes(comptes);

 return 0;
}

déduction auto
du type à borner
un seul template

71

Du C au C++ sur un exemple

En C l'ajout d'un élément à la collection est simple
si on ne gère pas la quantité limitée [50] !

main.c

 // Ajouter un compte (! pas de gestion 50 comptes max !)
 case 1:
 saisirMotBorne("titulaire", nom, 'A', 'Z');
 comptes[nbComptes++] = compteCreer(nom);
 break;

 // Ajouter un compte avec cadeau (! idem cas précédent !)
 case 2:
 saisirMotBorne("titulaire", nom, 'A', 'Z');
 saisirFlottantBorne("montant du cadeau", &montant, 0.10, 55.90);
 comptes[nbComptes++] = compteCreerAvecSolde(nom, montant);
 break;

72

Du C au C++ sur un exemple

En C++ l'ajout d'un élément à la collection est
simple et la quantité « illimitée » (mémoire vive...)

main.cpp

 // Ajouter un compte (pas de limite nombre comptes)
 case 1:
 saisirBorne<std::string>("titulaire", nom, "A", "ZZZ");
 comptes.push_back(new Compte(nom));
 break;

 // Ajouter un compte avec cadeau (pas de limite nombre comptes)
 case 2:
 saisirBorne<std::string>("titulaire", nom, "A", "ZZZ");
 saisirBorne("montant du cadeau", montant, 0.10f, 55.90f);
 comptes.push_back(new Compte(nom, montant));
 break;

l'allocation dynamique de l'objet
ne se fait pas dans le constructeur
mais au niveau de l'appelant
l'opérateur new remplace la fonction malloc

73

Du C au C++ sur un exemple

En C l'appel à un traitement de l'objet passe
l'objet en paramètre

main.c

 // Créditer un compte
 case 3:
 saisirEntierBorne("compte numero", &id, 1, nbComptes);
 id--;
 saisirFlottantBorne("montant a crediter", &montant, 0, FLT_MAX);
 compteCrediter(comptes[id], montant);
 break;

74

Du C au C++ sur un exemple

En C++ l'appel à un traitement de l'objet part
de l'objet, l'objet n'est pas dans les paramètres

main.cpp

 // Créditer un compte
 case 3:
 saisirBorne("compte numero", id, 1u, comptes.size());
 --id;
 saisirBorne("montant a crediter", montant, 0.0f);
 comptes[id]->crediter(montant);
 break;

on part de l'objet pour un appel de méthode

compte[id] est l'adresse d'un Compte donc
on utilise -> au lieu de .
(même règle que accès champs struct)

on accède au ième élément d'un vecteur
comme pour un tableau usuel

le vecteur est un objet, on récupère le
nombre d'élément qu'il contient en utilisant
sa méthode size()

coquetterie sans grande importance
on préférera --compteur à compteur--
idem pour les incréments : ++i plutôt que i++

75

Du C au C++ sur un exemple

En C la gestion d'une anomalie dans le sous-prog
appelé passe par le contrôle d'un code retour...

main.c

 // Débiter un compte
 case 4:
 saisirEntierBorne("compte numero", &id, 1, nbComptes);
 id--;
 saisirFlottantBorne("montant a debiter", &montant, 0, FLT_MAX);
 debitOk = compteDebiter(comptes[id], montant);
 if (!debitOk)
 printf("provisions insuffisantes %s !\n",
 comptes[id]->titulaire);
 break;

En C on s'autorise généralement à accéder
directement aux valeurs des attributs d'un
« objet » au niveau du code client...

76

Du C au C++ sur un exemple

En C++ l'appelé n'a pas besoin d'utiliser le canal
return pour signaler un problème : exceptions !

main.cpp

 // Débiter un compte
 case 4:
 try
 {
 saisirBorne("compte numero", id, 1u, comptes.size());
 --id;
 saisirBorne("montant a debiter", montant, 0.0f);
 comptes[id]->debiter(montant);
 std::cout << "debit ok" << std::endl;
 }
 catch (const std::invalid_argument& e)
 {
 std::cout << e.what() << " "
 << comptes[id]->getTitulaire() << " !\n";
 }
 break;

on essaye d'exécuter une séquence dans
le bloc try, il peut y avoir un problème signalé
par un appelé, l'appelé d'un appelé etc...
avec un throw (voir slide 62)

on rattrape ici l'exécution si il y a eu
une anomalie lors de l'exécution du bloc try

77

Du C au C++ sur un exemple

En C++ le respect du principe d'encapsulation
est imposé par les attributs en private ...

main.cpp

 catch (const std::invalid_argument& e)
 {
 std::cout << e.what() << " "
 << comptes[id]->getTitulaire() << " !\n";
 }
 break;

le code client ne peut pas accéder directement
aux attribut, il doit utiliser un accesseur public !

// Accesseur en lecture de l'attribut titulaire
std::string Compte::getTitulaire() const
{
 return m_titulaire;
} compte.cpp

78

Du C au C++ sur un exemple

En C++ comme en C il est préférable d'anticiper
les anomalies avant l'appel quand c'est possible !

main.cpp

 case 4:
 saisirBorne("compte numero", id, 1u, comptes.size());
 --id;
 saisirBorne("montant a debiter", montant, 0.0f);
 if (comptes[id]->debitable(montant))
 {
 comptes[id]->debiter(montant);
 std::cout << "debit ok" << std::endl;
 }
 else
 std::cout << "provisions insuffisantes "
 << comptes[id]->getTitulaire() << " !\n";
 break;

Attention cette solution n'est pas « thread safe »
si l'objet est utilisé par plusieurs process son état
peut changer entre la vérification et l'opération

méthode avec valeur de retour booléenne :
l'objet est le mieux placé pour savoir
si une opération le concernant est possible

L'utilisation du mécanisme d'exception du code précédent
était illustrative, mais il est déconseillé d'utiliser des exceptions
pour gérer des cas de « business logic ». L'approche suivante est préférable :

79

Du C au C++ sur un exemple

En C une procédure auxiliaire du main.c

main.c
void afficherMenu()
{
 printf("0 : quitter\n");
 printf("1 : ajouter un compte\n");
 printf("2 : ajouter un compte avec cadeau\n");
 printf("3 : crediter un compte\n");
 printf("4 : debiter un compte\n");
 printf("\n");
}

80

Du C au C++ sur un exemple

En C++ une procédure auxiliaire du main.cpp

main.cpp
void afficherMenu()
{
 std::cout << "0 : quitter" << std::endl;
 std::cout << "1 : ajouter un compte" << std::endl;
 std::cout << "2 : ajouter un compte avec cadeau" << std::endl;
 std::cout << "3 : crediter un compte" << std::endl;
 std::cout << "4 : debiter un compte" << std::endl;
 std::cout << std::endl;
} end of line : équivalent à "\n"

81

Du C au C++ sur un exemple

En C le parcours d'une collection
dans un tableau

main.c

void afficherComptes(t_compte * comptes[50], int nbComptes)
{
 int i;

 printf("\n\n%d comptes :\n", nbComptes);
 for (i=0; i<nbComptes; i++)
 {
 printf("%2d ", i+1);
 compteAfficher(comptes[i]);
 }
 printf("\n");
}

82

Du C au C++ sur un exemple

En C++ le parcours d'une collection
dans un vecteur

main.cpp

void afficherComptes(const std::vector<Compte*>& comptes)
{
 std::cout << "\n\n" << comptes.size() << " comptes :\n";
 for (size_t i=0; i<comptes.size(); i++)
 {
 std::cout << i+1 << " ";
 comptes[i]->afficher();
 }
 std::cout << std::endl;
}

le type size_t est un « entier non signé »
on l'utilisera à la place de int pour les variables
comparées à une size() (compteurs …)

hey ! On déclare le compteur dans la boucle for !

passage par référence : on travaillera ici avec
le vecteur de l'appelant et non pas une copie

83

Du C au C++ sur un exemple

En C le parcours d'une collection
dans un tableau pour libérer les objets

main.c

void libererComptes(t_compte * comptes[50], int nbComptes)
{
 int i;

 for (i=0; i<nbComptes; i++)
 compteLiberer(comptes[i]);
}

84

Du C au C++ sur un exemple

En C++ le parcours d'une collection
dans un vecteur pour libérer les objets

main.cpp

void libererComptes(std::vector<Compte*>& comptes)
{
 for (size_t i=0; i<comptes.size(); ++i)
 delete comptes[i];
}

en C++ l'opérateur delete
remplace la fonction free

la libération appelle implicitement
la méthode destructeur ~Compte

85

Du C au C++ sur un exemple

En C 3 codes presque identiques avec des types
distincts nécessitent 3 sous-progs différents

main.c
void saisirEntierBorne(char *message, int *pe, int min, int max)
{
 printf("%s : ", message);
 scanf("%d", pe);
 while (*pe<min || *pe>max)
 {
 printf("Saisie incorrecte, recommencer : ");
 scanf("%d", pe);
 }
}
void saisirFlottantBorne(char *message, float *pf, float min, float max)
{
 printf("%s : ", message);
 scanf("%f", pf);
 while (*pf<min || *pf>max)
 {
 printf("Saisie incorrecte, recommencer : ");
 scanf("%f", pf);
 }
}
void saisirMotBorne(char *message, char *pc, char min, char max)
{
 printf("%s : ", message);
 scanf("%s", pc);
 while (*pc<min || *pc>max)
 {
 printf("Saisie incorrecte, recommencer : ");
 scanf("%s", pc);
 }
}

Le C permettrait
d'éviter cette répétition
mais en utilisant des
macros :
 - code peu lisible
 - piégeux
 - typage non strict

86

Du C au C++ sur un exemple

En C++ le mécanisme de templates permet de
 « paramétrer en fonction du type »

main.cpp

template<typename T>
void saisirBorne(std::string message, T& res, T min, T max)
{
 std::cout << message << " : " ;
 std::cin >> res;
 while (res<min || res>max)
 {
 std::cout << "Saisie incorrecte, recommencer : " ;
 std::cin >> res;
 }
}

87

Du C au C++ sur un exemple

En C++ les templates permettent la programmation
générique : même algo. indépendamment du type

C'est un « paradigme » de programmation qui fait
partie des points forts du C++ mais qui est assez
éloigné de ce qu'on connaissait :
on utilisera rapidement des templates en code client
mais l'implémentation des templates sera vu à la fin

main.cpp

template<typename T>
void saisirBorne(std::string message, T& res, T min,
 T max=std::numeric_limits<T>::max());

Prototypage du template avec valeur par défaut au dernier paramètre

88

Du C au C++ sur un exemple

Les codes C et C++ de ce chapitre
sont disponibles intégralement
en 2 projets Code::Blocks

 banque_c version C
 banque_cpp version C++

https://fercoq.bitbucket.io/cpp/cours/cours1/banque.zip

Pour compiler les exemples de code sous Code::Blocks
configurer C++14 dans menu déroulant → Settings → Compiler...

https://fercoq.bitbucket.io/cpp/cours/cours1/banque.zip

89

Du C au C++ sur un exemple

 Ça fait beaucoup trop pour un 1er cours !

● Pas d'inquiétude, il s'agissait d'un survol
de 2 monuments à la fois :

 conception objet / UML
 C++

● Tous les concepts présentés seront détaillés
lors des prochains cours et pratiqués en TD/TP

● Vos professeurs se feront un plaisir de répondre
aux questions qui ne manqueront pas
de se poser

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89

