
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Modèles objets avancés
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

COURS 2

A) UML et méthodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML !
D) Les associations entre classes
E) L’héritage et le polymorphisme
F) Compléments

4

COURS 2

A) UML et méthodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML !
D) Les associations entre classes
E) L’héritage et le polymorphisme
F) Compléments

5

UML et méthodes dev. objet

● UML = Unified Modeling Language
● UML est un « langage » de représentation graphique

standardisé de modèles informatiques orientés objet
● UML permet de décrire et visualiser la structure et le

comportement d’un système logiciel orienté objet
en cours de conception ou d’évolution ou déjà conçu

6

UML et méthodes dev. objet

● Un modèle est une « projection » des entités réelles
dans l’espace des informations utiles à l’application
logicielle ciblée : à quoi vont servir les informations
du modèle ? On va donc simplifier/choisir des données.

Ce hublot est
un peu sale !
(info utile?)

CDC 1
Optimiser le

renouvellement
de la flotte

On modélise par rapport au périmètre et aux objectifs d’un CDC

CDC 2
Suivre et améliorer

le service clients
1ère classe / VIP

7

UML et méthodes dev. objet

● UML n’est pas une méthodologie de développement
● Il y a plusieurs méthodologies, selon le type de projet

https://dev.to/iriskatastic/top-6-software-development-methodologies-9b

8

UML et méthodes dev. objet

● UML n’est pas une méthodologie de développement
● Il y a plusieurs méthodologies, selon le type de projet
● Ce sont différentes façons de (re)parcourir la séquence

● UML est un langage commun et un pivot dans la
plupart des méthodologies quand on développe objet

CDC
Objectifs

Langage nat.

Analyse CDC &
Conception OO

UML

Codage
& tests

C++/Java/C# ...

https://dev.to/iriskatastic/top-6-software-development-methodologies-9b

9

UML et méthodes dev. objet

● La norme UML est riche et complexe
Ces 3 types de diagrammes
sont les plus utilisés par les
équipes de développement

10

UML et méthodes dev. objet

● Les diagrammes de comportement (behavior) décrivent
des aspects dynamiques du modèle

Cas d’usage Sequence

11

UML et méthodes dev. objet

● Les diagrammes de structure décrivent des aspects
statiques du modèle

Diagrammes de classes Diagrammes d’objets

1

12

COURS 2

A) UML et méthodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML !
D) Les associations entre classes
E) L’héritage et le polymorphisme
F) Compléments

13

Diagramme de classes en UML

● On ne couvrira ici que les diagrammes de classes qui
sont les diagrammes les plus importants pour coder
un projet et assurer sa cohérence, sa lisibilité

● Ils représentent les plans : l’architecture du logiciel
● Une classe =

– Une seule boite dans le diagramme de classes
– Une déclaration de classe en C++ ...
class MaClasse { attributs … méthodes … };

– Un fichier en-tête maClasse.h
– Un fichier d’implémentation maClasse.cpp
void MaClasse::uneMethode(int param) { ... }
float MaClasse::autreMethode() { ... }

14

Diagramme de classes en UML

● Respecter les usages et notations de la norme UML
● Universellement (re)connu par les développeurs
● Principaux éléments du diagramme de classes :

15

Diagramme de classes en UML

● Les diagrammes d’objets sont illustratifs, particuliers
● Les diagrammes de classe sont abstraits, généraux

Objets...
représentants concrets des classes

Diagramme d’objets

Classes...
catégories d’objets
de même nature

Entreprise

nom = "ECE"

employés[...] =

Personne

nom = "Segado"
employeur =

Personne

nom = "Fercoq"
employeur =

Personne

nom = "Diedler"
employeur =

Ici on s’écarte de la norme UML : on reprend les « schémas mémoire » vus en ING1

Diagramme de classes
Norme UML stricte

Entreprise

- nom : String

employeur1

1..* employé

Personne

- nom : String

!

16

Diagramme de classes en UML

● Un diagramme d’objets est un cas particulier,
c’est un diagramme « jetable » qui sert
à illustrer ou comprendre une certaine situation
représentative d’objets manipulés par le système

● Pour couvrir différentes situations il faut différents
diagrammes d’objets, on n’est pas sûr de tout voir

● Les diagrammes objets deviennent vite illisibles !

● Un diagramme de classes est général :
il couvre toutes les situations possibles
entre les (objets des) classes

● Les diagrammes de classes sont plus abstraits,
ils ne représentent pas directement des objets !

!

17

Diagramme de classes en UML

● Avec un autre diagramme d’objets on peut découvrir
de nouvelles situations qui changent le modèle !

Objets...
représentants concrets des classes

Diagramme d’objets

Classes...
catégories d’objets
de même nature

Diagramme de classes

Entreprise

- nom : String

employeur1..*

1..* employé

Personne

- nom : String

!

multiplicité

18

Diagramme de classes en UML

● Une fois maîtrisée l’abstraction des diagrammes de
classes il est possible de zapper la phase concrète
des diagrammes d’objets...

19

Diagramme de classes en UML

Directement !

Il reste utile
de savoir faire des

des diagrammes d’objets
« dans sa tête »

20

COURS 2

A) UML et méthodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML !
D) Les associations entre classes
E) L’héritage et le polymorphisme
F) Compléments

21

La classe en UML !

● Une classe Compte en notation UML normalisée

Compte
- titulaire : String
- solde : Real
+ Compte (titulaire : String, solde_init : Real = 0.0)
+ ~Compte ()
+ afficher ()
+ crediter (credit : Real)
+ debiter (debit : Real)

22

La classe en UML !

● Une classe Compte en notation UML normalisée

Compte
- titulaire : String
- solde : Real
+ Compte (titulaire : String, solde_init : Real = 0.0)
+ ~Compte ()
+ afficher ()
+ crediter (credit : Real)
+ debiter (debit : Real)

Classe

Attributs

Méthodes

Membres privés

Membres publics

Méthode créer : Constructeur

Méthode libérer : Destructeur

!

23

La classe en UML !

● Différents stades d’élaboration du modèle
analyse initiale, faisabilité, cohérence des données, conception détaillée...

● On peut représenter les classes d’un diagramme
complètement ou partiellement selon les besoins

Compte
- titulaire : String
- solde : Real
+ Compte (...)
+ ~Compte ()
+ afficher ()
+ crediter (...)
+ debiter (...)

Compte
- titulaire : String
- solde : Real

Compte

Compte

Compte
- titulaire : String
- solde : Real

ou

ou

Complet Sans les méthodes Seulement le nom !

24

La classe en UML !

● Le format général des attributs

accès nomAttribut : Type = valeur par défaut

– accès - privé + publique # protégé (cf chap. E)
le principe d’encapsulation exclut en général l’accès publique

– nomAttribut commence par une minuscule
– Type voir slides suivants
– valeur par défaut facultatif (fréquemment omis)

25

La classe en UML !

● Le format général des méthodes

accès nomMéthode(param1, param2…) : TypeRetour

– accès - privé + publique # protégé (cf chap. E)
les méthodes qui constituent l’interface (le mode d’emploi)
des objets de la classe sont évidemment en accès publique

– nomMéthode commence par une minuscule
– TypeRetour idem Type, voir slides suivants

Si la méthode ne retourne rien on ne met pas : TypeRetour

26

La classe en UML !

● Le format général de paramètre de méthode

direction nomParametre : Type = valeur par défaut

– direction in / out / inout
facultatif mais utile pour savoir si les données de l’appelant
doivent être initialisées (in ou inout) et si après l’appel
l’appelant voit les données modifiées (out ou inout)
Exemple : méthode de classe AutomateBancaire
+ codeValide(out nbEssais : Integer) : Boolean

– nomParametre commence par une minuscule
– Type voir slides suivants
– valeur par défaut facultatif

27

La classe en UML !

● Les types de base

– Integer (→ int unsigned int …)

– Real (→ float double …)

– Boolean (→ bool valeurs true / false)

– String (chaînes de caractère (→ std::string)

● Les types tableaux ou listes : notation [cardinalité]

– Integer[3] 3 entiers
– Real[1..5] entre 1 et 5 flottants
– Real[1..*] au moins 1 réel, peut-être 1000000
– String[*] 0 ou nb. quelconque de chaînes

28

La classe en UML !

● Les types de classes de bas niveau (bibliothèques)

– Date
– AdressePostale
– CoordsGPS
– ComplexNumber
– … Toute classe « utilitaire » du domaine

bien connue par l’équipe (classe déjà en place)

29

La classe en UML !

● Les types des autres classes qu’on développe...

– En paramètre/retours des méthodes OUI
– Comme type d’attribut, en général NON

● En effet les attributs (données membres) d’une classe
qu’on développe qui sont des données d’autres classes
en développement seront représentés graphiquement
sous forme de liaisons. Ceci mérite un gros chapitre !

!?

30

COURS 2

A) UML et méthodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML !
D) Les associations entre classes
E) L’héritage et le polymorphisme
F) Compléments

31

Les associations entre classes

● Reprenons la relation Entreprise / Personne
● Elargissons le CDC :

- une entreprise a 1 ou plusieurs employés
- une personne a 0, 1 ou plusieurs employeurs

Entreprise

nom = "ECE"

employés[...] =

Personne

nom = "Segado"
employeurs[...] =

Personne

nom = "Fercoq"
employeurs[...] =

Personne

nom = "Diedler"
employeurs[...] =

Entreprise

nom = "Lights SA"

employés[...] =

!

32

Les associations entre classes

● Concrètement on va coder ça avec des attributs
- tableau de pointeurs sur personnes côté Entreprise
- tableau de pointeurs sur entreprises côté Personne

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]
- employés : ptr Personne[1..*]

Personne

- nom : String
- employeurs : ptr Entreprise[*]

Diagramme de classes correct mais non visuel

!

33

Les associations entre classes

● Mais ces attributs seront représentés par une
liaison, ici une association simple à double sens

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]
- employés : ptr Personne[1..*]

Personne

- nom : String
- employeurs : ptr Entreprise[*]

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeurs *

1..* employés

Diagramme visuel normalDiagramme non visuel

!

34

Les associations entre classes

● On retrouve les informations d’un attribut « référence à
d’autres objets » du côté des objets référencés

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]
- employés : ptr Personne[1..*]

Personne

- nom : String
- employeurs : ptr Entreprise[*]

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeurs *

1..* employés

Diagramme visuel normalDiagramme non visuel

!

35

Les associations entre classes

● Chaque terminaisons d’une association porte

– Une information de multiplicité (ou cardinalité)
– Une information de rôle

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeurs *

1..* employés

Diagramme de classes normal

!

36

Les associations entre classes

● Chaque terminaisons d’une association porte

– Une information de multiplicité (ou cardinalité)
– Une information de rôle

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeurs *

1..* employés

Diagramme de classes normal

Une Personne a
0, 1 ou plusieurs

employeurs

Une Entreprise a
1 ou plusieurs

employés
X

Ce serait une erreur
de mettre l’attribut

- employeurs : ptr Entreprise[*]
ici même si dans
le code source il
va bien exister !

!

37

Les associations entre classes

● Certaines associations sont de type
 « plusieurs à plusieurs »

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeurs *

1..* employés

!

38

Les associations entre classes

● Certaines associations sont de type
 « un à un »

Voiture

- immat : String
- marque : String
- model : String
- etat : Bon/Bof/Berk
- pneusOk:Boolean

Personne

- nom : String
- permisB : Boolean

véhicule 1

 1 conducteur

!

39

Les associations entre classes

● Certaines associations sont de type
 « un à plusieurs »

Collectionneur

- nom : String
- réputation : Integer
- pro : Boolean

ObjetDeCollection

- description : String
- valeur : Boolean

propriétaire 1

 1..* objets

CategorieObjet

- nom : String
- prestige : Real
- histoires : String[*]

Instances :
- timbres
- livres rares
- peintures
- licornes
...

 1..*

domaines

 *

domaine

 1

 *

collectionneurs

objets

!

40

Les associations entre classes

● A la place des rôles aux terminaisons on peut indiquer
des noms aux associations (en précisant le sens)

Collectionneur

- nom : String
- réputation : Integer
- pro : Boolean

ObjetDeCollection

- description : String
- valeur : Boolean

 1

 1..*

CategorieObjet

- nom : String
- prestige : Real
- histoires : String[*]

Instances :
- timbres
- livres rares
- peintures
- licornes
...

 1..*
 *

 1

 *

V possède

> collectionne

> relève de

Cette notation est moins
proche de l’implémentation
(ce n’est pas forcément un défaut)
Le sens est un sens d’interprétation
pas un sens unique de navigation !

41

Les associations entre classes

● Par défaut la navigabilité d’une association est
bidirectionnelle (ou « à double sens »)

Collectionneur

- nom : String
- réputation : Integer
- pro : Boolean

ObjetDeCollection

- description : String
- valeur : Boolean

 1

 1..*

Etant donné un objet de type
Collectionneur on peut
directement connaître les
objets qu’il possède

propriétaire

objets Etant donné un objet de type
ObjetDeCollection on peut
directement connaître son
propriétaire

Techniquement : il suffit
de suivre le(s) pointeur(s) !

!

42

Les associations entre classes

● Si on omet les infos à une terminaison on ne peut pas
aller directement aux objets de cette terminaison

Collectionneur

- nom : String
- réputation : Integer
- pro : Boolean

ObjetDeCollection

- description : String
- valeur : Boolean

 1..*

Etant donné un objet de type
Collectionneur on peut
directement connaître les
objets qu’il possède

objets Etant donné un objet de type
ObjetDeCollection on ne peut
pas directement connaître son
propriétaire

Techniquement : il n’y a plus
de pointeur de ObjetDeCollection
vers Collectionneur

!

43

Les associations entre classes

● Convention par défaut, pas très clair... Pour indiquer la
navigabilité mieux vaut préciser avec une flèche

Collectionneur

- nom : String
- réputation : Integer
- pro : Boolean

ObjetDeCollection

- description : String
- valeur : Boolean

 1..*

Etant donné un objet de type
Collectionneur on peut
directement connaître les
objets qu’il possède

objets
Etant donné un objet de type
ObjetDeCollection on ne peut
pas directement connaître son
propriétaire

Techniquement : il n’y a plus
de pointeur de ObjetDeCollection
vers Collectionneur

!

44

Les associations entre classes

● Pour les adeptes de l’abstraction dans les phases
initiales de conception, la question de la navigabilité
ne devrait se poser que lors des phases détaillées
juste avant l’implémentation (càd. pas trop tôt)

● D’expérience nous avons pu constater qu’une
mauvaise anticipation des problèmes de navigation
pouvait plomber un projet, en particulier pour des
débutants → la navigabilité est un aspect important

!

45

Les associations entre classes

● Le double sens (par défaut en UML) semble la
meilleure solution parce que la plus souple...

● Il dispense d’avoir à analyser les sens vraiment
nécessaires c’est donc parfois le choix de la paresse
(du concepteur)

● Mais côté implémentation le choix du double sens
complique grandement : il va falloir gérer des liens
(pointeurs) réciproques et garantir leur cohérence
dans des conditions cycliques. Faisable, mais dur.

● Donc ne laisser un double sens que si c’est vraiment
indispensable par rapport aux contraintes

!

46

Les associations entre classes

● Certaines associations ont une sémantique de type
contenant/contenu ou composé/composant
et le contenu ou composant est « séparable »

Musée

- nom : String
- tarif : Real
- lieu : String

Oeuvres

- description : String
- auteur : String
- année : Integer

musée 1

 1..* oeuvres

Une œuvre peut quitter un
musée pour aller dans un
autre (où une collection privée)

Un musée peut fermer définitivement
sans que ses œuvres disparaissent

!

47

Les associations entre classes

● Dans ses conditions on peut souligner la sémantique
contenant/contenu ou composé/composant
en indiquant une agrégation

Musée

- nom : String
- tarif : Real
- lieu : String

Oeuvres

- description : String
- auteur : String
- année : Integer

musée 1

 1..* oeuvres

Une œuvre peut quitter un
musée pour aller dans un
autre (où une collection privée)

Un musée peut fermer définitivement
sans que ses œuvres disparaissent

Lors de l’implémentation du modèle
cette indication ne change rien
(par rapport au schéma précédent)

C’est donc une indication qui ne peut
faire sens (ou controverse) que par
rapport au lecteur humain : elle n’a
pas grande importance pratique

!

48

Les associations entre classes

● Certaines associations ont une sémantique de type
composé/composant et le composant n’est
ni séparable ni partageable en tant que composant

Patient

- nom : String
- age : Integer
- sexe : H / F

DossierMedical

- description : String
- auteur : String
- année : Integer

 1 dossierMedic

Un dossier médical est intimement
lié à la personne qu’il représente,
il ne peut pas devenir le dossier
médical de quelqu’un d’autre !
Si on détruit (l’objet informatique local) Patient
alors on libère (l’objet informatique local) Dossier

 1 patient

La relation de composition
est une relation a un :
Un patient a un dossier médical

!

49

Les associations entre classes

● Dans ces conditions il est important d’indiquer cette
sémantique en utilisant le symbole de composition

Patient

- nom : String
- age : Integer
- sexe : H / F

DossierMedical

- description : String
- auteur : String
- année : Integer

 1 dossierMedic

Un dossier médical est intimement
lié à la personne qu’il représente,
il ne peut pas devenir le dossier
médical de quelqu’un d’autre !
Si on détruit (l’objet informatique local) Patient
alors on libère (l’objet informatique local) Dossier

 1
Multiplicité 1 ou 0..1

patient

!

50

Les associations entre classes

● Non partageable en tant que composant,
ça n’empêche pas d’autres objets d’être en
association avec un composant ...

Patient

- nom : String
- age : Integer
- sexe : H / F

DossierMedical

- description : String
- auteur : String
- année : Integer

 1 dossierMedic

 1 patient

Docteur

- nom : String
- spécialité : String * < consulte *

51

Les associations entre classes

● Indiquer les situations de composition est important

– Parce que c’est une contrainte forte sur le cycle
de vie des instances composées par rapport au
composite

– Parce que du point de vue de l’implémentation
la composition peut souvent (pas toujours...)
se réaliser avec un attribut directement du type
de l’objet composant (et non pas pointeur sur)
on dira qu’on a une sémantique par valeur

– Quand les conditions sont réunies pour
effectivement implémenter les relations sous
forme d’attributs par valeur cela peut simplifier
grandement la gestion du cycle de vie des objets

!

52

Les associations entre classes

● Exemple de composition avec une classe utilitaire
et une sémantique par valeur « naturelle » ...

Etudiant

- nom : String
- cursus : String
- notes : Real [*]

Date

- année: Integer
- mois : Integer
- jour : Integer

dateInscription
Une date ne se partage pas
Si elle se corrige la correction
ne concerne qu’une date pour
quelqu’un. On peut dire « on s’est trompé
de date de naissance pour Olivier Martin »
On ne peut pas dire « on s’est trompé
le 5 Janvier 2000 était en fait le 6 Janvier 2000
pour tout le Monde ! »

dateNaissance

On ne précise ici ni multiplicité ni rôle en haut
ni multiplicité en bas. En l’absence de multiplicité
la valeur par défaut est 1, et la navigation est
implicitement unidirectionnelle du composé
vers le composant, ce qui est souvent le cas
avec les attributs par valeur.

!

53

Les associations entre classes

● Notons au passage que le fait d’utiliser une classe
relativement triviale et manipulée par valeur autorise
ici probablement de la considérer en attribut direct

Etudiant

- nom : String
- cursus : String
- notes : Real [*]
- dateNaissance : Date
- dateInscription : Date

class Date
{
 private :
 int annee, mois, jour ;
 ...
};

class Etudiant
{
 private :
 ...
 Date dateNaissance ;
 Date dateInscription ;
 ...
};

On allège le diagramme !

54

Les associations entre classes

● Chaque « instance d’association » peut nécessiter de
porter des données, on a une classe association

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String
- numéroFiscal : String

employeurs *

1..* employés

Emploi

- salaire : Real
- categorie : Ouvrier / Cadre...

55

Les associations entre classes

● On peut transformer en diagramme équivalent
et on se retrouve avec des associations usuelles
qu’on sait implémenter concrètement

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String
- numéroFiscal : String

emplois *

1..* postes
Emploi

- salaire : Real
- categorie : Ouvrier / Cadre...

1

entreprise

titulaire

1

56

COURS 2

A) UML et méthodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML !
D) Les associations entre classes
E) L’héritage et le polymorphisme
F) Compléments

57

L’héritage et le polymorphisme

● L’héritage permet de dériver une/des classe(s)
fille(s) d’une classe mère ou classe « de base »

Personne
nom : String
adresse : String
téléphone : Integer

Etudiant

- notes : Real[*]
- promo : Integer

Enseignant

- matière : String
- salaire : Real

PersoAdmin

- titre : String
- missions : String[*]

Accès protégé :
accessible aux

classes filles

Les attributs et méthodes de la classe mère
se retrouvent automatiquement dans les objets
des classes filles : il n’y a pas besoin (il ne faut
pas) redéclarer les attributs de la classe de base.
Ceci permet (entre autre) de factoriser le code
en évitant des répétitions, ainsi que d’articuler
des sémantiques ensemblistes (sous-ensembles...)

La relation d’héritage est une relation est un :
- un Etudiant est une Personne
- un Enseignant est une Personne
- un PersoAdmin est une Personne

58

L’héritage et le polymorphisme

● Le polymorphisme est le fait de pouvoir regrouper
des objets des types dérivés et les traiter de façon
homogène alors qu’ils correspondent à des types
distincts et qu’ils ont des comportements spécifiques

● C’est un sujet délicat sur lequel nous reviendrons !

Conteneur (tableau) d’éléments de
type « pointeur sur Animal » avec
des instances mélangées de classes
filles de Animal : Ours, Chien …

La méthode « speak » commune
(classe Animal) déclenche des
traitement spécialisés à chaque
classe fille

59

L’héritage et le polymorphisme

● L’héritage permet grouper des éléments de types
distincts dans un même « paquet »

Personne
nom : String
adresse : String
téléphone : Integer

Etudiant

- notes : Real[*]
- promo : Integer

Enseignant

- matière : String
- salaire : Real

PersoAdmin

- titre : String
- missions : String[*]

AnnuaireEcole
< connaît*

Une instance de AnnuaireEcole
connaît des Personnes qui
peuvent plus spécifiquement
être des Etudiants, des Enseignants
ou des PersoAdmin

60

COURS 2

A) UML et méthodes dev. objet
B) Diagramme de classes en UML
C) La classe en UML !
D) Les associations entre classes
E) L’héritage et le polymorphisme
F) Compléments

61

Compléments

● Les slides qui suivent sont à lire en autonomie
selon votre motivation, il sont facultatifs...

● Ils précisent certains points et en particulier apportent
une justification à l’emploi des pointeurs pour coder
informatiquement les associations entre objets

● En fin de présentation vous trouverez un exo. corrigé

● N’hésitez pas à demander à vos chargés de TD/TP des
précisions si certains concepts ne passent pas !

62

Compléments

● Reprenons la relation Entreprise / Personne
● Réduisons le CDC en termes de fonctionnalités et

voyons comment cela donne un modèle plus simple...
● CDC : une organisation syndicale souhaite enregistrer

un certain nombre de personnes, toutes salariées, et
toutes avec un seul employeur. On peut ajouter une
entreprise au système (même si aucune personne y
travaillant n’est connue). On ne peut ajouter une
personne au système que si on précise à la fois le nom
de la personne et l’entreprise unique dans laquelle il
travaille. On doit ensuite pouvoir indiquer une personne
et le système trouve l’entreprise dans laquelle il
travaille et affiche plein d’informations (nom, adresse,
chiffres comptables, actualités, affaires pénales...)

63

Compléments

● Un 1er diagramme d’objets avec une structure qui
ne convient pas : duplication d’informations...

Personne

nom = "Segado"
employeur =

Entreprise

nom = "ECE"
adresse = "..."
bilan = "…"
presse = "…"
affaires = "..."

Personne

nom = "Fercoq"
employeur =

Entreprise

nom = "ECE"
adresse = "..."
bilan = "…"
presse = "…"
affaires = "..."

Personne

nom = "Diedler"
employeur =

Entreprise

nom = "Lights"
adresse = "..."
bilan = "…"
presse = "…"
affaires = "..."

Informations dupliquées

64

Compléments

● Le schéma précédent correspondrait à l’utilisation
directe d’un attribut de type Entreprise dans la classe
Personne. C’est simple et « ça compile » mais

65

Compléments

● Une telle duplication d’information au sein d’un logiciel
en cours d’exécution (ou au sein d’une même BDD)
est en général inacceptable :

– Le volume stocké est multiplié (passe encore...)
– A une seule entité du « monde réel » devrait

logiquement correspondre un seul objet logiciel
sinon c’est la confusion dans la conception

– La mise à jour d’une donnée sur une entreprise
nécessite la synchronisation avec toutes les
instances représentant cette entreprise

● c’est une surcharge pour le hardware (bof...)
● c’est la catastrophe assurée → des données

similaires vont devenir incohérentes...

66

Compléments

● Ce problème est central en informatique
● On a utilisé une sémantique par valeur pour des

données

– non constantes
des données d’une Entreprise peuvent et vont changer

– qui sont partagées
plusieurs Personnes se rapportent à la même Entreprise

● La solution : ne pas dupliquer l’objet entreprise, faire en
sorte que les objets en relation avec lui le désigne
→ passer à une sémantique par référence

● Concrètement : utiliser des pointeurs sur objets !
● Il existe des alternatives : clés, clés uniques...

67

Compléments

● La même situation gérée correctement avec des
pointeurs : nouveau diagramme d’objets

Entreprise

nom = "ECE"
adresse = "..."
bilan = "…"
presse = "…"
affaires = "..."

Personne

nom = "Segado"
employeur =

Entreprise

nom = "Lights SA"
adresse = "..."
bilan = "…"
presse = "…"
affaires = "..."

Personne

nom = "Fercoq"
employeur =

Personne

nom = "Diedler"
employeur =

68

Compléments

● Le schéma précédent correspond à l’utilisation
d’un attribut de type pointeur sur Entreprise dans la
classe Personne. C’est simple et « ça compile » aussi !

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String
- employeur : ptr Entreprise

Diagramme de classes ! Ce diagramme de classes
est correct mais pas très
visuel ...

69

Compléments

● Techniquement en C++ la référence d’un objet de type
Personne sur un objet de type Entreprise est un
attribut Entreprise* employeur;

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String
- employeur : ptr Entreprise

Diagramme de classes ! Ce diagramme de classes
est correct mais pas très
visuel ...

70

Compléments

● Visuellement la référence sera représentée par une
liaison : on dira que les 2 classes sont associées

Diagramme de classes ! Ce diagramme de classes
est la façon normale de
représenter un attribut
pointeur sur objet d’une
autre classe !

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeur1

1..*

71

Compléments

● Ici l’association se navigue dans un seul sens
● Les informations de l’attribut « référence à l’objet »

se retrouvent à l’autre extrémité de l’association

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String
- employeur : ptr Entreprise

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeur1

1..*

Diagramme visuel normalDiagramme équivalent

72

Compléments

● Si on modifie le CDC : une personne peut avoir
plusieurs employeurs, on arrive à un attribut tableau
de pointeurs (en C++ nous aurons un std::vector)

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String
- employeurs : ptr Entreprise[1..*]

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeurs1..*

1..*

Diagramme visuel normalDiagramme équivalent

73

Compléments

● On modifie encore le CDC... Ça arrive tout le temps !
● une personne peut avoir 0 1 ou plusieurs employeurs
● connaissant une entreprise on veut pouvoir avoir accès

à toutes les personnes y travaillant...

74

Compléments

● On peut trouver toutes les personnes travaillant dans
une certaine Entreprise si on a une collection (liste,
tableau, vecteur peu importe) de tous les inscrits :
il suffit de parcourir cette liste et de tester à chaque fois

Entreprise

nom = "ECE"
...
...
...
...

Personne

nom = "Segado"
employeurs =

Personne

nom = "Fercoq"
employeurs =

Personne

nom = "Diedler"
employeurs =

Entreprise

nom = "Lights SA"
...
...
...
...

inscrits[*]

? ?
?
?

75

Compléments

● Mais cette approche n’est pas efficace si le nombre
d’inscrits est important et si cette recherche a lieu
souvent !

Entreprise

nom = "ECE"
...
...
...
...

Personne

nom = "Segado"
employeurs =

Personne

nom = "Fercoq"
employeurs =

Personne

nom = "Diedler"
employeurs =

Entreprise

nom = "Lights SA"
...
...
...
...

inscrits[*]

? ?
?
?

76

Compléments

● Si l’approche précédente est trop pénalisante on peut
adopter une navigation à double sens beaucoup
plus performante sur les recherche mais plus lourde
à mettre en place et à maintenir

Entreprise

nom = "ECE"

employés[...] =

Personne

nom = "Segado"
employeurs[...] =

Personne

nom = "Fercoq"
employeurs[...] =

Personne

nom = "Diedler"
employeurs[...] =

Entreprise

nom = "Lights SA"

employés[...] =

77

Compléments

● Ce qui conduit à une association simple avec
navigation à double sens beaucoup
plus performante sur les recherche mais plus lourde
à mettre en place et à maintenir

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]
- employés : ptr Personne[1..*]

Personne

- nom : String
- employeurs : ptr Entreprise[*]

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeurs *

1..* employés

Diagramme visuel normalDiagramme équivalent

78

Compléments

● La navigation à double sens est la navigation par
défaut d’une association quand aucune flèche n’est
spécifiée. A n’utiliser qu’en cas de nécessité car
nettement plus long à bien implémenter ensuite.

double sens

Diagramme visuel normalDiagramme équivalent

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]
- employés : ptr Personne[1..*]

Personne

- nom : String
- employeurs : ptr Entreprise[*]

Entreprise

- nom : String
- adresse : String
- bilan : Real
- presse : String[*]
- affaires : String[*]

Personne

- nom : String

employeurs *

1..* employés

79

Compléments

Exercice corrigé

● Faire le diagramme de classe du diagramme d’objets
slide suivant.

● Vous indiquerez les multiplicité mais pas les rôles
● Le CDC est au début du TD/TP 1
● Attention spoiler, le corrigé est au slide d’après...

80

Compléments

Vol

id = "AF4018"
depart =
destination =
pilote =
copilote =
avion =

Ville
id = "Paris"
position =

CoordsGeo
latitude=48.85
longitude=2.35

Ville
id = "Madrid"
position =

CoordsGeo
latitude=40.42
longitude=-3.70

Ville
id = "Athènes"
position =

CoordsGeo
latitude=37.98
longitude=23.73

villesDesservies[…]

...

Pilote

nom = "Arora"
prenom = "Abby"
site = null
vol =
disponible = false

Pilote

nom = "Bridwell"
prenom = "Karl"
site = null
vol =
disponible = false

Pilote

nom = "Eberle"
prenom = "Agnes"
site =
vol = null
disponible = true

Pilote

nom = "Aquino"
prenom = "Rex"
site =
vol = null
disponible = false

Avion

id = "F-GTAJ"
etat = entretien
site =
vol = null

Avion

id = "D-URJX"
etat = vol
site = null
vol =

Avion

id = "SK25BE"
etat = prêt
site =
vol = null

avionsDeLaCompagnie[…]

...

Objets du cas étudié

Ville

id = "Athènes"
position =

pilotes[...] =

avions[...] =

CoordsGeo
latitude=37.98
longitude=23.73

...
Pilote

nom = "Eberle"
prenom = "Agnes"
site =
vol = null
disponible = true

Pilote

nom = "Aquino"
prenom = "Rex"
site =
vol = null
disponible = false

Avion

id = "SK25BE"
etat = prêt
site =
vol = null

...

Au modèle ci-dessus
on a ajouté ces navigations
à double sens

81

Compléments
Corrigé de l’exercice

Sur ce diagramme
on a omis les rôles...

{xor} indique une contrainte logique
d’exclusion entre associations :
un avion est soit en vol
soit dans une ville

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81

