Robin FERCOQ

r|!| ECE PARIS NS e 019

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

POO - C++

Sommaire general du semestre

COURS

Intro, concepts, 1 exemple
Modélisation objet / UML
C++ pratique 1

C++ pratique 2

Classes & C++ : bases
Classes & C++ : compléments
Conteneurs & C++ : la STL
Héritage / polymorphisme

. Modeles objets avances
10.Exceptions, flots, fichiers ..
11.Templates cote developpeur
12.Gestion méemoire / smarts ptrs

© 0 NSO AWDNR

© 0 NOOAWDNR

Semaine suivante
> TPs

Organisation objet des données
Diagrammes de classe UML

C++ pratique, E/S, string, vector
C++ pratique, type &, surcharge
Date : une classe simple en C++
UML et C++, associations
Gestion de collections complexes
Collections polymorphes

. Modele composite et graphismes

10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

COURS 2

A) UML et methodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML. !

D) Les associations entre classes
E) L’heritage et le polymorphisme
F) Compléements

COURS 2

A) UML et methodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML. !

D) Les associations entre classes
E) L’heritage et le polymorphisme
F) Compléements

UML et methodes dev. objet

I * UML = Unified Modeling Language
 UML est un « langage » de représentation graphique
I standardisé de modeles informatiques orientes objet

* UML permet de décrire et visualiser la structure et le
comportement d’un systeme logiciel orienté objet
en cours de conception ou d’evolution ou déja concu

—————————— >
__________ > I O
Dependency RN et mart Connector O Interface O D

Communication Line Provided Interface Use Case State

- O C S
i Class C
Composition Request Required Interface (:)
e Association * O
o Decision
- - i Activi
Association Many-to-Many Provided Interface (reverse) Mode i ty

< | Association *) Component] Actor e — H
= i i Synchronization
Generalization Association One-to-Many Required Interface (reverse) (i
<_ S — —
Package Pattern

Realization Line Connector Haote

F UML et méthodes dev. objet

I * Un modele est une « projection » des entites reelles
dans I'espace des informations utiles a I'application
logicielle ciblee : a quoi vont servir les informations

I du modele ? On va donc simplifier/choisir des données.

I
Real World M-udeling> Mode! CDC 1
Optimiser le

renouvellement
de la flotte

@ 1 : Airplane
e g Registration ldentification=HB-IQI
s B Start ofiOperation=12-14-1999

é 2-1—' Status = Active

CDC 2
Suivre et améliorer
le service clients
1ére classe / VIP

|

Object of the Real World \ﬂbrect in the Model

On modeélise par rapport au péerimetre et aux objectifs d’un CDC

UML et methodes dev. objet

I UML n’est pas une méthodologie de développement
* Il'y a plusieurs methodologies, selon le type de projet

I Waterfall =

Initial i S 1 r a 1
Investigation Requirements
Definition

Prototyping

Requirements Coding, ..
Definition
; sl Imple
Initial Investigation
System Design

S

https://dev.to/iriskatastic/top-6-software-development-methodologies-9b

UML et méthodes dev. objet

UML n’est pas une methodologie de developpement

Il'y a plusieurs methodologies, selon le type de projet
Ce sont differentes facons de (re)parcourir la sequence

CDC Analyse CDC & Codage
Objectifs :> Conception OO :> & tests
Langage nat. UML C++/Java/C# ...

UML est un langage commun et un pivot dans la
plupart des methodologies quand on developpe objet

https://dev.to/iriskatastic/top-6-software-development-methodologies-9b

UML et méthodes dev. objet

UML 2.2 Diagram

Pl

* La nhorme UML est riche et complexe

Ces 3 types de diagrammes
sont les plus utilisés par les
equipes de développement

Structure Diagram

Behavior Diagram

A

" ——

A

Class Diagram
\]

)
/

v

Object Diagram

Package Diagram

Component Diagram

Composite Structure

Diagram

Deployment Diagram

Profile Diagram

N

/T

Sa—
UseCase Diagram |
/

Activity Diagram

State Machine
Diagram

Interaction Diagram

A
L
€| Sequence Diagﬁ)
S~ "

Communication
Diagram

Interaction Overview
Diagram

Timing Diagram

* Les diagrammes de comportement (behavior) décrivent

UML et methodes dev. objet

des aspects dynamiques du modele

A<

Intemaut

Borne interactive d'une banque

Retirer de I'argent

\
Effectuer un virement \

extension points
vérification_solde {aprés avoir,
demandé le montant}

\
y=<include=>
\

\

g<include>> y

AN

Condition : s1 monta
extension point : vé

Y
N <<extend>>
nt = 20€ -7 N S'authentifier
rification_solde
vérifier solde ; i
!/
Consulter comptes

! c<include>>
Consulter depuis Internet

sd Rechercher llvre P,

+nombre Livres:Integer

:Médiathéque
1
Client !
1 1
I — [
. chercher("Tintin") -
I D
:":- nombredvres=chercher Tintin"f4Z =~ =,
[[

Cas d'usage

Sequence

UML et methodes dev. objet

I * Les diagrammes de structure décrivent des aspects
statiqgues du modele

Entreprise var entrep:Entreprise

+nom: string
nom:string="PERTMNE"

1
travailler pour :
travailler pour travailler pour

travailler pour

I

Personne pl:Personne :Personne p2:Personne

Diagrammes de classes Diagrammes d’objets

12

__ﬁ

COURS 2

A) UML et methodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML. !

D) Les associations entre classes
E) L’heritage et le polymorphisme
F) Compléements

r Diagramme de classes en UML

sont les diagrammes les plus importants pour coder
un projet et assurer sa cohérence, sa lisibilite

I * On ne couvrira ici que les diagrammes de classes qui

* |Is representent les plans : I'architecture du logiciel
* Une classe =

- Une seule boite dans le diagramme de classes

— Une déclaration de classe en C++ ...
class MaClasse { attributs .. méthodes .. };

— Un fichier en-téte macClasse.h

— Un fichier d’implementation macClasse.cpp
void MaClasse: :uneMethode (int param) { ... }

float MaClasse: :autreMethode () { ... }

* Respecter les usages et notations de la norme UML

* Universellement (re)connu par les developpeurs
* Principaux elements du diagramme de classes :

r Diagramme de classes en UML

Association Composition
S
role role
_— Aggregation
i Association #* “ <>
-
role role
Inheritance D’
i Assaciation ¥
manager employee
Class
* Assaociation -
role role Class Class Class
) Association) Attributes Attributes
role role Operations

* Les diagrammes d’objets sont illustratifs, particuliers
* Les diagrammes de classe sont abstraits, genéraux

Objets... Classes...
représentants concrets des classes catégories d’objets
de méme nature

r Diagramme de classes en UML a

Entreprise
nom = "ECE"

Entreprise
- nom : String

employes|...] = T_

1 | employeur

1..* | employé

L

Personne Personne Personne Personne
nom = "Segado” nom = "Fercoq" nom = "Diedler" - nom : String
employeur = o employeur = o employeur =
Diagramme d’objets Diagramme de classes

Ici on s’écarte de la norme UML : on reprend les « schémas mémoire » vus en ING1 Norme UML stricte

r Diagramme de classes en UML a

I * Un diagramme d’objets est un cas particulier,
c’est un diagramme « jetable » qui sert
a illustrer ou comprendre une certaine situation
I représentative d’objets manipulés par le systeme

* Pour couvrir differentes situations Il faut differents
diagrammes d’objets, on n’est pas sur de tout voir

* Les diagrammes objets deviennent vite illisibles !

* Un diagramme de classes est général :
Il couvre toutes les situations possibles
entre les (objets des) classes

* Les diagrammes de classes sont plus abstraits,
IIs ne représentent pas directement des objets !

Diagramme de classes en UML G

* Avec un autre diagramme d’objets on peut découvrir
de nouvelles situations qui changent le modele !

I
I

Objets...

représentants concrets des classes

Entreprise

nom = "ECE"

employés|...] = {._

P

Entreprise

nom = "Lights SA"

;

employés|...] =

7

Personne

Personne

Personne)

nom = "Segado" nom = "Fercoq" nom = "Diedler.'/
employeur1 = &— employeur1 = &— employeur1 =
employeur2 = null ‘emp.lg@Q = null WrZ =]

Diagramme d’objets

Classes...
catégories d’objets
de méme nature

Entreprise
- nom : String

@i employeur

multiplicité

1..* | employé

Personne
- nom : String

Diagramme de classes

Diagramme de classes en UML

I * Une fois maitrisée I'abstraction des diagrammes de
classes il est possible de zapper la phase concrete
I des diagrammes d’objets...

Object
niethin [s formation
something from rurmamn - Objects Class formatio i
the real world el
’G\\ — Bello JE— Animal
EE"U .—~*'
B Calculator
= Calculator %
. e,_ __g|Carmy-on luggage
4 ™ |Henny's notebook| —
Henrny's notebook
e
i f LAY
‘__ s AN Irmgard —
™ T 2

™~ - A 5

: assenger
'l i Irmgard > HENE
. o
N T Mark -
Mark

Diagramme de classes en UML

I Directement !

Object
the real world 11 » Objects — » Classes
\-_ e Bello P Animal
ﬁ : Il reste utile
P Calculator de savoir faire des

des diagrammes d’objets
« dans sa téte »

""--...t‘ Calculator \

o |Carmy-on luggage

=\ [Henry's notebook] —
Henny's notebook

e

il L\
\33‘? e Irmgard — %
._.-':,-_ H""\-\.__
™ - T
@& Yy Irmgard o Passenger
l?:'i Lk 5

ey — Mark i
Mark

COURS 2

A) UML et methodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML !

D) Les associations entre classes
E) L’heritage et le polymorphisme
F) Compléements

r La classe en UML !

I * Une classe Compte en notation UML normalisée

Compte

- titulaire : String
- solde : Real

+ Compte (titulaire : String, solde _init : Real = 0.0)
+ ~Compte ()

+ afficher ()

+ crediter (credit : Real)

+ debiter (debit : Real)

r La classe en UML ! G

* Une classe Compte en notation UML normalisée

Membres privés Classe

/ Attributs
Compte * /
3Litu|aire - String
-/solde : Real Méthodes
+ Compte (titulaire : String, solde _init : Real = 0.0)
+|~Compte ()
+ [afficher ()
+/crediter (credit : Real)
+/ debiter (debit : Real)

Méthode créer : Constructeur&
Membres publics Méthode libérer : Destructeur

r La classe en UML !

I Différents stades d’élaboration du modele
analyse initiale, faisabilité, cohérence des données, conception détalillée...

completement ou partiellement selon les besoins

I * On peut représenter les classes d’un diagramme

Complet Sans les méthodes Seulement le nom !
Compte Compte Compte

- titulaire : String - titulaire : String ou

- solde : Real - solde : Real

+ Compte (...) ou Compte

+ ~Compte ()

+ afficher () Compte

+ crediter (...) - titulaire : String

+ debiter (...) - solde : Real

24

I IIIIII

La classe en UML !

Le format géenéral des attributs

acces

nomAttribut : Type = valeur par défaut

— acces - prive + publique # protege (cf chap. E)
le principe d’encapsulation exclut en général I'acces publique

— nomAttribut commence par une minuscule
— Type voir slides suivants
— valeur par défaut facultatif (frequemment omis)

r La classe en UML !

I * Le format general des méthodes

I acces nomMéthode (paraml, param2..) : TypeRetour

— acces - prive + publique # protege (cf chap. E)
les methodes qui constituent I'interface (le mode d’emploi)
des objets de la classe sont evidemment en acces publique

- nomMethode commence par une minuscule

- TypeRetour idem Type, voir slides suivants
Si la méthode ne retourne rien on ne met pas : TypeRetour

r La classe en UML !

I * Le format général de parametre de méthode

— direction in/out/ inout
facultatif mais utile pour savoir si les données de I'appelant
doivent étre initialisees (in ou inout) et si apres l'appel
I'appelant voit les données modifiees (out ou inout)

Exemple : méthode de classe AutomateBancaire
+ codeValide (out nbEssais : Integer) : Boolean

I direction nomParametre : Type = valeur par défaut

- nomParametre commence par une minuscule
— Type voir slides suivants
- valeur par défaut facultatif

r La classe en UML !

I * Les types de base

— Integer (- int unsignedint ...)
I - Real (- float double ...)
— Boolean (- bool valeurs true / false)
- String (chaines de caractere (- std::string)

* Les types tableaux ou listes : notation [cardinalité]

- Integer[3] 3 entiers

- Real[1..5] entre 1 et 5 flottants

- Realll1..*] au moins 1 réel, peut-étre 1000000
- String[*] 0 ou nb. quelconque de chaines

r La classe en UML !

* Les types de classes de bas niveau (bibliotheques)

I — Date

- AdressePostale
- CoordsGPS
- ComplexNumber

- ... Toute classe « utilitaire » du domaine
bien connue par I'equipe (classe déja en place)

r La classe en UML !

* Les types des autres classes qu’on développe...
I - En parametre/retours des méthodes OUI

- Comme type dattribut, en géenéral NON
e

* En effet les attributs (données membres) d’une classe
qu’on developpe qui sont des données d’autres classes
en déeveloppement seront représentés graphiquement
sous forme de liaisons. Ceci mérite un gros chapitre !

COURS 2

A) UML et methodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML. !

D) Les associations entre classes
E) L’heritage et le polymorphisme
F) Compléements

* Elargissons le CDC :
- une entreprise a 1 ou plusieurs employés
- une personne a 0, 1 ou plusieurs employeurs

Les associations entre classes a

Reprenons la relation Entreprise / Personne

Entreprise

nom = "ECE"

employés|...] =

Entreprise

nom = "Lights SA"

;

employés|...] =

—)

)

7

L

Personne

Personne

Personne

nom = "Segado"

I~

employeurs|...] = [0\

nom = "Fercoq"

I~~~

employeurs]...] = [0\

nom = "Diedler"
employeurs|...] =

\

/

\

Les associations entre classes a

I * Concretement on va coder ca avec des attributs
- tableau de pointeurs sur personnes coté Entreprise

I - tableau de pointeurs sur entreprises coté Personne

Diagramme de classes correct mais non visuel

Entreprise

- nom : String

- adresse : String

- bilan : Real

- presse : String[*]

- affaires : String[*]

- employés : ptr Personne[1..%]

Personne

- nom : String
- employeurs : ptr Entreprise[*]

Les associations entre classes a

I * Mais ces attributs seront representes par une
liaison, ici une association simple a double sens

Diagramme non visuel Diagramme visuel normal

Entreprise Entreprise

- nom : String - nom : String .

- adresse : String - adresse : String

- bilan : Real - bilan : Real

- presse : String[*] - presse : Stri_ng[*]

- affaires : String[*] - affaires : String[*]

- employés : ptr Personne[1..%] + | employeurs

1 *| employés

Personne Personne
- nom : String - nom : String
- employeurs : ptr Entreprise[*]

Les associations entre classes a

I * On retrouve les informations d’un attribut « réeférence a
d’autres objets » du coté des objets références

Diagramme non visuel Diagramme visuel normal
Entreprise Entreprise
- nom : String - nom : String .
- adresse : String - adresse : String
- bilan : Real - bilan : Real
- presse : String[*] - presse : String[*]
/aftames—sumg[i]\ - affaires : String[*]
Q employés)
Personne Personne
- nom-—String pd - nom : String
(- employeurs : ptr Entrem

Les associations entre classes a

I * Chaque terminaisons d’une association porte

— Une information de multiplicité (ou cardinalite)

I - Une information de role

Diagramme de classes normal

Entreprise

- nom : String

- adresse : String
- bilan : Real

- presse : String[*]
- affaires : String[*]

* | employeurs

1. *| employés

Personne

- nom : String

Les associations entre classes G

I * Chaque terminaisons d’une association porte
— Une information de multiplicité (ou cardinalité)

I - Une information de role

Diagramme de classes normal

Entreprise

- nom : String
- adresse : String
Une Personne a - bilan : Real

0, 1 ou plusieurs - presse : String["]
employeurs - affaires : String[*]

* | employeurs>
Ce serait une erreur

— de mettre I'attribut
’Q emp oye>s - employeurs : ptr Entreprise[*]

Une Entreprise a

ici méme si dans
. Personne
1 ou plusieurs | i
) e code source il
employés - hom 'XSL””Q va bien exister !

Les associations entre classes G

I » Certaines associations sont de type
« plusieurs a plusieurs »

Entreprise

- nom : String

- adresse : String
- bilan : Real

- presse : String[*]
- affaires : String[*]

* | employeurs

1. *| employés

Personne

- nom : String

Les associations entre classes G

I » Certaines associations sont de type
«unaun»

Voiture

- immat : String

- marque : String

- model : String

- etat : Bon/Bof/Berk
- pneusOk:Boolean

1 veéhicule

1 | conducteur

Personne

- nom : String
- permisB : Boolean

Les associations entre classes G

» Certaines associations sont de type
« un a plusieurs »

Collectionneur

- hom : String lecti
- réputation : Integer cofiectionneurs
- pro : Boolean *

1.*| CategorieObjet
— domaines] - nom : String
1 propriétaire - prestige : Real
- histoires : String[*]

domaine
1..*| objets 1
ObjetDeCollection . Instances :
description : String objets - timbres
- valeur : Boolean - //V”.eS rares
- peintures

- licornes

Les associations entre classes

I * A la place des roles aux terminaisons on peut indiquer
des nhoms aux associations (en precisant le sens)
I Cette notation est moins

proche de I'implémentation
(ce n'est pas forcément un défaut)
Le sens est un sens d’interprétation

: nom : String as un sens unique de navigation !

réputation : Integer
- pro : Boolean + 3 collectionne
1.*] CategorieObjet
- hom : String
/

Collectionneur

- prestige : Real
- histoires : String[*]

V posséde
1..*
ObjetDeCollection « A relove de {I?;févrceis :
- description : String _livres rares
- valeur : Boolean .
- peintures

- licornes

Les associations entre classes a

* Par defaut la navigabilité d’une association est
bidirectionnelle (ou « a double sens »)

Collectionneur] _
— Etant donné un objet de type

- nom : String :

- réputation - Integer Qollectlonneur on Qeut

- pro : Boolean directement connaitre les
objets qu’il posséde

1 | propriétaire v Techniquement : il suffit

de suivre le(s) pointeur(s) !
1.7 objets A Etant donné un objet de type
ObjetDeCollection ObjetDeCollection on peut

directement connaitre son
propriétaire

- description : String
- valeur : Boolean

Les associations entre classes G

I * Si on omet les infos a une terminaison on ne peut pas
aller directement aux objets de cette terminaison

I Collectionneur) _
~nom - String — Etant donné un objet de type
- réputation : Integer Qollectlonneur on Qeut
- pro : Boolean dlr_ecteme_nt conr‘1a|tre les
objets qu’il posséde

\/ Techniquement : il n’y a plus
de pointeur de ObjetDeCollection
vers Collectionneur

1.7 objets " [, Etant donné un objet de type
ObjetDeCollection ObjetDeCollection on ne peut
pas directement connaitre son
propriétaire

- description : String
- valeur : Boolean

Les associations entre classes G

I e Convention par défaut, pas tres clair... Pour indiquer la
navigabilité mieux vaut preciser avec une fleche

I Collectionneur) _
~nom - String — Etant donné un objet de type
- réputation : Integer Qollectlonneur on Qeut
- pro : Boolean dlr_ecteme_nt conr‘1a|tre les
objets qu’il posséde

\/ Techniquement : il n’y a plus
de pointeur de ObjetDeCollection
vers Collectionneur
1 \/ objets Etant donné un objet de type
ObjetDeCollection ObjetDeCollection on ne peut
pas directement connaitre son

propriétaire

- description : String
- valeur : Boolean

Les associations entre classes 0

I * Pour les adeptes de I'abstraction dans les phases
Initiales de conception, la question de la navigabilité
ne devrait se poser que lors des phases detaillees

I juste avant I'implementation (cad. pas trop tot)

* D’expérience nous avons pu constater qu’une
mauvaise anticipation des problemes de navigation
pouvait plomber un projet, en particulier pour des
débutants - la navigabilité est un aspect important

Les associations entre classes 0

Le double sens (par defaut en UML) semble la
meilleure solution parce que la plus souple...

Il dispense d’avoir a analyser les sens vraiment
necessaires c’est donc parfOIs le choix de la paresse
(du concepteur) \

Mais cote implémentation le choix du double sens
complique grandement : il va falloir gérer des liens
(pointeurs) reciproques et garantir leur cohérence
dans des conditions cycliques. Faisable, mais dur.

Donc ne laisser un double sens que si c’est vraiment
Indispensable par rapport aux contraintes

Les associations entre classes a

I * Certaines associations ont une sémantique de type
contenant/contenu ou composé/composant

I et le contenu ou composant est « separable »

Musée

- hom : String
- tarif : Real
- lieu : String

1 | musée

1 *
-- | oeuvres

Oeuvres Une ceuvre peut quitter un
- description : String musée pour aller dans un
- auteur : String autre (ou une collection privée)
- année : Integer

Un musée peut fermer définitivement
sans que ses ceuvres disparaissent

Les associations entre classes a

* Dans ses conditions on peut souligner la semantique
contenant/contenu ou composé/composant
en indiquant une agregation

Musée

- hom : String
- tarif : Real
- lieu : String

1 musée

1 *
-- | oeuvres

Oeuvres

- description : String
- auteur : String
- année : Integer

Lors de I'implementation du modele
cette indication ne change rien
(par rapport au schéma préecedent)

C’est donc une indication qui ne peut
faire sens (ou controverse) que par
rapport au lecteur humain : elle n’a
pas grande importance pratique

Une ceuvre peut quitter un
musée pour aller dans un
autre (ou une collection privée)

Un musée peut fermer définitivement
sans que ses ceuvres disparaissent

Les associations entre classes a

I * Certaines associations ont une sémantique de type
composé/composant et le composant n’est

ni separable ni partageable en tant que composant
Patient La relation de composition
~nom - String est une relation a un : o
_ age : Integer Un patient a un dossier médical
-sexe :H/F
1 patient

1 dossierMedic

DossierMedical Un dossier médical est intimement
- description : String lié a la personne qu’il représente,
- auteur : String il ne peut pas devenir le dossier
- annee : Integer médical de quelqu’un d’autre !

Si on détruit (I'objet informatique local) Patient
alors on libére (I'objet informatique local) Dossier

Les associations entre classes a

I * Dans ces conditions il est important d’indiquer cette
sémantique en utilisant le symbole de composition

I Patient

- hom : String
- age : Integer
-sexe:H/F

1 patient

Multiplicité 1 ou 0..1

1 dossierMedic

DossierMedical

- description : String
- auteur : String
- année : Integer

Un dossier médical est intimement

lié a la personne qu’il représente,

il ne peut pas devenir le dossier

meédical de quelqu’un d’autre !

Si on détruit (I'objet informatique local) Patient
alors on libére (I'objet informatique local) Dossier

Les associations entre classes

I * Non partageable en tant que composant,
ca h'empéche pas d’autres objets d’étre en

Patient

- hom : String
- age : Integer
-sexe:H/F

1 patient

DossierMedical

- description : String
- auteur : String
- année : Integer

1 dossierMedic

*
-
N

I association avec un composant ...

< consulte

*

Docteur

- nom : String
- spécialité : String

Les associations entre classes 0

I * Indiquer les situations de composition est important

- Parce que c’est une contrainte forte sur le cycle
de vie des instances composees par rapport au
composite

— Parce que du point de vue de I'implémentation
la composition peut souvent (pas toujours...)
se realiser avec un attribut directement du type
de I'objet composant (et non pas pointeur sur)
on dira qu’on a une sémantique par valeur

— Quand les conditions sont réunies pour
effectivement implémenter les relations sous
forme d’attributs par valeur cela peut simplifier
grandement la gestion du cycle de vie des objets

Les associations entre classes a

* Exemple de composition avec une classe utilitaire
et une sémantique par valeur « naturelle » ...

Etudiant

- hom : String
- cursus : String

- notes : Real [*]

dateNaissance

datelnscription

Date

- année: Integer
- mois : Integer
- jour : Integer

On ne précise ici ni multiplicité ni réle en haut

ni multiplicité en bas. En 'absence de multiplicité
la valeur par défaut est 1, et la navigation est
implicitement unidirectionnelle du composé

vers le composant, ce qui est souvent le cas
avec les attributs par valeur.

Une date ne se partage pas

Si elle se corrige la correction

ne concerne qu’'une date pour

quelgu’un. On peut dire « on s’est trompé

de date de naissance pour Olivier Martin »

On ne peut pas dire « on s’est trompé

le 5 Janvier 2000 était en fait le 6 Janvier 2000
pour tout le Monde ! »

Les associations entre classes

* Notons au passage que le fait d’utiliser une classe
relativement triviale et manipulée par valeur autorise
ici probablement de la considérer en attribut direct

Etudiant

- hom : String

- cursus : String

- notes : Real [*]

- dateNaissance : Date
- datelnscription : Date

On allege le diagramme !

class Date

private :
int annee, mois, jour ;

class Etudiant

{

private :

Date dateNaissance ;
Date dateInscription ;

Les associations entre classes

I * Chaque « Instance d’association » peut necessiter de
porter des donnees, on a une classe association

Entreprise

- nom : String

- adresse : String
- bilan : Real

- presse : String[*]
- affaires : String[*]

* | employeurs

Emploi

—————————— - salaire : Real
- categorie : Ouvrier / Cadre...

1..* | employeés

Personne

- nom : String
- numéroFiscal : String

Les associations entre classes

I * On peut transformer en diagramme éequivalent
et on se retrouve avec des associations usuelles

I qu’on sait implementer concretement

Entreprise

- nom : String

- adresse : String
- bilan : Real

- presse : String[*]
- affaires : String[*]

entreprise

Personne

- nom : String
- numéroFiscal : String

1

postes

Emploi

- salaire : Real
- categorie : Ouvrier / Cadre...

* emplois

titulaire

COURS 2

A) UML et methodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML. !

D) Les associations entre classes
E) L’heritage et le polymorphisme
F) Compléements

L’héritage et le polymorphisme

* L’heritage permet de dériver une/des classe(s)
fille(s) d’une classe mere ou classe « de base »

La relation d’héritage est une relation est un :
- un Etudiant est une Personne
- un Enseignant est une Personne

Personne

- un PersoAdmin est une Personne Acces protege 1| ¥

accessible aux
classes filles

nom : String
adresse : String
telephone : Integer

Les attributs et méthodes de la classe mere

se retrouvent automatiquement dans les objets

des classes filles : il N’y a pas besoin (il ne faut
pas) redéclarer les attributs de la classe de base.
Ceci permet (entre autre) de factoriser le code

en evitant des répétitions, ainsi que d'articuler

des sémantiques ensemblistes (sous-ensembles...)

Etudiant PersoAdmin
- notes : Real[*] - titre : String
- promo : Integer - missions : String[*]
Enseignant

- matiere : String
- salaire : Real

L’héritage et le polymorphisme

* Le polymorphisme est le fait de pouvoir regrouper
des objets des types déerivés et les traiter de facon
homogene alors qu’ils correspondent a des types
distincts et qu’ils ont des comportements specifiques

o

Conteneur (tableau) d’éléments de
type « pointeur sur Animal » avec
des instances mélangées de classes
filles de Animal : Ours, Chien ...

La méthode « speak » commune
(classe Animal) déclenche des
traitement spécialisés a chaque
classe fille

e C’est un sujet délicat sur lequel nous reviendrons !

L’héritage et le polymorphisme

* L ’héritage permet grouper des élements de types
distincts dans un méme « paquet »

Personne

nom : String
adresse : String
téléphone : Integer

*

AnnuaireEcole

< connait

N

Une instance de AnnuaireEcole
connait des Personnes qui

peuvent plus spécifiquement

étre des Etudiants, des Enseignants

Etudiant

PersoAdmin

ou des PersoAdmin

- notes : Real[*]
- promo : Integer

- titre : String
- missions : String[*]

Enseignant

- matiere : String
- salaire : Real

COURS 2

A) UML et methodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML. !

D) Les associations entre classes
E) L’heritage et le polymorphisme
F) Compléements

Compléments

Les slides qui suivent sont a lire en autonomie
selon votre motivation, il sont facultatifs...

lls précisent certains points et en particulier apportent
une justification a I'emploi des pointeurs pour coder
Informatiquement les associations entre objets

En fin de présentation vous trouverez un exo. corrigé

N’hésitez pas a demander a vos charges de TD/TP des
précisions si certains concepts ne passent pas !

»

Compléments

Reprenons la relation Entreprise / Personne

Reduisons le CDC en termes de fonctionnalités et
voyons comment cela donne un modele plus simple...

CDC : une organisation syndicale souhaite enregistrer
un certain nombre de personnes, toutes salariées, et
toutes avec un seul employeur. On peut ajouter une
entreprise au systeme (méme si aucune personney
travaillant n’est connue). On ne peut ajouter une
personne au systeme que si on precise a la fois le nom
de la personne et I'entreprise unique dans laquelle Il
travallle. On doit ensuite pouvoir indiquer une personne
et le systeme trouve I'entreprise dans laquelle il
travallle et affiche plein d’informations (nom, adresse,
chiffres comptables, actualités, affaires péenales...)

r Compléments

I * Un 1*" diagramme d’objets avec une structure qui
ne convient pas . duplication d’informations...

Personne Personne Personne
nom = "Segado" nom = "Fercoq" nom = "Diedler"
employeur = employeur = employeur =

Entreprise Entreprise Entreprise

] L1) 1 " nom — llLightsll
adresse ="..."
bilan ="..."
presse ="..."
affaires ="..."

Informations dupliquées

r Compléments

I * Le schéma precédent correspondrait a I'utilisation
directe d’un attribut de type Entreprise dans la classe
I Personne. C’est simple et « ca compile » mais

r Compléments

I * Une telle duplication d’information au sein d’un logiciel
en cours d’execution (ou au sein d’'une méme BDD)
I est en général inacceptable :

- Le volume stocké est multiplié (passe encore...)

— A une seule entite du « monde réel » devrait
logiquement correspondre un seul objet logiciel
sinon c’est la confusion dans la conception

- La mise a jour d’une donnée sur une entreprise
néecessite la synchronisation avec toutes les
Instances représentant cette entreprise

 c’est une surcharge pour le hardware (bof...)

* c’'est la catastrophe assurée — des donnéees
Similaires vont devenir incohérentes...

__1

Compléments

Ce probleme est central en informatique

On a utilisé une sémantique par valeur pour des
données

— non constantes
des données d’'une Entreprise peuvent et vont changer

— qui sont partagees
plusieurs Personnes se rapportent a la méme Entreprise

La solution : ne pas dupliquer I'objet entreprise, faire en
sorte que les objets en relation avec lui le désigne
- passer a une semantique par réféerence

Concretement : utiliser des pointeurs sur objets !
Il existe des alternatives : clés, clés uniques...

r Compléments

I * La méme situation géréee correctement avec des

pointeurs : nouveau diagramme d’objets

Entreprise Entreprise
nom = "ECE" nom = "Lights SA"
adresse ="..." adresse ="..."
bilan="..." bilan="..."
presse ="..." presse ="..."
affaires ="..." affaires ="..."

Personne Personne Personne

nom = "Segado nom = "Fercoq" nom = "Diedler"
employeur = — employeur = employeur =

* Le schema précédent correspond a l'utilisation
d’un attribut de type pointeur sur Entreprise dans la
classe Personne. C’est simple et « ca compile » aussi !

68
r Compléments

_ Entreprise -

Diagramme de classes ! p_ Ce diagramme de classes
- nom : String est correct mais pas tres
- adresse : String visuel
- bilan : Real

- presse : String[*]
- affaires : String[*]

Personne

- nom : String
- employeur : ptr Entreprise

* Techniquement en C++ la référence d’un objet de type

®
r Compléments

Personne sur un obj

Diagramme de classes !

Entreprise

- nom : String

- adresse : String
- bilan : Real

- presse : String[*]
- affaires : String[*]

Personne

- nom :_String

| mmm—

- employeur : ptr Entreprise

>

e Entreprise est un
I attribut_ Entreprise* employeur;

Ce diagramme de classes
est correct mais pas tres
visuel ...

r Compléments

I * Visuellement la référence sera représentée par une
liaison : on dira que les 2 classes sont associées

Diagramme de classes !

Entreprise

- nom : String

- adresse : String
- bilan : Real

- presse : String[*]
- affaires : String[*]

1”|" employeur

1.*

Personne

- nom : String

Ce diagramme de classes
est la fagcon normale de
représenter un attribut
pointeur sur objet d’une
autre classe !

I

Compléments

 [ci Passociation se navigue dans un seul sens

* Les informations de I'attribut « référence a l'objet »
se retrouvent a lI'autre extremité de I'association

Diagramme équivalent Diagramme visuel normal
Entreprise Entreprise
- nom : String - nom : String
- adresse : String - adresse : String
- bilan : Real - bilan : Real
- presse : String[*] - presse : String[*]
- affaires : String[*] - affaires : String[*]

| empoyew
employeur

1.7

Personne Personne

- hom : String - hom : String

< - employeur : ptr Entreprise]

r Compléments

I * Si on modifie le CDC : une personne peut avoir

plusieurs employeurs, on arrive a un attribut tableau

- presse : String[*]
- affaires : String[*]

Personne

de pointeurs (en C++ nous aurons un std: : vector)
Diagramme équivalent Diagramme visuel normal
Entreprise Entreprise
- nom : String - nom : String
- adresse : String - adresse : String
- bilan : Real - bilan : Real

- presse : String[*]
- affaires : String[*]

1..* 7| employeurs)

1.7

Personne

- nom : String

<[- employeurs : ptr Entreprise[1.."]|

- hom : String

r Compléments

I * On modifie encore le CDC... Ca arrive tout le temps !
* une personne peut avoir 0 1 ou plusieurs employeurs

I * connaissant une entreprise on veut pouvoir avoir acces
a toutes les personnes y travalillant...

Compléments

On peut trouver toutes les personnes travaillant dans
une certaine Entreprise si on a une collection (liste,
tableau, vecteur peu importe) de tous les inscrits :

Il suffit de parcourir cette liste et de tester a chaque fois

Entreprise
nom = "Lights SA"

Entreprise
nom = "ECE"

inscrits[*] —

Personne Personne Personne)

nom = "Segado" | nom = "Fercoq" nom = "Diedlei'//
employeurs :[0\ employeurs :{0\ employeurs :[:

2T~ ?

L

r Compléments

I * Mais cette approche n’est pas efficace si le nombre
d’inscrits est important et si cette recherche a lieu

I souvent!

Entreprise Entreprise

nom = "ECE" nom = "Lights SA"

inscrits[*] —

Personne Personne Personne)

nom = "Segado" | nom = "Fercoq" nom = "Diedlei'//
employeurs :[0\ employeurs :[0\ employeurs :[.

2 T~ 7 _
\

Compléments

* Si I'approche précéedente est trop penalisante on peut
adopter une navigation a double sens beaucoup
plus performante sur les recherche mais plus lourde
a mettre en place et a maintenir

Entreprise

nom = "ECE"

employés|...] =

L

—)

%

Entreprise

nom = "Lights SA"

7

employés|...] =

7

Personne

Personne

Personne

nom = "Segado”
employeurs|...] =

{0\\

nom = "Fercoq"

employeurs]|...] = {0\

\

I~~~

nom = "Diedler"
employeurs|...] =

\

[./

./

\

r Compléments

I * Ce qui conduit a une association simple avec
navigation a double sens beaucoup

a mettre en place et a maintenir

I plus performante sur les recherche mais plus lourde

Diagramme équivalent Diagramme visuel normal
Entreprise Entreprise

- nom : String - nom : String

- adresse : String - adresse : String

- bilan : Real - bilan : Real

- presse : String[*] - presse : String[*]

- affaires : String[*] - affaires : String[*]

- employés : ptr Personne[1..%] + | employeurs

1 *| employés

Personne Personne
- nom : String - nom : String
- employeurs : ptr Entreprise[*]

r Compléments

I * La navigation a double sens est la navigation par
deéfaut d’'une association quand aucune fleche n’est

nettement plus long a bien implémenter ensuite.

I specifiee. A n'utiliser qu’en cas de nécessité car

Diagramme équivalent Diagramme visuel normal
Entreprise Entreprise
- nom : String - nom : String
- adresse : String - adresse : String
- bilan : Real - bilan : Real
- presse : String[*] - presse : String[*]
- affaires : String[*] - affaires ; String[*]
- employés : ptr Personne[1..%] +/[\employeurs
double sens

1 k| [employés

Personne Persdnne
- nom : String - nom : String
- employeurs : ptr Entreprise[*]

Compléments

Exercice corrigé

Faire le diagramme de classe du diagramme d’objets
slide suivant.

Vous indiquerez les multiplicité mais pas les roles
Le CDC est au debut du TD/TP 1
Attention spoiller, le corrige est au slide d’apres...

Compléments

Objets du cas étudié

villesDesservies] ...]

Pilote Ville Ville Ville Pilote
nom = "Arora" id = "Paris" id = "Madrid" id = "Athénes" nom = "Aquino"

" " o T, o — | A
prenom = "Abby position = position = position = WQE = "Rex
site = null CoordsGeo CoordsGeo CoordsGeo site =
‘é_o' e latitude=48.85 latitude=40.42 latitude=37.98 ‘é_o' = ”‘:J'l' ol

Isponible = false longitude=2.35 longitude=-3.70 longitude=23.73[| -« ISponible = talse

4 —J
Pilote - Yol .] Rilote
nom = "Bridwell" / = "APAOLE avionsDel.aCompqgnie] ...] nom = "Eberle"
prenom = "Karl" 3@23:61;0,1 = Avion Avion Avion prenorz\; "Agnes'
site =2V pilote =@——| id = "F-GTAJ" |/id ="D-URJX" | id = "SK25BE" site =
vol = @ copilote = etat = entretien}/ etat = vol etat = prét vol = null
disponible = false avion = site :.\/ site = null site = ./ disponible = true
LN vol = null vol = @ vol = null e

Ville Pilote
id ='£"Athénes" \\mugn:?q%no
oslItlion = prenom\—= ex
CoordsGeo site = ‘ .
id —zil?;BE" :iﬂtgui?uedzefz'gis \\é:ilngiug'le = false AU mOdeIe Cl'deSSUS
et - pret /| / \ on a ajouté ces navigations
\S/gF;null pilotes[...] = ./.———/" Pote ~
a double sens

nom = "Ekberle"
renom F "Agnes'

avions{..] =[® Ste= o
vol = null

disponible = true

Compléments

Corrige de I’exercice

Pilote Avion
- nom : String - id : String
- prenom : String - etat: EtatAvion
- disponible : Bool
1 *
* 2
g ~{xor
{xor}- 0..1 0.1 {\ J
Vol
- id : String
V2
- id : String
'
CoordsGeo
{xor} indique une contrainte logique _
d’exclusion entre associations : - |at|tU_de . Real
un avion est soit en vol - longitude : Real
soit dans une ville

Sur ce diagramme
on a omis les roles...

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81

