Robin FERCOQ

r|!| ECE PARIS NS e 019

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

POO - C++

Sommaire general du semestre

COURS

Intro, concepts, 1 exemple
Modélisation objet / UML

C++ pratique 1

C++ pratique 2

Classes & C++ : bases
Classes & C++ : compléments
Conteneurs & C++ : la STL
Héritage / polymorphisme

. Modeles objets avances
10.Exceptions, flots, fichiers ..
11.Templates cote developpeur
12.Gestion méemoire / smarts ptrs

© 0 NSO OA DR

© 0 NOOAWDNR

Semaine suivante
> TPs

Organisation objet des données
Diagrammes de classe UML

C++ pratique, E/S, string, vector
C++ pratique, type &, surcharge
Date : une classe simple en C++
UML et C++, associations
Gestion de collections complexes
Collections polymorphes

. Modele composite et graphismes

10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

C++ pratique 1

| ETRenE |

| Ar ticles

Guincas llere

. K1 66.50E
‘(V'-kihc., h-.:uﬂz-f_
Tovs les ob)ctf, P |
-\r"l /a"’ﬂa;flsscﬂ

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chaines std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chaines std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

IE

Namespace et opérateur ::

LA QUINCAILLEHI

LA SERRURE A COMBINAISON f%-

g CENTRAL : Egs '

& UNE SEULE GLE T ALEFERMEPORTE
NECR
5 LES PORTES s Aia : 1"}1‘1};",1; NS - S
Z ‘-‘:-_‘.: .'-r “" m‘”i}i I)I]lll |‘.:: i '_I.‘ AR :ui i
s (1) ABSOLUMENT i %&i!f?”l“l"" s
té) .

p

o

MM %INCROCHETABLE < T |

R.C.SEINE 157729
DEMANDEZ NOS CATALOGUES

CENTRALE =— i

'SOCIETE ANONYME AU CAPITAL DE 4oooooo -

Namespace et opérateur ::

* L’expérience en développement de gros projets montre
que les « collisions d’identifiants » sont frequentes
quand on reunit ensemble de grosses bases de code

cadre

copysign()

cos() capital
cosh() charges
count<>() chiffre_affaires
count_if<>() commande
cout compte |
crbegin<>() controle_gestion
cref<>() cout
cregex_iterator GROS PROJET g;eaor;ge
crend=>(559 dopots
csub match epreciation
ctime() emprunt
ctype<> excedent
ctype base fonds

- frais

Librairie standard du C++ Code métier « compta »

~ 1000 identifiants ~ 1000 identifiants

https://en.cppreference.com/w/cpp/symbol_index

Namespace et opérateur ::

I * L’expérience en développement de gros projets montre
que les « collisions d’identifiants » sont fréquentes
I quand on reunit ensemble de grosses bases de code

co.i).ysign() cadre

cos() capital

cosh() chgrges :
chiffre_affaires

count<>()
sunt if<>() commande

compte
= taux*marge; °

picQle gestion

cref<>()

cregex_iterator f

crend<>() ¢ i

csub match epreciation

ctime() emprunt

ctype<> excedent
o fonds

ctype_base frais

Librairie standard du C++ Code métier « compta »
~ 1000 identifiants ~ 1000 identifiants

https://en.cppreference.com/w/cpp/symbol_index

F Namespace et opérateur ::

I * Par exemple la bibliotheque standard du C++ définit un
Identifiant cout (Character OUTput) tandis qu’on peut
facilement imaginer qu’un vieux (mais précieux) code

I de gestion de comptabillité écrit en C en 1989 définit
une variable ou une constante de colt (combien ca
colte) nommeée aussi cout

* Lorsqu’on va vouloir mettre dans un méme projet a la
fois la bibliotheque standard du C++ et ce code C le
compilateur va dans le meilleur des cas faire une
erreur (compréhensible ou pas)...

— error: conflicting declaration 'float cout’

— error: invalid operands of types 'float' and 'const
char [13]' to binary ‘operator<<'

Namespace et opérateur ::

* Qu pire, alors que le développeur pensait a l'un des

identifiant le compilateur va reussir a compiler le code
sur la base de l'autre identifiant que souvent le
developpeur ne connait méme pas ! Et c’est le chaos...

Le probleme devient encore plus frequent quand on a

des versions differentes de bibliotheques et qu’on veut
mettre ensemble un code qui utilise une vieille version
avec un code qui utilise une version récente

(et le manager n’est pas d’accord pour tout recoder)

Sur le terrain du développement de grosses
applications ces situations sont assez courantes et
coltent assez cher pour qu’on s’astreigne a la
fastidieuse discipline des hamespace...

Namespace et opérateur ::

I « Un namespace est un espace de nommage !

* Le namespace lui méme a un identifiant, les sections
de code concernées par ce hamespace sont
encadrées par une déclaration de hamespace

* A l'intérieur d’'un bloc namespace on accede
normalement aux identifiants de ce nhamespace

factures.h

namespace compta

{
const float tva = 19.6;
float prixTtc(float prixHt);

¥

factures.cpp

#include <factures.h>

namespace compta

{
float prixTtc(float prixHt)

i return* prixHt;
ok

}

Namespace et opérateur ::

* A l'exterieur du bloc namespace on ne voit pas
les identifiants du namespace (c’est le but !)

namespace compta factures.h

const float tva = 19.6;
float prixTtc(float prixHt);

}
error: .. was not q;clared in this scope
#include <factures.h> main.cpp
int main()
{ float aPayer = [p (150.20);
float doubleTva * 2.0;

Namespace et opérateur :: G

* A l'exterieur du bloc namespace pour accéder aux
identifiants du namespace il faut bien préciser de
quoil on parle en préfixant par compta: :

namespace compta)///?;cuuesJ1
{

const float tva = 19.6;
float prixTtc(float prixHt);

¥

#include <factures.h> main.cpp

int main()

{

float aPayer = fcompta::prixTtcy1560.20);

float doubleTva

= compta::tva/* 2.0;

Namespace et opérateur ::

* On retrouve ici un principe de la programmation OO :
I'encapsulation. Un namespace est une capsule de
nommage, pour y accéder on respecte un protocole.

namespace compta factures.h

const float tva = 19.6;
float prixTtc(float prixHt);

¥

#include <factures.h> main.cpp

int main()

{
float aPayer = compta::prixTtc(1560.20);

float doubleTva = compta::tva * 2.0;

Namespace et opérateur ::

» :: est/l'opérateur de réesolution de portee

scope resolution operator
(utilisé aussi dans d’autres contextes, classes, enumerations...)

namespace compta factures.h

const float tva = 19.6;
float prixTtc(float prixHt);

#include <factures.h> main.cpp

int main()

{
float aPayer = compta::prixTtc(1560.20);

float doubleTva = compta::tva * 2.0;

Namespace et opérateur ::

* S/ on est dans une section de code appelant qui utilise
Intensivement les identifiants d’un namespace il peut
devenir fastidieux de taper a chaque fois compta: :

namespace compta factures.h

const float tva = 19.6;
float prixTtc(float prixHt);

¥

#include <factures.h> main.cpp

int main()

{
float aPayer = compta::prixTtc(1560.20);

float doubleTva = compta::tva * 2.0;

Namespace et opérateur ::

* On peut utiliser une directive using namespace
sous la directive les identifiants deviennent visibles !

* Mais ceci annule les bénéfices des namespaces...

T

namespace compta factures.h

const float tva = 19.6;
float prixTtc(float prixHt);
}

#include <factures.h> main.cpp

using namespace compta;

int main()

{
float aPayer = prixTtc(1560.20);

float doubleTva = tva * 2.0;

-

Namespace et opérateur :: a

L ’'ensemble des identifiants des bibliotheques
standards du C++ sont tous dans l'espace de
nommage std

On écrira donc tres souvent std: : et il sera tentant
d'utiliser une directive using namespace std;

Alnsi std::cout deviendra cout etc...

Cette pratique est courante et acceptable sur les
forums techniques pour de courts extraits de code,
ou lors d’une explication sur un tableau pour des
raisons de lisibilité et de compacité du code...

Elle est rigoureusement interdite dans les fichiers .h
car elle se propage alors aux .cpp utilisateurs du .h

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chaines std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

Flots console, affichages cout<<

~ CUISINE IDEALE AVEC QUATRE @@ @ :
' [TEITEY e nr b I |

ENE A S~ ABamar

r Flots console, affichages cout<< G

e std: :cout est une instance de la classe std: :ostream

* Ce qu’on lui envoie avec l'opérateur d’insertion <<
s’affiche a la console. On peut chainer les insertions.

#include <iostream> C++
int main()
{
std::cout << "Hello modern world !" << std::endl;
#include <stdio.h> C

int main()

printf("Good bye old world...\n");

Flots console, affichages cout<< G

I e std::cout est une instance de la classe std::ostream
* Ce qu’on lui envoie avec l'operateur d’insertion <<

I apparait a la console. On peut chainer les insertions.
#include <iostream> C++

End of Line, idem "\n"

Insertion dans la console

int main()

{
std: :cout "Hello modern world !" << ;

#include <stdio.h> C
int main()

printf("Good bye old world...\n");

r Flots console, affichages cout<< G

* Les contenus et valeurs a afficher se codent
la ou ils apparaissent dans la chaine d’insertions

* Les types sont déduits, pas besoin de les preciser

int i = 5; C++
float x = 0.123456;

std::cout << "Votre entier : " << i << " Votre reel : " << x << std::endl;
int 1 = 5; C
float x = 0.123456;

printf("Votre entier : %d Votre reel : %f\n", i, x);

Flots console, affichages cout<< G

* Les contenus et valeurs a afficher se codent
la ou ils apparaissent dans la chaine d’insertions

* Les types sont déduits, pas besoin de les preciser

int i = 5; C++
float x = 0.123456;
std::cout << "Votre entier : " <<®<< " Votre reel : " <<®<< std: :endl;

Valeurs indiquées localement

int 1 = 5; C
float x = 0.123456; Valeurs rapportées aux formats %
printf("Votre entier : %d Votre reel : %U;

Flots console, affichages cout<< 0

* L’operateur << indique le sens de circulation de
I'information : messages et valeurs vers l'affichage

* Mais I'opérateur << s’évalue de gauche a droite !

int i =
float x

55

0.123456;

std: :cout <«

"Votre entier : "

C++

<< 1 << " Votre reel : " << X << std::endl;

Est équivalent a la séquence :

std:
std:
std:
std:
std:

:cout
:cout
:cout
:cout
:cout

<<
<<

<< 1

<<
<<

"Votre entier : ";

1,

X;
std: :endl;

Votre reel : "

C++

r Flots console, affichages cout<< G

* On peut decouper en plusieurs lignes de code
pour plus de lisibilité (- de 70 caracs par ligne conseillé)

* Mettre le chainage << a la ligne et non en fin de ligne

int i = 5; C++
float x = 0.123456;
std::cout << "Votre entier : " << 1

<< " Votre reel : " << x

<< std::endl;

r Flots console, affichages cout<<

* Les formatages sont des modification de l'état de

l'objet std::cout ...

int nbArticles = 3; float prixArticle = 2.5;
char nomArticle[] = "crochet";

std::cout << std::setprecision(2)
<< std::fixed
<< "Votre commande :
<< nbArticles << " "
<< nomArticle << "s "
<< "pour un total de
<< nbArticles*prixArticle

<< std::endl;

printf("Votre commande : %d %ss pour un total de %.02f\n",
nbArticles, nomArticle, nbArticles*prixArticle);

Votre commande : 3 crochets pour un total de 7.58

console

r Flots console, affichages cout<<

* Les formatages sont des modification de l'état de
l'objet std::cout ...

int nbArticles = 3; float prixArticle = 2.5;
char nomArticle[] = "crochet";

std: :cout <¢ std::setprecision(2) C++

td: : Fixed Objet « flot de sortie » modifié
<<
<< nbArticles <«

<< nomArticle << "s "
<< "pour un total de
<< nbArticles*prixArticle

<< std::endl;

Formatage ponctuel

printf("Votre commande : %d %ss pour un total den", C
nbArticles, nomArticle, nbArticles*prixArticle);

console

Votre commande : 3 crochets pour un total de 7.58

r Flots console, affichages cout<<

I * Les formatages sont des modification de I'état de
l'objet std::cout ...

int nbArticles = 3; float prixArticle = 2.5;
char nomArticle[] = "crochet";
std::cout < std: :sgtprecision(Z) Objet « flot de sortie » modifié C++
td: :fixed
<< "Votre e . "
<< nbArticles << " "
<< nomArticle << "s "
<< "pour un total de "
<< nbArticles*prixArticle
<< std::endl;
float tab[3] = {2, 5.1, 2.49};
y std:i:cout << tab[@] << " " << tab[1] << " " << tab[2] << std::endl;
Le résultat dépend de la présence ou non du code au dessus...

Flots console, affichages cout<<

I * Rassurez vous on ne va pas vous taquiner en DS

sur les subtilités des formatages avec cout<<

I Pour les TPs Il faut retenir que :

* Certains formats necessitent #include <iomanip>

* Le catalogue n’est pas a connaitre par cceur mais
vous devez savoir consulter une doc technique :
https.//en.cppreference.com/w/cpp/io/manip

boolalpha
noboolalpha

showbase
noshowbase

showpoint
noshowpoint

showpos
noshowpos

skipws
noskipws

uppercase
nouppercase

unitbuf
nounitbuf

internal
left
right

dec Defined in header <istream=

hex setbhase
WS
oct emit on_ flush (Car20) SetFill
fixed Defined | no_emit_on_flush ~~ <
scientific elined I -
hexfloat ends flush_emit (C++20) setprecision
defaultfloat
] _ setw
flush Defined in header <iomanip=
resetiosflags
endl
setiosflags

get money (C++11)
put_money (C++11)
get time(C++11)
put_time(C++11)

quoted (C++14)

https://en.cppreference.com/w/cpp/io/manip

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chaines std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

Flots console, saisies cin>>

How many
tools do you see

..INTHIS ONE COMPACT
TOOL b

THE MOST VERSATILE
TOOL YOU CAN OWN!

N MU
» WRENCH nn s B Sl
i i 8 i .
* SUPER-PLIERS to work with ton grip. Releases with
« CLAMP flick of finger. The whole family will
use it. A craftsman’s tool — yet

+ HAND VISE
« WIRE CUTTER budget priced. Only $2.15 1o $2.95

at yvour hardware store,

VISE-GRIP

PETERSEN MFG. CO., DEPT. SEP-7, DEWITT, NEBRASKA

Flots console, saisies cin>> G

I e std: :cin est une instance de la classe std: :istream

* Les données qu’il envoie vers des variables avec

I l'opérateur d’extraction >> correspondent aux saisies
int i; C++
float x;

std::cout << "Veuillez saisir un entier puis un reel" << std::endl;
std::cin >> 1 >> x;

std::cout << "Votre entier vaut " << i
<< " et votre reel " << x << std::endl;

int i;
float x; C
printf("Veuillez saisir un entier puis un reel\n");

scanf("%d", &i);
scanf("%f", &x);

printf("Votre entier vaut %d et votre reel %f\n", i, x);

Flots console, saisies cin>>

I * Evidemment ce code plutoét lisible echoue
lamentablement si l'utilisateur entre autre chose

I que ce qui est attendu...
int i; Ce code compile sans error ni warning... C++
float x;

std::cout << "Veuillez saisir un entier puis un reel" << std::endl;
std::cin >> i >> X;

std::cout << "Votre entier vaut " << i
<< " et votre reel " << X << std::endl;

Veuillez saisir un entier puis un reel
surprise |
Votre entier vaut @& et votre reel(3.7651e-639

console

Process returned @ (8xe) execution time : 5.413
Press any key to continue.

Flots console, saisies cin>>

I * La programmation de saisies utilisateur « blindées »
en mode console reste toujours une punition pour le
I developpeur parce que :

— L’utilisateur entre ce qu’il veut (on ne peut pas
physiquement bloquer les touches. Avec les
ecrans tactiles c’est différent...)

- Le langage ne peut pas décider a la place du
programmeur ce que l'application doit faire quand
l'utilisateur n’est pas dans les clous.

- Basiquement il faudrait saisir ligne par ligne
dans des chaines puis analyser ces chaines
recues caractere par caractere (parsing).

— Cecl fera I'objet d’'un exercice au TD/TP 3...

Flots console, saisies cin>> G

* Si vous bloguez avec une fonctionnalite C++ que vous
sauriez faire en C ...

* Si une entite d’une bibliotheque C n’a pas d’equivalent
ou est plus adaptée que l'équivalent C++ ...

* |l est toujours possible d’utiliser du C dans du C++ !

e Dans ce cas faites un include du nom de la

bibliotheque C sans le .h et prefixée par ¢
stdio.h » cstdio math.h - cmath

#include <cstdio> N’en abusez pas @

On est la pour le C++!
int main()

float a = 1.2345;

printf("%.01f %.02f %.03f\n", a, a, a);

37

__ﬁ

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chaines std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

Type bool, littéral nullptr

I * Le C++ Introduit de nouveaux types et de nouveaux
mots cles pour des valeurs eléementaires

Type bool, littéral nullptr €

I * Le type bool prend les valeurs true ou false

* C++ peut convertir implicitement bool depuis-vers les

I types numeriques / pointeurs (=0 < false #0 < true)

bool estVert = true; C++
bool seDeplaceSousLeau = false;

if (estVert && seDeplaceSousleau)

std::cout << "Un choux-marin !" << std::endl;
else
std::cout << "Je ne sais pas..." << std::endl;
char estVert = 1; C

char seDeplaceSouslLeau = 0;

if (estVert && seDeplaceSousleau)
printf("Un choux-marin !\n");
else
printf("Je ne sais pas...\n");

Type bool, littéral nullptr €

I » La valeur spéciale nullptr remplace NULL pour
Indiquer un pointeur qui pointe sur « rien »

I nullptr a un type pointeur NULL un type entier...

struct Coords C++

double x, y;
¥

int main()

{

Coords* ici = nullptr;

if (ici !'= nullptr)

std::cout << ici->x << " " << ici->y << std::endl;

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chailnes std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

string

Les chaines std

43
Les chaines std::string a

I * Le type std: :string de la bibliotheque string
* Quelle tallle fait le tableau de char qui hebergera une

I chaine ? La taille qu’ll faut !
#include <iostream> . S oy
#include <string> Hn?m Et Prenom 5VP
Pig George
int main() Bonjour George Pig
{ Ton prenom a 6 lettres

std: :string nom, prenom;
std: :cout << "Nom et Prenom SVP" << std::endl;

std::cin >> nom;
std::cin >> prenom;

std::cout << "Bonjour " << prenom << " " << nom << std::endl;

std::cout << "Ton prenom a " << prenom.size() << " lettres"
<< std::endl;

Les chaines std::string a

I * La machinerie complexe de l'objet commence a payer !

* Chaque chaine est un objet de la classe std: :string
avec des attributs prives et des méthodes publiques

#include <iostream>
#include <string>

Mom et Prenom 5VP
Pig George

int main() Bonjour George Pig

{ Ton prenom a 6 lettres
std: :string nom, prenom;
std: :cout << "Nom et Prenom SVP" << std::endl;
std::cin >> nom;
std::cin >> prenom;
std::cout << "Bonjour " << prenom << " " << nom << std::endl;
std:

:cout << "Ton prenom a " << << " lettres”
<< std::endl;

Les chaines std::string

I Un std: :string est un « objet valeur »

* Le type se comporte comme un type scalaire,

I les affectations / comparaisons se font par valeur

Deux Un

std: :string x;
std: :string vy;

IlUnll;
X,
"DeuX";

X<
nmnnu

std::cout << x << " " << y << std::endl;

Les chaines std::string

I Un std: :string est un « objet valeur »

* Le type se comporte comme un type scalaire,

I les affectations / comparaisons se font par valeur
. x et y ont meme valeur
S:ngfs:ccr‘}ng X x a la valeur "ABC"
SHA: e STHANE Yo x et ¥y n'ont pas meme adresse
x = "ABC";
y = "ABC";
if (x==y)
std::cout << "x et y ont meme valeur" << std::endl;
if (x == "ABC")

std::cout << "x a la valeur \"ABC\"" << std::endl;

if (& = &y)
std::cout << "x et y n'ont pas meme adresse" << std::endl;

Les chaines std::string

I * Des methodes sous forme explicite ou sous forme
d’opérateurs permettent de manipuler les std: :string

I * On se moque des problemes d’allocation...

This is Big |
This is Bigger !

I have Big hunger !

S‘td::S‘tr‘ing nom = "Pig"; Fclr'l a E:LH"E',ET" !
nom.front() = 5
std::cout << "This is " << nom << " I" << std::endl;

nom += "ger";

std::cout << "This is " << nom << " I" << std::endl;

nom.insert(3, " hun"); C)T:LHH“\
std::cout << "I have " << nom << " I" << std::endl; _,L:,
nom.erase(1l, 4); A
nom[2] = 5 {

std::cout << "For a " << nom << " I" << std::endl;

Les chaines std::string

I * Des methodes sous forme explicite ou sous forme
d’opérateurs permettent de manipuler les std: :string

I * On se moque des problemes d’allocation...

C++
std::string nom = "Pig"; "Pig"
nom.front() = ; "Pig" > "Big"
nom += "ger"; "Big" > "Bigger"
nom.insert(3, " hun"); "Bigger" > ""Big hunger"
nom.erase(l, 4); "Big hunger'" —— "Bunger"
nOm[Z]) 1] 1] 11} "

Bunger > "Burger

Les chaines std::string

I * Des methodes sous forme explicite ou sous forme
d’opérateurs permettent de manipuler les std: :string

* Le catalogue n’est pas a connaitre par coeur mais
vous devez savoir consulter une doc technique :
https://en.cppreference.com/w/cpp/string/basic_string

. clear i
Member functions Element access Capacity Search
insert
(constructor) at empty find
erase size
(destructor) operator(] Length rfind
push_back .
operators front ice+11 max_slze find_first of
, pop_back c++11
assign back (c++11) reserve find first not of
append .
get_allocator data capacity find last of
¢ operator+= .
c_str : .
- shrink to fitic++11) find_last_not_of
compare

https://en.cppreference.com/w/cpp/string/basic_string

Les chaines std::string

* Les prototypes des méthodes et fonctions C++
de la bibliotheque standard sont notoirement illisibles...

Ici déclaration de std: :getline qui lit une ligne
complete dans une string (cin>> coupe aux espaces)

Gtd::getling

Defined in header <string=

template< class CharT, class Traits, class Allocator =

std::basic istream<=CharT,Traits>& getline(std::basic istream<CharT,Traits>& input,
std::basic_string<CharT,Traits,Allocator>& str,
CharT delim);

template< class CharT, class Traits, class Allocator =

std::basic istream=CharT,Traits>& getline(std::basic istream<CharT,Traits>&& input,
std::basic_string<CharT,Traits,Allocator>& str,
CharT delim);

template< class CharT, class Traits, class Allocator >
std::basic_istream<CharT,Traits=& getline(std::basic_istream<CharT,Traits>& input,
std: :basic 5t|1ng¢CharT Traits,Allocator=& str):

template< class CharT, class Traits, class Allocator >
std::basic istream<=CharT,Traits>& getline(std::basic istream<CharT,Traits>&& input,
std::basic_string<CharT,Traits,Allocator>& str);

getline reads characters from an input stream and places them into a string:

Les chaines std::string a

I * Concentrez vous sur les exemples
https.//fr.cppreference.com/w/cpp/string/basic_string/getline

 [ci utilisation de std: :getline qui lit une ligne
complete dans une string (cin>> coupe aux espaces)

Exemple

Le code suivant demande 3 'utilisateur son nom, puis les salue 'aide de ce nom .

#1include <string=
#include <iostream-

1int main()
1
std::string name;
std::cout << "what 1s your name? ";
—p std: :getline(std::cin, name);
std::cout << "Hello " << name =< ", nice to meet you.";
i

Résultat possible :

What 1s your nmame? John Q. Public
Hello John Q. Public, nice to meet you.

https://fr.cppreference.com/w/cpp/string/basic_string/getline

52

__ﬁ

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chaines std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

Les conteneurs std::vector< >

Les conteneurs std::vector< > “

» C++ offre la possibilité d’utiliser des types parametres

en types (templates et programmation géenérique)

* Un des plus utiles est std: :vector< .. >

#tinclude <iostream>
##tinclude <vector>

{

elements

int main() elements

.23 f 2.5 / 3.15
std: :vector<float> monVec;

std::cout << monVec.size() << " elements" << std::endl;

monVec.push back(1.23);
monVec.push back(2.5);
monVec.push back(3.15);

std::cout << monVec.size() << " elements" << std::endl;
std::cout << monVec[O] << " / "

<< monVec[1l] << " / "

<< monVec[2] << std::endl;

Les conteneurs std::vector< > “

* Le vecteur est un type conteneur, il y en a d’autres,

on fera un cours complet a ce sujet !

e Comme un tableau ... extensible !

{

#tinclude <iostream>
##tinclude <vector>

elements

int main() elements

.23 f 2.5 / 3.15
std: :vector<float> monVec;

std::cout << monVec.size() << " elements" << std::endl;

monVec.push back(1.23);
monVec.push back(2.5);
monVec.push back(3.15);

std::cout << monVec.size() << " elements" << std::endl;
std::cout << monVec[O] << " / "

<< monVec[1l] << " / "

<< monVec[2] << std::endl;

Les conteneurs std::vector< >

* Des methodes sous forme explicite ou sous forme
d’opérateurs permettent de manipuler les vector

* Le catalogue n’est pas a connaitre par coeur mais
vous devez savoir consulter une doc technique :
https://en.cppreference.com/w/cpp/container/vector

Member functions Capacity
empt checks whether the container is empty
(CO”StructOr} constructs the vector Py (public member function)
(public member function) size returns the number of elements
(public member function)
(deg,tructor} ‘?IESt.I'UCtS the \r‘ECItD r max size retums the maximum possible number of elements
|.|JLI|J|IC member function) - (public member function)
; R reserves storage
operator= assigns values to_the container reserve oot maraor fction)
{public member function) it returns the number of elements that can be held in «
. assigns values to the container capactty {public member function)
assign {oublic m ber | ion) hrink to fit(. reduces memory usage by freeing unused memory
(public member function shrink_to_fit(ce+11) (o L netion)
returns the associated allocator i
get_allocator o . Modifiers
- (public member function) | - tent
Element access clear ﬁ:ueljfn“enﬁlis?ufcrt]i:n)
insert inserts elements "
- . . (public member function)
at access specified element with bounds checking e Eer‘e:]:;::in_place S
(public member function) emplace (c++11) (public member function) E
access specified element erase erases elements c
ope rator [] (publi ber f tion) (public member function) -
\public memper function adds an element to the end =
- h_back ; —
front access the first element pushoack (public member function) .
ron (public member function) emplace_back (c++11) ﬁzgﬁfr;f::fb?r”fﬁg[?ﬁnt in-place at the end -g
access the last element removes the last element [
back) . _ pop_back remc _ £
(public member function) - (public member function) -
. . - changes the number of elements stored [
data (c++11) direct access to the underlying array resize (public member function) o
- (public member function) swaps the contents -
Swap (public member function)

operator

operator!

lexicographically compares the values in the vector

(function template)

operator<

operator=

operator>

operator>

https://en.cppreference.com/w/cpp/container/vector

Les conteneurs std::vector< > G

I * Les methodes size() des objets string et vector
sont de type size_t (je simplifie, chaque classe a son size_type...)

I » Utiliser ce type pour les compteurs compares a size()

. C++
size t n = 8;
size t i;

std: :vector<int> fibo;
fibo.push back(9);
fibo.push back(1);

for (i=2; i<n; ++i)
fibo.push_back(fibo[i-2] + fibo[i-1]);

for (i=0; i<fibo.size(); ++1i)
std::cout << fibo[i] << ", ";

std::cout << "..." << std::endl;

Les conteneurs std::vector< > G

I * Les methodes size() des objets string et vector
sont de type size_t (je simplifie, chaque classe a son size_type...)

I » Utiliser ce type pour les compteurs compares a size()

C++

std: :vector<int> fibo;
fibo.push _back(9);

fibo.push back (1) Effet de mode (sans importance)

en C++ on préféere ++i a i++

for (i=2; i<n; ++i)
fibo.push back(fibo[i

Les conteneurs std::vector< >

On peut toujours utiliser un tableau classique quand on
connait le nombre d’élements « en dur »

Un tableau est toujours passe « par référence »

{

int

void testerTableau(int param[3])

std::cout << "sous prog. tableau avant "

++param[0];

std::cout << "sous prog. tableau apres "

main()
int tab[3] = {106, 20, 30};
std: :cout << "appelant tableau avant "

testerTableau(tab);
std: :cout << "appelant tableau apres "

C++
<< param[0] << std::endl;
<< param[0] << std::endl;

appelant tableau avant 16
sous prog. tableau avant 16

sous prog. tableau apres 11
appelant tableau apres(11

<< tab[@] << std::endl;

<< tab[@] << std::endl;

L'appelé peut modifier
des données de I'appelant

Les conteneurs std::vector< >

* On peut aussi utiliser un vecteur, les mémes syntaxes
d’initialisation a la déclaration sont utilisables

* Par défaut un vecteur est passé « par valeur » : copie

void testerVecteur(std::vector<int>

{

int

std::cout << "sous prog. vecteur avant "

++param[0];

std::cout << "sous prog. vecteur apres "

main()
std: :vector<int> vec = {10, 20, 30};
std: :cout << "appelant vecteur avant "

testerVecteur(vec);
std: :cout << "appelant vecteur apres "

opie du vecteur de 'appelant C++

<< param[0] << std::endl;
<< param[0] << std::endl;

appelant vecteur avant 18
sous prog. vecteur avant 16

sous prog. vecteur apres 11
appelant vecteur apres(18

<< vec[0] << std::endl;

<< vec[0] << std::endl;

L'appelé n'a pas modifié J

des données de I'appelant

Les conteneurs std::vector< >

I e Comme pour std: :string, std: :vector a une
sémantique par valeur, affectation et appel copient

I * On peut passer « par reference » ;! voir cours suivant...

void testerVecteur(std::vector<int>&(param) Référence vecteur de I'appelant C++
; o]

std::cout << "sous prog. vecteur avant " << param[0] << std::endl;
++param[0];
std::cout << "sous prog. vecteur apres " << param[0] << std::endl;

appelant vecteur avant 1@
int main() sous prog. vecteur avant 16
{ sous prog. vecteur apres 11

std::vector<int> vec = {10, 20, 30}, appelant vecteur apres(11

std::cout << "appelant vecteur avant " << vec[©@] << std::endl;
testerVecteur(vec);
std::cout << "appelant vecteur apres " << vec[©@] << std::endl;

L'appelé peut modifier
des données de I'appelant

Les conteneurs std::vector< >

chevrons <... > on met le type contenu

I * Dans les
brackets (ou angle brackets)

I * vector peut contenir n’importe quel type copiable...

std: :vector<std::string> mots{ "Un", "vecteur" }; C++
mots.push back("de chaines") ;

for (size_t i=0; i<mots.size(); ++i)
std::cout << mots[i] << " ";

std::cout << std::endl;

Un vecteur de chaines

Les conteneurs std::vector< >

* Dans les|chevrons < ... > on met le type contenu

brackets (ou angle brackets)

e vector dans vector : tableaux a 2 dimensions

std: :vector<std: :vector<int>> mat{ {1,2}, {3, 4, 5} };
mat.push_back(std::vector<int>{6, 7, 8, 9});

for (size t i=0; i<mat.size(); ++1i)
{
for (size_t j=0; j<mat[i].size(); ++J)
std::cout << mat[i][j] <« " ";
std::cout << std::endl;

}

Les conteneurs std::vector< >

I * Le vector peut étre dimensionné a sa declaration

 C++11 offre de nhombreuses syntaxes de declaration
avec quelques pieges... on reviendra dessus en TP !

std::
std::
std::
std::

vector<float>
vector<float>
vector<float>
vector<float>

vecl;

vec2(5);
vec3(5, 3.14);
vec4{5, 3.14};

elements :
elements :

elements :
2 elements :

C++

6.66 0.886 6.60 B.606 ©.66
3.14 3.14 3.14 3.14 3.14
5.86 3.14

65

__ﬁ

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chaines std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

bles et portée

LECLERCO

@S
=
S
>
-
O

larat

Déc

Deéeclaration variables et portee “
I En C++ on declare de nouvelles variables ou on veut
dans un bloc { } pas forcément « au debut »
I * C’est aussi valable en C99 (on ne vous l'a pas dit ?)
int main() C++
{
std::string nom; Nom SVP : Joe
std::cgut << "Nom SVP : "; Age SVP : 45
std::cin >> nom; Fumeur (true/false) : true
int age; Faites une radio des poumons Joe
std::cout << "Age SVP : ";

std::cin >> age;

bool fumeur;
std::cout << "Fumeur (true/false) : ";
std::cin >> std::boolalpha >> fumeur;

if (age>40 && fumeur)
std::cout << "Faites une radio des poumons "
<< nom << std::endl;

68
Deéeclaration variables et portee “
I * En C++ on declare de nouvelles variables ou on veut
dans un bloc { } pas forcément « au debut »
I . La variable est visible jusqu’a la fin du bloc — }
int main()
{
std::string nom; Nom SVP : Joe
std::cout << "Nom SVP : % Age SVP : 45
std::cin >> nom; Fumeur (true/false) : true
int age; Faites une radio des poumons Joe
std::cout << "Age SVP : ";
std::cin >> age;
81 bool fumeur;
8 lstd::cout << "Fumeur (true/false) : ";
S |std::cin >> std::boolalpha >> fumeur;
if (age>40 && fumeur)
std::cout << "Faites une radio des poumons "
<< nom << std::endl;
} v o o

Déclaration variables et portéee “

Attention il y a qguand méme des regles et des pieges
* La variable la plus locale cache la plus globale...
* La portée d’'une variable (scope)

std: :string x = "Globale"; C++
int main()

{
std::cout << x << std::endl; - -
/_float X = 3.14; Globale
X std::cout << x << std::endl; 3.14
2 T -
= for (int i=1; i<=3; i++)
Z X { 16
"n - x ° _ %2 .
ge s = int x = 5%1;
» ke _EC std::cout << x << std::endl; 15
J 3.14
std: :cout << x << std::endl;

https://fr.wikiversity.org/wiki/Langage_C%2B%2B/Port%C3%A9e_du_code

Déclaration variables et portéee “

 Attention il y a quand méme des regles et des pieges

* Les variables « compteur de boucle » peuvent se
déclarer localement au bloc Initialisation de la boucle...

C++

int main()

{

for((int i=1;)i<=3; i++) 5

{ .
int x = 5*i; 18
std::cout << x << std::endl; 15

}

Déclaration variables et portée G

* Les variables « compteur de boucle » peuvent se
déclarer localement au bloc initialisation de la boucle...

I Attention il y a quand méme des regles et des pieges

C++

int main()

for (int i=1; i<=3; i++)
{
int x = 5*i;
std::cout << x << std::endl;

}

std::cout/jjg;><< std: :endl;

} error: 'i' was not declared in this scope

r Déclaration variables et portée G

 Attention il y a quand méme des regles et des pieges

restreindre les variables a la plus petite portée utile

I * Ca correspond a une logique de localité :

variable i déclarée ou pas ? C++
de type int si déclarée ?

Ceci est une « unité d’exécution »
qui peut étre dupliquée ou deplaceée
sans dépendre d’un contexte

[
. for (int i=1; i<=3; i++)
c {
3 int x = 5*%i;
std::cout << x << std::endl;
}

Déclaration variables et portée

 Les case dans les switch ne sont pas des blocs !

I Attention il y a quand méme des regles et des pieges

int main() C++
{
int choix;

std::cin >> choix;

error: redeclaration of 'int x'
switch (choix)

{
case 1:
int x = 3;
std::cout << x;
break;
case 2:
int x = 6;
std::cout << x;
break;
}

74
r Declaration variables et portée

 Attention il y a quand méme des regles et des pieges

 Les case dans les switch ne sont pas des blocs !

int main()

{
int choix;
std::cin >> choix;

switch (choix)

{
case 1:
int x = 3;
std::cout << x;
break;
case 2:
int y = 6;
std::cout << y;
break;
}

error: jump to case label

crosses initialization of

C++

'int x'

Déclaration variables et portée

 Attention il y a quand méme des regles et des pieges

 Les case dans les switch ne sont pas des blocs !
Si ca fait sens de deéeclarer localement : préeciser { }

switch (choix) C++
{

case 1:

o,
int x = 3; Ok ¢a compile !
std::cout << x;
break;

}

case 2:

t
int x = 6;
std::cout << x;
break;

}
}

COURS 3

A) Namespace et opérateur ::

B) Flots console, affichages cout<<
C) Flots console, saisies cin>>

D) Type bool, litteral nullptr

E) Les chaines std::string

F) Les conteneurs std::vector< >
G) Declaration variables et portee
H) Alias de type, declaration auto

Alias de type, déclaration auto

r Alias de type, déclaration auto

I En C++ les déclarations de types composes
peuvent se transformer en tartines de code !

C++

std: :vector<std: :vector<char>> faireGrille(size_t nblLig, size_t nbCol)

{
std: :vector<std: :vector<char>> grille;
return grille;

}

int main()

{

std: :vector<std: :vector<char>> petite
std: :vector<std: :vector<char>> grande

faireGrille(10, 15);
faireGrille(20, 30);

I
I

Alias de type, declaration auto

* En C on avait typedef pour faire un alias de type...

* En C++ moderne (C++11) on prefere utiliser une
declaration d’alias de type avec using

using Grille = std::vector<std::vector<char>>;

Grille faireGrille(size_t nblLig, size_t nbCol)

{
Grille grille;
return grille;
}
int main()
{

faireGrille(10, 15);
faireGrille(20, 30);

Grille petite
Grille grande

C++

* Attention : ne pas rendre le code Illisible pour les autres
en introduisant plein d’alias mystérieux

* Préférer un nommage explicite, court et efficace

r Alias de type, déclaration auto

using VecVecChar = std::vector<std::vector<char>>; C++

VecVecChar faireGrille(size_t nblLig, size_t nbCol)

{
VecVecChar grille;
return grille;
}
int main()
{

faireGrille(10, 15);
faireGrille(20, 30);

VecVecChar petite
VecVecChar grande

Alias de type, déclaration auto

 Une alternative aux déclarations fastidieuses est
la déduction automatique de type...

* Le type auto se deduit du contexte, si possible !

auto faireGrille(size t nblLig, size_ t nbCol)

{
std: :vector<std: :vector<char>> grille;
return grille;

}

int main()

{

faireGrille(10, 15);
faireGrille(20, 30);

auto petite
auto grande

C++

Alias de type, déclaration auto

 Une alternative aux déclarations fastidieuses est
la déduction automatique de type...

* Le type auto se deduit du contexte, si possible !

—

auto faireGrille(size t nblLig, size_ t nbCol)
—

/ o
std: :vector<std: :vector<char>> grlllegx\\\\i:>

—

return grille;

¥

0t :
?n main() ‘(//,—-\\\\

auto petite
auto grande

faireGrille(10, 15);
faireGrille(20, 30);

C++

r Alias de type, déclaration auto

I * [l doit y avoir un contexte, par exemple une Initialisation
des la déclaration

I * Le type auto se deduit du contexte, si possible !

C++
auto x = 0;

auto y = 1.0;
auto z = 2.0f;

auto ch = "Trois"; <::::::::::::>

auto cond = false;

Iﬂﬂ
Alias de type, déclaration auto

I * Le compilateur fait ce qu’il peut mais ne peut pas
prédire le futur ! Le C++ est typé statiquement

* Un langage a typage dynamique saurait faire...

C++

error: operands to ?: have different types 'int' and 'const char*’
auto w = cond ? 4 : "Quatre";

error: declaration of 'auto var' has no initializer

auto var;
if (cond)
var = 5;
else
var = "Cinqg";

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84

