
1

Conception et Programmation
Orientée Objet 

C++ 

Robin FERCOQ
     2018-2019

INGE2
S3



2

POO - C++

Sommaire général du semestre

COURS     

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Modèles objets avancés
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs     

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates 
12.Soutenance de projet ...

Semaine suivante



3

C++ pratique 1



4

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



5

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



6

Namespace et opérateur ::



7

Namespace et opérateur ::

● L’expérience en développement de gros projets montre 
que les « collisions d’identifiants » sont fréquentes 
quand on réunit ensemble de grosses bases de code 

   ...
copysign()
cos()
cosh()
count<>()
count_if<>()
cout
crbegin<>()
cref<>()
cregex_iterator
crend<>()
csub_match
ctime()
ctype<>
ctype_base
       ...

Librairie standard du C++
     ~ 1000 identifiants

   ...
cadre
capital
charges
chiffre_affaires
commande
compte
controle_gestion
cout
creance
depots
depreciation
emprunt
excedent
fonds
frais
       ...

Code métier « compta »  
     ~ 1000 identifiants

GROS PROJET
$ $ $

#include #include

https://en.cppreference.com/w/cpp/symbol_index


8

Namespace et opérateur ::

● L’expérience en développement de gros projets montre 
que les « collisions d’identifiants » sont fréquentes 
quand on réunit ensemble de grosses bases de code 

   ...
copysign()
cos()
cosh()
count<>()
count_if<>()
cout
crbegin<>()
cref<>()
cregex_iterator
crend<>()
csub_match
ctime()
ctype<>
ctype_base
       ...

Librairie standard du C++
     ~ 1000 identifiants

   ...
cadre
capital
charges
chiffre_affaires
commande
compte
controle_gestion
cout
creance
depots
depreciation
emprunt
excedent
fonds
frais
       ...

Code métier « compta »  
     ~ 1000 identifiants

cout  =  taux*marge;

#include #include

?

https://en.cppreference.com/w/cpp/symbol_index


9

Namespace et opérateur ::

● Par exemple la bibliothèque standard du C++ définit un 
identifiant cout (Character OUTput) tandis qu’on peut 
facilement imaginer qu’un vieux (mais précieux) code 
de gestion de comptabilité écrit en C en 1989 définit 
une variable ou une constante de coût (combien ça 
coûte) nommée aussi  cout 

● Lorsqu’on va vouloir mettre dans un même projet à la 
fois la bibliothèque standard du C++ et ce code C le 
compilateur va dans le meilleur des cas faire une 
erreur ( compréhensible ou pas )...

– error: conflicting declaration 'float cout'
– error: invalid operands of types 'float' and 'const 

char [13]' to binary 'operator<<'



10

Namespace et opérateur ::

● Ou pire, alors que le développeur pensait à l’un des 
identifiant le compilateur va réussir à compiler le code 
sur la base de l’autre identifiant que souvent le 
développeur ne connaît même pas ! Et c’est le chaos...

● Le problème devient encore plus fréquent quand on a 
des versions différentes de bibliothèques et qu’on veut 
mettre ensemble un code qui utilise une vieille version 
avec un code qui utilise une version récente 
(et le manager n’est pas d’accord pour tout recoder)

● Sur le terrain du développement de grosses 
applications ces situations sont assez courantes et 
coûtent assez cher pour qu’on s’astreigne à la 
fastidieuse discipline des namespace... 



11

Namespace et opérateur ::

● Un namespace est un espace de nommage !
● Le namespace lui même a un identifiant, les sections 

de code concernées par ce namespace sont 
encadrées par une déclaration de namespace

● A l’intérieur d’un bloc namespace on accède 
normalement aux identifiants de ce namespace 

factures.cpp

namespace compta
{
    const float tva = 19.6;
    float prixTtc(float prixHt);
}

factures.h

#include <factures.h>

namespace compta
{
    float prixTtc(float prixHt)
    {
        return tva * prixHt;
    }
}

ok



12

Namespace et opérateur ::

● A l’extérieur du bloc namespace on ne voit pas 
les identifiants du namespace ( c’est le but ! )

main.cpp

namespace compta
{
    const float tva = 19.6;
    float prixTtc(float prixHt);
}

factures.h

#include <factures.h>

int main()
{
    float aPayer = prixTtc(150.20);

    float doubleTva = tva * 2.0;

error: … was not declared in this scope



13

Namespace et opérateur ::

● A l’extérieur du bloc namespace pour accéder aux 
identifiants du namespace il faut bien préciser de 
quoi on parle en préfixant par compta::

main.cpp

namespace compta
{
    const float tva = 19.6;
    float prixTtc(float prixHt);
}

factures.h

ok

#include <factures.h>

int main()
{
    float aPayer = compta::prixTtc(150.20);

    float doubleTva = compta::tva * 2.0;

!



14

Namespace et opérateur ::

● On retrouve ici un principe de la programmation OO :
l’encapsulation. Un namespace est une capsule de 
nommage, pour y accéder on respecte un protocole.

main.cpp

namespace compta
{
    const float tva = 19.6;
    float prixTtc(float prixHt);
}

factures.h

#include <factures.h>

int main()
{
    float aPayer = compta::prixTtc(150.20);

    float doubleTva = compta::tva * 2.0;



15

Namespace et opérateur ::

● :: est l’opérateur de résolution de portée
scope resolution operator 
( utilisé aussi dans d’autres contextes, classes, énumérations... )

main.cpp

namespace compta
{
    const float tva = 19.6;
    float prixTtc(float prixHt);
}

factures.h

#include <factures.h>

int main()
{
    float aPayer = compta::prixTtc(150.20);

    float doubleTva = compta::tva * 2.0;



16

Namespace et opérateur ::

● Si on est dans une section de code appelant qui utilise 
intensivement les identifiants d’un namespace il peut 
devenir fastidieux de taper à chaque fois compta::

main.cpp

namespace compta
{
    const float tva = 19.6;
    float prixTtc(float prixHt);
}

factures.h

#include <factures.h>

int main()
{
    float aPayer = compta::prixTtc(150.20);

    float doubleTva = compta::tva * 2.0;



17

Namespace et opérateur ::

● On peut utiliser une directive using namespace 
sous la directive les identifiants deviennent visibles !

●  Mais ceci annule les bénéfices des namespaces... 

main.cpp

namespace compta
{
    const float tva = 19.6;
    float prixTtc(float prixHt);
}

factures.h

#include <factures.h>

using namespace compta;

int main()
{
    float aPayer = prixTtc(150.20);

    float doubleTva = tva * 2.0;



18

Namespace et opérateur ::

● L’ensemble des identifiants des bibliothèques 
standards du C++ sont tous dans l’espace de 
nommage std

● On écrira donc très souvent std:: et il sera tentant 
d’utiliser une directive  using namespace std;

● Ainsi std::cout deviendra cout etc...
● Cette pratique est courante et acceptable sur les 

forums techniques pour de courts extraits de code, 
ou lors d’une explication sur un tableau pour des 
raisons de lisibilité et de compacité du code...

● Elle est rigoureusement interdite dans les fichiers .h 
car elle se propage alors aux .cpp utilisateurs du .h

!



19

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



20

Flots console, affichages cout<<



21

Flots console, affichages cout<<

● std::cout est une instance de la classe std::ostream
● Ce qu’on lui envoie avec l’opérateur d’insertion <<

s’affiche à la console. On peut chaîner les insertions.

!

C

C++#include <iostream>

int main()
{
    std::cout << "Hello modern world !" << std::endl;

#include <stdio.h>

int main()
{
    printf("Good bye old world...\n");



22

Flots console, affichages cout<<

● std::cout est une instance de la classe std::ostream
● Ce qu’on lui envoie avec l’opérateur d’insertion <<

apparaît à la console. On peut chaîner les insertions.

!

C

C++#include <iostream>

int main()
{
    std::cout << "Hello modern world !" << std::endl;

#include <stdio.h>

int main()
{
    printf("Good bye old world...\n");

Insertion dans la console End of Line, idem "\n"



23

Flots console, affichages cout<<

● Les contenus et valeurs à afficher se codent
là où ils apparaissent dans la chaîne d’insertions

● Les types sont déduits, pas besoin de les préciser

!

C

C++int i = 5;
float x = 0.123456;

std::cout << "Votre entier : " << i << " Votre reel : " << x << std::endl;

int i = 5;
float x = 0.123456;

printf("Votre entier : %d Votre reel : %f\n", i, x);



24

Flots console, affichages cout<<

● Les contenus et valeurs à afficher se codent
là où ils apparaissent dans la chaîne d’insertions

● Les types sont déduits, pas besoin de les préciser

!

C

C++int i = 5;
float x = 0.123456;

std::cout << "Votre entier : " << i << " Votre reel : " << x << std::endl;

int i = 5;
float x = 0.123456;

printf("Votre entier : %d Votre reel : %f\n", i, x);

Valeurs rapportées aux formats %

Valeurs indiquées localement



25

Flots console, affichages cout<<

● L’opérateur << indique le sens de circulation de 
l’information : messages et valeurs vers l’affichage

● Mais l’opérateur << s’évalue de gauche à droite !

!

C++int i = 5;
float x = 0.123456;

std::cout << "Votre entier : " << i << " Votre reel : " << x << std::endl;

std::cout << "Votre entier : ";
std::cout << i;
std::cout << " Votre reel : ";
std::cout << x;
std::cout << std::endl;

C++

Est équivalent à la séquence :



26

Flots console, affichages cout<<

● On peut découper en plusieurs lignes de code
pour plus de lisibilité (- de 70 caracs par ligne conseillé)

● Mettre le chaînage << à la ligne et non en fin de ligne

!

C++int i = 5;
float x = 0.123456;

std::cout << "Votre entier : " << i 
          << " Votre reel : " << x 
          << std::endl;



27

Flots console, affichages cout<<

● Les formatages sont des modification de l’état de 
l’objet std::cout …

C++

    int nbArticles = 3; float prixArticle = 2.5;
    char nomArticle[] = "crochet";

    printf("Votre commande : %d %ss pour un total de %.02f\n",
           nbArticles, nomArticle, nbArticles*prixArticle);

C

console

    std::cout << std::setprecision(2)
              << std::fixed
              << "Votre commande : "
              << nbArticles << " "
              << nomArticle << "s "
              << "pour un total de "
              << nbArticles*prixArticle
              << std::endl;



28

Flots console, affichages cout<<

● Les formatages sont des modification de l’état de 
l’objet std::cout …

C++

    int nbArticles = 3; float prixArticle = 2.5;
    char nomArticle[] = "crochet";

    printf("Votre commande : %d %ss pour un total de %.02f\n",
           nbArticles, nomArticle, nbArticles*prixArticle);

C

console

Objet « flot de sortie » modifié

Formatage ponctuel

    std::cout << std::setprecision(2)
              << std::fixed
              << "Votre commande : "
              << nbArticles << " "
              << nomArticle << "s "
              << "pour un total de "
              << nbArticles*prixArticle
              << std::endl;



29

Flots console, affichages cout<<

● Les formatages sont des modification de l’état de 
l’objet std::cout …

C++

    int nbArticles = 3; float prixArticle = 2.5;
    char nomArticle[] = "crochet";

Objet « flot de sortie » modifié    std::cout << std::setprecision(2)
              << std::fixed
              << "Votre commande : "
              << nbArticles << " "
              << nomArticle << "s "
              << "pour un total de "
              << nbArticles*prixArticle
              << std::endl;
    ... 
    ... 
    ... 

    float tab[3] = {2, 5.1, 2.49};

    std::cout << tab[0] << " " << tab[1] << " " << tab[2] << std::endl;

Le résultat dépend de la présence ou non du code au dessus...



30

Flots console, affichages cout<<

● Rassurez vous on ne va pas vous taquiner en DS 
sur les subtilités des formatages avec cout<<

Pour les TPs il faut retenir que :

● Certains formats nécessitent  #include <iomanip>
● Le catalogue n’est pas à connaître par cœur mais 

vous devez savoir consulter une doc technique :
https://en.cppreference.com/w/cpp/io/manip

https://en.cppreference.com/w/cpp/io/manip


31

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



32

Flots console, saisies cin>>



33

Flots console, saisies cin>>

● std::cin est une instance de la classe std::istream
● Les données qu’il envoie vers des variables avec 

l’opérateur d’extraction >> correspondent aux saisies 

!

C

C++    int i;
    float x;

    std::cout << "Veuillez saisir un entier puis un reel" << std::endl;
    std::cin >> i >> x;

    std::cout << "Votre entier vaut " << i
              << " et votre reel " << x << std::endl;

    int i;
    float x;

    printf("Veuillez saisir un entier puis un reel\n");
    scanf("%d", &i);
    scanf("%f", &x);

    printf("Votre entier vaut %d et votre reel %f\n", i, x);



34

Flots console, saisies cin>>

● Evidemment ce code plutôt lisible échoue 
lamentablement si l’utilisateur entre autre chose
que ce qui est attendu...

C++    int i;
    float x;

    std::cout << "Veuillez saisir un entier puis un reel" << std::endl;
    std::cin >> i >> x;

    std::cout << "Votre entier vaut " << i
              << " et votre reel " << x << std::endl;

console

x non initialisé après cin !

Ce code compile sans error ni warning...



35

Flots console, saisies cin>>

● La  programmation de saisies utilisateur « blindées »
en mode console reste toujours une punition pour le 
développeur parce que : 

– L’utilisateur entre ce qu’il veut (on ne peut pas 
physiquement bloquer les touches. Avec les 
écrans tactiles c’est différent...)

– Le langage ne peut pas décider à la place du 
programmeur ce que l’application doit faire quand 
l’utilisateur n’est pas dans les clous.

– Basiquement il faudrait saisir ligne par ligne 
dans des chaînes puis analyser ces chaînes 
reçues caractère par caractère (parsing).

– Ceci fera l’objet d’un exercice au TD/TP 3... 



36

Flots console, saisies cin>>

● Si vous bloquez avec une fonctionnalité C++ que vous 
sauriez faire en C ... 

● Si une entité d’une bibliothèque C n’a pas d’équivalent 
ou est plus adaptée que l’équivalent C++ …

● Il est toujours possible d’utiliser du C dans du C++ ! 
● Dans ce cas faites un include du nom de la 

bibliothèque C sans le .h et préfixée par c
stdio.h → cstdio     math.h → cmath  ... 

!

C++#include <cstdio>

int main()
{

    float a = 1.2345;

    printf("%.01f %.02f %.03f\n", a, a, a);

N’en abusez pas 
On est là pour le C++ !



37

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



38

Type bool, littéral nullptr

● Le C++ introduit de nouveaux types et de nouveaux 
mots clés pour des valeurs élémentaires



39

Type bool, littéral nullptr

● Le type bool prend les valeurs true ou false
● C++ peut convertir implicitement bool depuis-vers les 

types numériques / pointeurs ( =0 ↔ false  ≠0 ↔ true )

C

C++    bool estVert = true;
    bool seDeplaceSousLeau = false;

    if ( estVert && seDeplaceSousLeau )
        std::cout << "Un choux-marin !" << std::endl;
    else
        std::cout << "Je ne sais pas..." << std::endl;

    char estVert = 1;
    char seDeplaceSousLeau = 0;

    if ( estVert && seDeplaceSousLeau )
        printf("Un choux-marin !\n");
    else
        printf("Je ne sais pas...\n");

!



40

Type bool, littéral nullptr

● La valeur spéciale nullptr remplace NULL pour 
indiquer un pointeur qui pointe sur « rien »

● nullptr a un type pointeur   NULL un type entier...

C++struct Coords
{
    double x, y;
};

int main()
{
    Coords* ici = nullptr;

    // ...
    // ici est alloué ou pas...
    // ...

    if ( ici != nullptr )
        /// Ok, ici pointe quelque chose
        std::cout << ici->x << " " << ici->y << std::endl;

!



41

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



42

Les chaînes std::string



43

Les chaînes std::string

● Le type std::string de la bibliothèque string
● Quelle taille fait le tableau de char qui hébergera une 

chaîne ? La taille qu’il faut !

C++

!

#include <iostream>
#include <string>

int main()
{

    std::string nom, prenom;

    std::cout << "Nom et Prenom SVP" << std::endl;

    std::cin >> nom;
    std::cin >> prenom;

    std::cout << "Bonjour " << prenom << " " << nom << std::endl;

    std::cout << "Ton prenom a " << prenom.size() << " lettres" 
              << std::endl;



44

Les chaînes std::string

● La machinerie complexe de l’objet commence à payer !

● Chaque chaîne est un objet de la classe std::string  
avec des attributs privés et des méthodes publiques

C++

!

#include <iostream>
#include <string>

int main()
{

    std::string nom, prenom;

    std::cout << "Nom et Prenom SVP" << std::endl;

    std::cin >> nom;
    std::cin >> prenom;

    std::cout << "Bonjour " << prenom << " " << nom << std::endl;

    std::cout << "Ton prenom a " << prenom.size() << " lettres" 
              << std::endl;



45

Les chaînes std::string

● Un std::string est un « objet valeur »

● Le type se comporte comme un type scalaire, 
les affectations / comparaisons se font par valeur

C++

!

    std::string x;
    std::string y;

    x = "Un";
    y = x;
    x = "Deux";

    std::cout << x << " " << y << std::endl;



46

Les chaînes std::string

● Un std::string est un « objet valeur »

● Le type se comporte comme un type scalaire, 
les affectations / comparaisons se font par valeur

C++

!

    std::string x;
    std::string y;

    x = "ABC";
    y = "ABC";

    if ( x == y )
        std::cout << "x et y ont meme valeur" << std::endl;

    if ( x == "ABC" )
        std::cout << "x a la valeur \"ABC\"" << std::endl;

    if ( &x != &y )
        std::cout << "x et y n'ont pas meme adresse" << std::endl;



47

Les chaînes std::string

● Des méthodes sous forme explicite ou sous forme 
d’opérateurs permettent de manipuler les std::string

● On se moque des problèmes d’allocation...

C++

    std::string nom = "Pig";

    nom.front() = 'B';
    std::cout << "This is " << nom << " !" << std::endl;

    nom += "ger";
    std::cout << "This is " << nom << " !" << std::endl;

    nom.insert(3, " hun");
    std::cout << "I have " << nom << " !" << std::endl;

    nom.erase(1, 4);
    nom[2] = 'r';
    std::cout << "For a " << nom << " !" << std::endl;



48

Les chaînes std::string

● Des méthodes sous forme explicite ou sous forme 
d’opérateurs permettent de manipuler les std::string

● On se moque des problèmes d’allocation...

C++

    std::string nom = "Pig";

    nom.front() = 'B';

    nom += "ger";

    nom.insert(3, " hun");

    nom.erase(1, 4);
    nom[2] = 'r';

"Pig"

"Pig" "Big"

"Big" "Bigger"

"Bigger" "Big hunger"

"Big hunger" "Bunger"
"Bunger" "Burger"



49

Les chaînes std::string

● Des méthodes sous forme explicite ou sous forme 
d’opérateurs permettent de manipuler les std::string

● Le catalogue n’est pas à connaître par cœur mais 
vous devez savoir consulter une doc technique :
https://en.cppreference.com/w/cpp/string/basic_string

https://en.cppreference.com/w/cpp/string/basic_string


50

Les chaînes std::string

● Les prototypes des méthodes et fonctions C++ 
de la bibliothèque standard sont notoirement illisibles...

● Ici déclaration de std::getline qui lit une ligne 
complète dans une string ( cin>> coupe aux espaces )



51

Les chaînes std::string

● Concentrez vous sur les exemples
 https://fr.cppreference.com/w/cpp/string/basic_string/getline

● Ici utilisation de std::getline qui lit une ligne 
complète dans une string ( cin>> coupe aux espaces )

!

https://fr.cppreference.com/w/cpp/string/basic_string/getline


52

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



53

Les conteneurs std::vector< >



54

Les conteneurs std::vector< >

● C++ offre la possibilité d’utiliser des types paramétrés 
en types ( templates et programmation générique )

● Un des plus utiles est std::vector< … >

C++

!

#include <iostream>
#include <vector>

int main()
{
    std::vector<float> monVec;

    std::cout << monVec.size() << " elements" << std::endl;

    monVec.push_back(1.23);
    monVec.push_back(2.5);
    monVec.push_back(3.15);

    std::cout << monVec.size() << " elements" << std::endl;
    std::cout << monVec[0] << " / "
              << monVec[1] << " / "
              << monVec[2] << std::endl;



55

Les conteneurs std::vector< >

● Le vecteur est un type conteneur, il y en a d’autres, 
on fera un cours complet à ce sujet ! 

● Comme un tableau … extensible !

C++

!

#include <iostream>
#include <vector>

int main()
{
    std::vector<float> monVec;

    std::cout << monVec.size() << " elements" << std::endl;

    monVec.push_back(1.23);
    monVec.push_back(2.5);
    monVec.push_back(3.15);

    std::cout << monVec.size() << " elements" << std::endl;
    std::cout << monVec[0] << " / "
              << monVec[1] << " / "
              << monVec[2] << std::endl;



56

Les conteneurs std::vector< >

● Des méthodes sous forme explicite ou sous forme 
d’opérateurs permettent de manipuler les vector

● Le catalogue n’est pas à connaître par cœur mais 
vous devez savoir consulter une doc technique :
https://en.cppreference.com/w/cpp/container/vector

https://en.cppreference.com/w/cpp/container/vector


57

Les conteneurs std::vector< >

● Les méthodes size() des objets string et vector 
sont de type size_t (je simplifie, chaque classe à son size_type...)

● Utiliser ce type pour les compteurs comparés à size()

C++

!

    size_t n = 8;
    size_t i;

    std::vector<int> fibo;
    fibo.push_back(0);
    fibo.push_back(1);

    for (i=2; i<n; ++i)
        fibo.push_back( fibo[i-2] + fibo[i-1] );

    for (i=0; i<fibo.size(); ++i)
        std::cout << fibo[i] << ", ";

    std::cout << "..." << std::endl;



58

Les conteneurs std::vector< >

● Les méthodes size() des objets string et vector 
sont de type size_t (je simplifie, chaque classe à son size_type...)

● Utiliser ce type pour les compteurs comparés à size()

C++

!

    size_t n = 8;
    size_t i;

    std::vector<int> fibo;
    fibo.push_back(0);
    fibo.push_back(1);

    for (i=2; i<n; ++i)
        fibo.push_back( fibo[i-2] + fibo[i-1] );

    for (i=0; i<fibo.size(); ++i)
        std::cout << fibo[i] << ", ";

    std::cout << "..." << std::endl;

Effet de mode (sans importance) 
en C++ on préfère ++i à i++



59

Les conteneurs std::vector< >

● On peut toujours utiliser un tableau classique quand on 
connaît le nombre d’éléments « en dur »

● Un tableau est toujours passé « par référence »

C++void testerTableau(int param[3])
{
    std::cout << "sous prog. tableau avant " << param[0] << std::endl;
    ++param[0];
    std::cout << "sous prog. tableau apres " << param[0] << std::endl;
}

int main()
{
    int tab[3] = {10, 20, 30};

    std::cout << "appelant tableau avant " << tab[0] << std::endl;
    testerTableau(tab);
    std::cout << "appelant tableau apres " << tab[0] << std::endl;

L’appelé peut modifier
des données de l’appelant



60

Les conteneurs std::vector< >

● On peut aussi utiliser un vecteur, les mêmes syntaxes 
d’initialisation à la déclaration sont utilisables

● Par défaut un vecteur est passé « par valeur » : copie

C++void testerVecteur(std::vector<int> param)
{
    std::cout << "sous prog. vecteur avant " << param[0] << std::endl;
    ++param[0];
    std::cout << "sous prog. vecteur apres " << param[0] << std::endl;
}

int main()
{
    std::vector<int> vec = {10, 20, 30};

    std::cout << "appelant vecteur avant " << vec[0] << std::endl;
    testerVecteur(vec);
    std::cout << "appelant vecteur apres " << vec[0] << std::endl;

0

Copie du vecteur de l’appelant

L’appelé n’a pas modifié
des données de l’appelant



61

Les conteneurs std::vector< >

● Comme pour std::string , std::vector a une 
sémantique par valeur, affectation et appel copient

● On peut passer « par référence » : voir cours suivant... 

C++void testerVecteur(std::vector<int>& param)
{
    std::cout << "sous prog. vecteur avant " << param[0] << std::endl;
    ++param[0];
    std::cout << "sous prog. vecteur apres " << param[0] << std::endl;
}

int main()
{
    std::vector<int> vec = {10, 20, 30};

    std::cout << "appelant vecteur avant " << vec[0] << std::endl;
    testerVecteur(vec);
    std::cout << "appelant vecteur apres " << vec[0] << std::endl;

Référence vecteur de l’appelant

L’appelé peut modifier
des données de l’appelant



62

Les conteneurs std::vector< >

● Dans les chevrons < ... > on met le type contenu
               brackets (ou angle brackets)

● vector  peut contenir n’importe quel type copiable...

C++    std::vector<std::string> mots{ "Un", "vecteur" };

    mots.push_back( "de chaines" ) ;

    for (size_t i=0; i<mots.size(); ++i)
        std::cout << mots[i] << " ";

    std::cout << std::endl;



63

Les conteneurs std::vector< >

● Dans les chevrons < ... > on met le type contenu
               brackets (ou angle brackets)

● vector dans vector : tableaux à 2 dimensions

C++    std::vector<std::vector<int>> mat{ {1,2}, {3, 4, 5} };

    mat.push_back( std::vector<int>{6, 7, 8, 9} );

    for (size_t i=0; i<mat.size(); ++i)
    {
        for (size_t j=0; j<mat[i].size(); ++j)
            std::cout << mat[i][j] << " ";
        std::cout << std::endl;
    }



64

Les conteneurs std::vector< >

● Le vector peut être dimensionné à sa déclaration
● C++11 offre de nombreuses syntaxes de déclaration 

avec quelques pièges... on reviendra dessus en TP !

C++    std::vector<float> vec1;
    std::vector<float> vec2(5);
    std::vector<float> vec3(5, 3.14);
    std::vector<float> vec4{5, 3.14};



65

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



66

Déclaration variables et portée



67

Déclaration variables et portée

● En C++ on déclare de nouvelles variables où on veut 
dans un bloc { } pas forcément « au début »

● C’est aussi valable en C99 ( on ne vous l’a pas dit ? )

C++

!

int main()
{
    std::string nom;
    std::cout << "Nom SVP : ";
    std::cin  >> nom;

    int age;
    std::cout << "Age SVP : ";
    std::cin  >> age;

    bool fumeur;
    std::cout << "Fumeur (true/false) : ";
    std::cin  >> std::boolalpha >> fumeur;

    if ( age>40 && fumeur )
        std::cout << "Faites une radio des poumons "
                  << nom << std::endl;



68

Déclaration variables et portée

● En C++ on déclare de nouvelles variables où on veut 
dans un bloc { } pas forcément « au début »

● La variable est visible jusqu’à la fin du bloc → }

C++

!

int main()
{
    std::string nom;
    std::cout << "Nom SVP : ";
    std::cin  >> nom;

    int age;
    std::cout << "Age SVP : ";
    std::cin  >> age;

    bool fumeur;
    std::cout << "Fumeur (true/false) : ";
    std::cin  >> std::boolalpha >> fumeur;

    if ( age>40 && fumeur )
        std::cout << "Faites une radio des poumons "
                  << nom << std::endl;
    ...
}

in
t 

ag
e



69

Déclaration variables et portée

● Attention il y a quand même des règles et des pièges
● La variable la plus locale cache la plus globale...
● La portée d’une variable (scope) 

C++

!

std::string x = "Globale";

int main()
{
    std::cout << x << std::endl;
    float x = 3.14;
    std::cout << x << std::endl;

    for (int i=1; i<=3; i++)
    {
        int x = 5*i;
        std::cout << x << std::endl;
    }

    std::cout << x << std::endl;

    ...
}

st
d

::
st

ri
n

g
 x

fl
o

at
 x

in
t 

x

https://fr.wikiversity.org/wiki/Langage_C%2B%2B/Port%C3%A9e_du_code


70

Déclaration variables et portée

● Attention il y a quand même des règles et des pièges
● Les variables « compteur de boucle » peuvent se

déclarer localement au bloc initialisation de la boucle...

C++

!

int main()
{

    for (int i=1; i<=3; i++)
    {
        int x = 5*i;
        std::cout << x << std::endl;
    }

    ...
}



71

Déclaration variables et portée

● Attention il y a quand même des règles et des pièges
● Les variables « compteur de boucle » peuvent se

déclarer localement au bloc initialisation de la boucle...

C++

!

int main()
{

    for (int i=1; i<=3; i++)
    {
        int x = 5*i;
        std::cout << x << std::endl;
    }

    std::cout << i << std::endl;

    ...
} error: 'i' was not declared in this scope



72

Déclaration variables et portée

● Attention il y a quand même des règles et des pièges
● Ça correspond à une logique de localité : 

restreindre les variables à la plus petite portée utile

C++

!

    for (int i=1; i<=3; i++)
    {
        int x = 5*i;
        std::cout << x << std::endl;
    }

Ceci est une « unité d’exécution »
qui peut être dupliquée ou déplacée

sans dépendre d’un contexte

variable i déclarée ou pas ?
de type int si déclarée ?

co
n

te
xt

e



73

Déclaration variables et portée

● Attention il y a quand même des règles et des pièges

● Les  case  dans les switch ne sont pas des blocs !

C++int main()
{
    int choix;
    std::cin >> choix;

    switch (choix)
    {
        case 1:
            int x = 3;
            std::cout << x;
            break;

        case 2:
            int x = 6;
            std::cout << x;
            break;
    }
}

error: redeclaration of 'int x'



74

Déclaration variables et portée

● Attention il y a quand même des règles et des pièges

● Les  case  dans les switch ne sont pas des blocs !

C++int main()
{
    int choix;
    std::cin >> choix;

    switch (choix)
    {
        case 1:
            int x = 3;
            std::cout << x;
            break;

        case 2:
            int y = 6;
            std::cout << y;
            break;
    }
}

error: jump to case label
       crosses initialization of 'int x'



75

Déclaration variables et portée

● Attention il y a quand même des règles et des pièges

● Les  case  dans les switch ne sont pas des blocs !
Si ça fait sens de déclarer localement : préciser { }

C++

Ok ça compile !

    switch (choix)
    {
        case 1:
        {
            int x = 3;
            std::cout << x;
            break;
        }

        case 2:
        {
            int x = 6;
            std::cout << x;
            break;
        }
    }



76

COURS 3

A) Namespace et opérateur ::
B) Flots console, affichages cout<<
C) Flots console, saisies  cin>>
D) Type bool, littéral nullptr
E) Les chaînes std::string
F) Les conteneurs std::vector< >
G) Déclaration variables et portée
H) Alias de type, déclaration auto



77

Alias de type, déclaration auto



78

Alias de type, déclaration auto

● En C++ les déclarations de types composés 
peuvent se transformer en tartines de code !

C++
std::vector<std::vector<char>> faireGrille(size_t nbLig, size_t nbCol)
{
    std::vector<std::vector<char>> grille;

    /// Remplir la grille avec des push_back
    ...

    return grille;
}

int main()
{
    std::vector<std::vector<char>> petite = faireGrille(10, 15);
    std::vector<std::vector<char>> grande = faireGrille(20, 30);

    /// Utiliser les grilles...



79

Alias de type, déclaration auto

● En C on avait typedef pour faire un alias de type...
● En C++ moderne (C++11) on préfère utiliser une 

déclaration d’alias de type avec using 

C++using Grille = std::vector<std::vector<char>>;

Grille faireGrille(size_t nbLig, size_t nbCol)
{
     Grille grille;

    /// Remplir la grille avec des push_back

    return grille;
}

int main()
{
    Grille petite = faireGrille(10, 15);
    Grille grande = faireGrille(20, 30);

    /// Utiliser les grilles...



80

Alias de type, déclaration auto

● Attention : ne pas rendre le code illisible pour les autres
en introduisant plein d’alias mystérieux

● Préférer un nommage explicite, court et efficace

C++using VecVecChar = std::vector<std::vector<char>>;

VecVecChar faireGrille(size_t nbLig, size_t nbCol)
{
     VecVecChar grille;

    /// Remplir la grille avec des push_back

    return grille;
}

int main()
{
    VecVecChar petite = faireGrille(10, 15);
    VecVecChar grande = faireGrille(20, 30);

    /// Utiliser les grilles...



81

Alias de type, déclaration auto

● Une alternative aux déclarations fastidieuses est 
la déduction automatique de type...

● Le type auto se déduit du contexte, si possible !

C++
auto faireGrille(size_t nbLig, size_t nbCol)
{
    std::vector<std::vector<char>> grille;

    /// Remplir la grille avec des push_back

    return grille;
}

int main()
{
    auto petite = faireGrille(10, 15);
    auto grande = faireGrille(20, 30);

    /// Utiliser les grilles...



82

Alias de type, déclaration auto

● Une alternative aux déclarations fastidieuses est 
la déduction automatique de type...

● Le type auto se déduit du contexte, si possible !

C++
auto faireGrille(size_t nbLig, size_t nbCol)
{
    std::vector<std::vector<char>> grille;

    /// Remplir la grille avec des push_back

    return grille;
}

int main()
{
    auto petite = faireGrille(10, 15);
    auto grande = faireGrille(20, 30);

    /// Utiliser les grilles...



83

Alias de type, déclaration auto

● Il doit y avoir un contexte, par exemple une initialisation
dès la déclaration

● Le type auto se déduit du contexte, si possible !

C++    /// OK x sera de type int
    auto x = 0;

    /// OK y sera de type double
    auto y = 1.0;

    /// OK z sera de type float
    auto z = 2.0f;

    /// OK ch sera de type const char * (pas string)
    auto ch = "Trois";

    /// OK cond sera de type  bool
    auto cond = false;



84

Alias de type, déclaration auto

● Le compilateur fait ce qu’il peut mais ne peut pas 
prédire le futur ! Le C++ est typé statiquement 

● Un langage à typage dynamique saurait faire...

C++

    auto w = cond ? 4 : "Quatre";

    auto var;
    if (cond)
        var = 5;
    else
        var = "Cinq";

error: operands to ?: have different types 'int' and 'const char*'

error: declaration of 'auto var' has no initializer


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84

