
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Modèles objets avancés
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

C++ pratique 2

4

COURS 4

A) Structs simples
B) Pointeurs * et Références &
C) La qualification const
D) Valeurs paramètres par défaut
E) Surcharge de fonctions
F) Surcharge d’opérateurs
G) Allocation dynamique new/delete

5

COURS 4

A) Structs simples
B) Pointeurs * et Références &
C) La qualification const
D) Valeurs paramètres par défaut
E) Surcharge de fonctions
F) Surcharge d’opérateurs
G) Allocation dynamique new/delete

6

Structs simples

7

Structs simples

● En C++ comme en C on retrouve la notion de struct
● En C++ il n’est pas utile d’utiliser typedef

C++

C#ifndef COORDS_H_INCLUDED
#define COORDS_H_INCLUDED

typedef struct coords
{
 double x, y;
}
t_coords;

#endif // COORDS_H_INCLUDED

#ifndef COORDS_H_INCLUDED
#define COORDS_H_INCLUDED

struct Coords
{
 double x, y;
};

#endif // COORDS_H_INCLUDED

coords.h

coords.h

8

Structs simples

● En C++ comme en C on retrouve la notion de struct
● En C++ il n’est pas utile d’utiliser typedef

C++

C

typedef struct coords
{
 double x, y;
}
t_coords;

struct Coords
{
 double x, y;
};

coords.h

coords.h

9

Structs simples

● En C++ comme en C on retrouve la notion de struct
● En C++ il n’est pas utile d’utiliser typedef

C++

C

typedef struct coords
{
 double x, y;
}
t_coords;

struct Coords
{
 double x, y;
};

coords.h

coords.h

Attention au ; à la fin !
L’oublier conduit à des
erreurs méchantes dans le(s)
fichier(s) où le .h est inclus

Majuscule
Convention
universelle

10

Structs simples

● En C++ comme en C la struct est gérée par valeur
● En C++ on peut affecter une valeur littérale sans caster

C++

C

main.cpp

main.c#include "coords.h"

int main()
{
 t_coords a = {3.1, 2.5};
 printf("a : %.1f %.1f\n", a.x, a.y);
 t_coords b = a;
 a = (t_coords){4.5, 6.6};
 printf("a : %.1f %.1f\n", a.x, a.y);
 printf("b : %.1f %.1f\n", b.x, b.y);

#include "coords.h"

int main()
{
 Coords a = {3.1, 2.5};
 std::cout << "a : " << a.x << " " << a.y << std::endl;
 Coords b = a;
 a = {4.5, 6.6};
 std::cout << "a : " << a.x << " " << a.y << std::endl;
 std::cout << "b : " << b.x << " " << b.y << std::endl;

11

Structs simples

● En C++ comme en C la struct est gérée par valeur
● En C++ on peut affecter une valeur littérale sans caster

C++

C

main.cpp

main.c#include "coords.h"

int main()
{
 t_coords a = {3.1, 2.5};

 t_coords b = a;

 a = (t_coords){4.5, 6.6};

#include "coords.h"

int main()
{
 Coords a = {3.1, 2.5};

 Coords b = a;

 a = {4.5, 6.6};

Caster

12

Structs simples

● En C++ la struct se comporte « comme un scalaire »
● En C++ la struct est en fait une classe !

● La struct est une classe mais une classe avec des
attributs publiques

● En général en orienté objet on se méfie des attributs
publiques : ça rompt le principe d’encapsulation...

C++main.cpp#include "coords.h"

int main()
{
 Coords a = {3.1, 2.5};

 Coords b = a;

 a = {4.5, 6.6};

!

13

Structs simples

● Envisageables pour grouper peu d’infos élémentaires
● Pas pour des types d’objets complexes

● Par exemple la bibliothèque standard propose la
struct std::pair< > avec les attributs first et second

● Nous verrons lors du cours sur les classes les
conséquences possibles du non respect du principe
d’encapsulation

C++

struct Coords
{
 double x, y;
};

coords.h

!

https://en.cppreference.com/w/cpp/utility/pair

14

COURS 4

A) Structs simples
B) Pointeurs * et Références &
C) La qualification const
D) Valeurs paramètres par défaut
E) Surcharge de fonctions
F) Surcharge d’opérateurs
G) Allocation dynamique new/delete

15

Pointeurs * et Références &

16

Pointeurs * et Références &

● Les tableaux ont une sémantique par référence
implicitement c’est l’adresse des données qui est
transmise aux sous-programmes, données pas copiées

● Les types scalaires et les classes (class ou struct)
ont une sémantique par valeur, par défaut c’est une
copie des données qui est transmise aux sous-progs.

● Ceci a une conséquence sur les performances :
copier des données coûte plus cher qu’une adresse

● Une autre conséquence est que si un sous-programme
doit modifier des données de l’appelant il faut soit :

– Retourner la nouvelle valeur
– Utiliser explicitement un passage par adresse

!

17

Pointeurs * et Références &

● Modification donnée appelant par valeur retour

● 1ère copie de donnée à l’appel, 2ème copie au retour
● Performance ok pour quelques octets

C++int doubler(int x)
{
 return 2*x;
}

int main()
{
 int val = 3;

 val = doubler(val);

 std::cout << val << std::endl;

18

Pointeurs * et Références &

● Modification donnée appelant par valeur retour

● 1ère copie de donnée à l’appel, 2ème copie au retour
● Performance ok pour quelques octets

C++int doubler(int x)
{
 return 2*x;
}

int main()
{
 int val = 3;

 val = doubler(val);

 std::cout << val << std::endl;

36

19

Pointeurs * et Références &

● Modification donnée appelant par adresse
● Copie de l’adresse des données à l’appel
● L’appelé accède directement aux données appelant

C++void doubler(int *px)
{
 *px = 2 * *px;
}

int main()
{
 int val = 3;

 doubler(&val);

 std::cout << val << std::endl;

20

Pointeurs * et Références &

● Modification donnée appelant par adresse
● Copie de l’adresse des données à l’appel
● L’appelé accède directement aux données appelant

C++void doubler(int *px)
{
 *px = 2 * *px;
}

int main()
{
 int val = 3;

 doubler(&val);

 std::cout << val << std::endl;

adresse de valmodifier
val

21

Pointeurs * et Références &

● Modification donnée appelant par adresse
● Copie de l’adresse des données à l’appel
● L’appelé accède directement aux données appelant

void doubler(int *px)
{
 *px = 2 * *px;
}

int main()
{
 int val = 3;

 doubler(&val);

 std::cout << val << std::endl;

Déclarer un passage par adresse

Déréférencement : « valeur à cette adresse »

Indirection : « adresse de cette variable »

C++

22

Pointeurs * et Références &

● Modification donnée appelant par référence
● Copie de l’adresse des données à l’appel
● L’appelé accède directement aux données appelant

!

void doubler(int& x)
{
 x = 2 * x;
}

int main()
{
 int val = 3;

 doubler(val);

 std::cout << val << std::endl;

C++

23

Pointeurs * et Références &

● Modification donnée appelant par référence
● Copie de l’adresse des données à l’appel
● L’appelé accède directement aux données appelant

!

void doubler(int& x)
{
 x = 2 * x;
}

int main()
{
 int val = 3;

 doubler(val);

 std::cout << val << std::endl;

Déclarer un passage par référence

Lors de cet appel x est un alias pour val

Rien à préciser au niveau de l’appelant

C++

24

Pointeurs * et Références &

● En déclarant (ou pas) un paramètre par référence

– Il suffit de mettre (ou pas) & après le type
– Le code appelant reste le même (pas de &var)
– Le code appelé reste le même (pas de *param)

● On peut aussi déclarer une référence à une variable,
c’est moins utile que pour les paramètres...

● Techniquement une référence type& est gérée
par l’exécutable comme un pointeur type* mais la
référence a des règles différentes :

– Elle doit être initialisée a sa déclaration
– Elle ne pourra pas référencer une autre donnée
– Elle ne peut pas référencer « rien » (pas de NULL)

!

25

Pointeurs * et Références &

● Une référence est donc une liaison irrévocable avec
les données référencées jusqu’à ce que la mort
fin du scope les sépare

 int a = 3;
 int& b = a;

 std::cout << a << " " << b << std::endl;

 int c = 4;
 b = c;
 std::cout << a << " " << b << std::endl;

 a = 5;
 std::cout << a << " " << b << std::endl;

C++

26

Pointeurs * et Références &

● Une référence est donc une liaison irrévocable avec
les données référencées jusqu’à ce que la mort
fin du scope les sépare

 int a = 3;
 int& b = a;

 std::cout << a << " " << b << std::endl;

 int c = 4;
 b = c;
 std::cout << a << " " << b << std::endl;

 a = 5;
 std::cout << a << " " << b << std::endl;

C++
La référence b est définitivement un alias de a

Ceci est équivalent à a = c;

27

Pointeurs * et Références &

● Une référence est donc une liaison irrévocable avec
les données référencées jusqu’à ce que la mort
fin du scope les sépare

 char mat[6][7];
 ... remplissage de la matrice ...

 for (int lig=5; lig>0; --lig)
 for (int col=0; col<7; ++col)
 {
 char& caseIci = mat[lig][col];
 char& caseHaut = mat[lig-1][col];

 if (caseIci==' ' && caseHaut!=' ')
 {
 caseIci = caseHaut;
 caseHaut = ' ';
 }
 }

C++

Ce code fait « tomber » les caractères dans la matrice (code pour jeu de Puissance 4)

28

Pointeurs * et Références &

● Equivalent au code précédent sans références :
le code est plus court mais moins explicite

 char mat[6][7];
 ... remplissage de la matrice ...

 for (int lig=5; lig>0; --lig)
 for (int col=0; col<7; ++col)
 {
 if (mat[lig][col]==' ' && mat[lig-1][col]!=' ')
 {
 mat[lig][col] = mat[lig-1][col];
 mat[lig-1][col] = ' ';
 }
 }

C++

Ce code fait « tomber » les caractères dans la matrice (code pour jeu de Puissance 4)

29

Pointeurs * et Références &

● Comme pour les pointeurs avec * la position du & pour
déclarer les références n’a pas d’importance

● En terme de « style » de codage

– on peut coller le & à la variable ou paramètre
float &x

– ou coller le & au type : style majoritaire dans les docs
float& x

!

Google C++ Style Guide :Pointer and Reference Expressions

https://google.github.io/styleguide/cppguide.html#Pointer_and_Reference_Expressions

30

Pointeurs * et Références &

● C’est dans la communication des objets aux sous-
programmes que les références auront le plus d’utilité

● Sans référence, modifier un objet par valeur retour
(ici c’est acceptable : l’objet est léger)

C++Coords normaliser(Coords vecteur)
{
 double norme = sqrt(pow(vecteur.x, 2) + pow(vecteur.y, 2));
 Coords resultat = {vecteur.x/norme, vecteur.y/norme};
 return resultat;
}

int main()
{
 Coords v{4.0, 3.0};
 std::cout << "v : " << v.x << " " << v.y << std::endl;

 v = normaliser(v);
 std::cout << "v : " << v.x << " " << v.y << std::endl;

Attention risque division par 0

O 1 32 4 X

Y

1

2

3

31

Pointeurs * et Références &

● C’est dans la communication des objets aux sous-
programmes que les références auront le plus d’utilité

● Sans référence, modifier un objet par valeur retour
Version courte avec objet-valeur retourné directement

C++

O 1 32 4 X

Y

1

2

3

Coords normaliser(Coords vecteur)
{
 double norme = sqrt(pow(vecteur.x, 2) + pow(vecteur.y, 2));
 return norme ? {vecteur.x/norme, vecteur.y/norme} : vecteur;
}

int main()
{
 Coords v{4.0, 3.0};
 std::cout << "v : " << v.x << " " << v.y << std::endl;

 v = normaliser(v);
 std::cout << "v : " << v.x << " " << v.y << std::endl;

32

Pointeurs * et Références &

● C’est dans la communication des objets aux sous-
programmes que les références auront le plus d’utilité

● Sans référence, modifier un objet par adresse
Noter & dans l’appel et -> à la place de . dans l’appelé

C++

O 1 32 4 X

Y

1

2

3

void normaliser(Coords* vecteur)
{
 double norme = sqrt(pow(vecteur->x, 2) + pow(vecteur->y, 2));
 if (norme!=0)
 { vecteur->x /= norme; vecteur->y /= norme; }
}

int main()
{
 Coords v{4.0, 3.0};
 std::cout << "v : " << v.x << " " << v.y << std::endl;

 normaliser(&v);
 std::cout << "v : " << v.x << " " << v.y << std::endl;

33

Pointeurs * et Références &

● C’est dans la communication des objets aux sous-
programmes que les références auront le plus d’utilité

● Sans référence, modifier un objet par adresse
Noter & dans l’appel et -> à la place de . dans l’appelé

C++

O 1 32 4 X

Y

1

2

3

void normaliser(Coords* vecteur)
{
 double norme = sqrt(pow(vecteur->x, 2) + pow(vecteur->y, 2));
 if (norme!=0)
 { vecteur->x /= norme; vecteur->y /= norme; }
}

int main()
{
 Coords v{4.0, 3.0};
 std::cout << "v : " << v.x << " " << v.y << std::endl;

 normaliser(&v);
 std::cout << "v : " << v.x << " " << v.y << std::endl;

34

Pointeurs * et Références &

● C’est dans la communication des objets aux sous-
programmes que les références auront le plus d’utilité

● Avec référence, modifier un objet par référence
Noter pas de & dans l’appel et . dans l’appelé

C++

O 1 32 4 X

Y

1

2

3

void normaliser(Coords& vecteur)
{
 double norme = sqrt(pow(vecteur.x, 2) + pow(vecteur.y, 2));
 if (norme!=0)
 { vecteur.x /= norme; vecteur.y /= norme; }
}

int main()
{
 Coords v{4.0, 3.0};
 std::cout << "v : " << v.x << " " << v.y << std::endl;

 normaliser(v);
 std::cout << "v : " << v.x << " " << v.y << std::endl;

!

35

Pointeurs * et Références &

● C’est dans la communication des objets aux sous-
programmes que les références auront le plus d’utilité

● Sauf raison particulière de vouloir demander un
pointeur à l’appelant, on préfère donc le passage par
référence au passage par adresse...

● En revanche stocker des références (vecteurs...) sera
difficile: on utilisera des pointeurs pour les collections...

● Attention, le terme « référence » est utilisé dans des
situations différentes et peut vouloir dire 2 choses

– La référence & technique spécifique du C++

– La référence en conception orientée objet
(sur des diagrammes d’objets...) qui pourra se
traduire en C++ parfois par & parfois par *

!

!

36

Pointeurs * et Références &

Attention à ne pas tout mélanger

!

* &
déclaration

pointeur sur
« type à gauche »

référence à
« type à gauche »

utilisation
déréférencement :
valeur pointée par

indirection :
adresse de

symbole

contexte

37

Pointeurs * et Références &

● Le passage par référence n’est pas utilisé que pour
permettre à un sous-programme de modifier des
données de l’appelant, on l’utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

C++

!

void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y << std::endl;
}

void afficherListeCoords(std::vector<Coords>& lst)
{
 for (size_t i=0; i<lst.size(); ++i)
 afficherCoords(lst[i]);
}

int main()
{
 std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };

 afficherListeCoords(quad);

38

Pointeurs * et Références &

● Le passage par référence n’est pas utilisé que pour
permettre à un sous-programme de modifier des
données de l’appelant, on l’utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

C++

!

void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y << std::endl;
}

void afficherListeCoords(std::vector<Coords>& lst)
{
 for (size_t i=0; i<lst.size(); ++i)
 afficherCoords(lst[i]);
}

int main()
{
 std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };

 afficherListeCoords(quad);

1 Coords pèse 16 octet, la copie serait acceptable

Une collection de Coords peut peser lourd → référence

39

COURS 4

A) Structs simples
B) Pointeurs * et Références &
C) La qualification const
D) Valeurs paramètres par défaut
E) Surcharge de fonctions
F) Surcharge d’opérateurs
G) Allocation dynamique new/delete

40

La qualification const

41

La qualification const

● Le passage par référence n’est pas utilisé que pour
permettre à un sous-programme de modifier des
données de l’appelant, on l’utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

C++

!

void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y << std::endl;
}

void afficherListeCoords(std::vector<Coords>& lst)
{
 for (size_t i=0; i<lst.size(); ++i)
 afficherCoords(lst[i]);
}

int main()
{
 std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };

 afficherListeCoords(quad);

Référence

Référence

42

La qualification const

● Ça implique qu’on confie des « données originales »
à des sous-programmes destinés à ne pas les modifier
Ils pourraient les modifier mais ne le feront pas...

C++

!

void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y << std::endl;
}

int main()
{
 std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };

 afficherListeCoords(quad);

Lecture possible
Ecriture possible

Affichage
Lecture
seule faite

43

La qualification const

● Ça implique qu’on confie des « données originales »
à des sous-programmes destinés à ne pas les modifier
Ils pourraient les modifier mais ne le feront pas...
Exemple : on affiche une info spécifique pour les coords
qui sont sur les diagonales (origine exclue)

C++void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y;
 if (c.x!=0 && (c.x=-c.y || c.x==c.y))
 std::cout << " Diagonale";
 std::cout << std::endl;
}

int main()
{
 std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };
 afficherListeCoords(quad);

x

y

44

La qualification const

● Ça implique qu’on confie des « données originales »
à des sous-programmes destinés à ne pas les modifier
Ils pourraient les modifier mais ne le feront pas...

● Sauf par accident !

C++void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y;
 if (c.x!=0 && (c.x=-c.y || c.x==c.y))
 std::cout << " Diagonale";
 std::cout << std::endl;
}

int main()
{
 std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };
 afficherListeCoords(quad);

x

y

45

La qualification const

● Ça implique qu’on confie des « données originales »
à des sous-programmes destinés à ne pas les modifier
Ils pourraient les modifier mais ne le feront pas...

● Sauf par accident !

C++void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y;
 if (c.x!=0 && (c.x=-c.y || c.x==c.y))
 std::cout << " Diagonale";
 std::cout << std::endl;
}

int main()
{
 std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };
 afficherListeCoords(quad);
 afficherListeCoords(quad);

1er appel 2ème appel

?

Beaucoup de temps et de code
entre les 2 appels...

46

La qualification const

C++void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y;
 if (c.x!=0 && (c.x=-c.y || c.x==c.y))
 std::cout << " Diagonale";
 std::cout << std::endl;
}

int main()
{
 std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };
 afficherListeCoords(quad);
 afficherListeCoords(quad);

1er appel 2ème appel

?

Beaucoup de temps et de code
entre les 2 appels...

● Chercher l’erreur (4H de debug)

0 error(s), 0 warning(s)

47

La qualification const

C++void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y;
 if (c.x!=0 && (c.x=-c.y || c.x==c.y))
 std::cout << " Diagonale";
 std::cout << std::endl;
}

● Le sous-programme afficherCoords n’a pas vocation
à modifier les données : mais il modifie les données

= au lieu de ==

48

La qualification const

Quel est le problème ?

Pour ne pas tomber
il suffit de ne pas mettre
le pied au mauvais endroit !

La programmation c’est
carrément moins dangereux !

Seuls les débilos font
= à la place de == !

Vraiment ?
Qui prendra le risque ?

49

La qualification const

Acceptabilité des risques pour les projets C/C++

● Santé
● Transport
● Commerce
● Finance / banque
● Industries lourdes

● Infrastructures S.I.
- OS
- Serveurs
 → Fichiers
 → BDD
 → HTTPS
- Compilateurs
- Machines virtuelles
- Bibliothèques

Inacceptables À éviter Acceptables

● Jeux / divertissement

● Bureautique

● Multimédia

● Création

● Navigateurs ?

● Les exercices
quand on apprend la
programmation C++

if (x = 3)
 std::cout<<"OK\n";
else
 std::cout<<"?\n";

● Quoi d’autre ?

50

La qualification const

● Les problèmes de sécurité du passage par référence
comme façon d’améliorer les performances en évitant
les copies de données :

– Augmente les risques de propager des
corruptions de données en multipliant les
lignes de codes qui ont accès en écriture
aux données initiales de l’appelant

– Rend confus le rôle des paramètres :
est-ce qu’un paramètre est par référence pour
pouvoir être modifié ou juste pour optimiser ?

– Rend difficile le débogage en cas de problème,
qui pourrait croire qu’une innocente fonction
d’affichage peut corrompre ses données ?

!

51

La qualification const

● La qualification const complète une déclaration pour
indiquer que l’objet ou la donnée référencé ou pointé
ne doit pas être modifié par l’appelé

● Même pas par accident !

C++

!

void afficherCoords(const Coords& c)
{
 std::cout << c.x << " " << c.y;
 if (c.x!=0 && (c.x=-c.y || c.x==c.y))
 std::cout << " Diagonale";
 std::cout << std::endl;
}

int main()
{
 std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };
 afficherListeCoords(quad);
 afficherListeCoords(quad);

error: assignment of member 'Coords::x'
 in read-only object

52

La qualification const

● La qualification const complète une déclaration pour
indiquer que l’objet ou la donnée référencé ou pointé
ne doit pas être modifié par l’appelé

● Même pas par accident !

C++

!

void afficherCoords(const Coords& c)
{

 c.x=-c.y

}

error: assignment of member 'Coords::x'
 in read-only object

53

La qualification const

● Le développeur du code appelé ne risque plus de
modifier accidentellement une donnée entrante

● Le développeur du code appelant peut être sûr
que c’est une donnée entrante et non modifiable

C++

!

void afficherCoords(const Coords& c)
{

}

0 error(s), 0 warning(s)
Après correction rapide
du code fautif par le dev.
du code appelé...

Le dev. du code appelant
peut en toute confiance
considérer que les données
ne seront pas modifiées,
sans avoir à lire le code appelé !

54

La qualification const

● Une donnée non-const peut être confiée à un
paramètre const

● Une donnée const peut être confiée à un
paramètre const

C++

!

void afficherCoords(const Coords& c)
{
 std::cout << c.x << " " << c.y;
}

void afficherListeCoords(const std::vector<Coords>& lst)
{
 for (size_t i=0; i<lst.size(); ++i)
 afficherCoords(lst[i]);
}

int main()
{
 std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };
 afficherListeCoords(quad);

55

La qualification const

● Une donnée non-const peut être confiée à un
paramètre const

● Une donnée const peut être confiée à un
paramètre const

C++

!

void afficherCoords(const Coords& c)
{
 std::cout << c.x << " " << c.y;
}

void afficherListeCoords(const std::vector<Coords>& lst)
{
 for (size_t i=0; i<lst.size(); ++i)
 afficherCoords(lst[i]);
}

int main()
{
 std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };
 afficherListeCoords(quad);

non-const quad
vers
const lst

const lst[i]
vers
const c

56

La qualification const

● Une donnée const ne peut pas être confiée à un
paramètre non-const !

● Le qualité de constance est contagieuse de l’appelant
vers l’appelé : tous les appelés doivent coopérer

C++

!

void afficherCoords(Coords& c)
{
 std::cout << c.x << " " << c.y;
}

void afficherListeCoords(const std::vector<Coords>& lst)
{
 for (size_t i=0; i<lst.size(); ++i)
 afficherCoords(lst[i]);
}

const lst[i]
vers
non-const c

error: binding 'const value_type
{aka const Coords}' to reference of
type 'Coords&' discards qualifiers

57

La qualification const

● Indiquer et utiliser systématiquement la qualification
const partout où cela fait sens est une discipline

● Cette discipline doit partir du bas : les codes de bas
niveau (appelés) sont ceux qui autorisent ou pas
l’utilisation de const par les codes clients (appelants)
Voir slide précédent

● Quand tous les développeurs adhèrent à cette rigueur
le code est caractérisé par sa « Const Correctness »

● Celà fait partie des « bonnes pratiques »

!

58

La qualification const

https://isocpp.org/wiki/faq/const-correctness

https://isocpp.org/wiki/faq/const-correctness

59

La qualification const

● Au début ce n’est pas très gratifiant, ça n’ajoute
aucune fonctionnalité au programme et souvent
ça bloque la compilation, on se sent gêné, mais …

● C’est sécure

● Code de qualité

● C’est pro

60

La qualification const

● Attention cependant, le C++ est un code exécuté sans
superviseur et les indices tableau non contrôlés :
n’importe quel sous-programme peut écrabouiller
n’importe quel octet de l’application !

● Il suffit d’un seul tab[i]=50; avec i trop grand !

● En C++ const est une protection des données contre
certains types d’accidents, pas contre toutes les
erreurs de la vie du programmeur, ni la malveillance...

!

61

La qualification const

● Les langages supervisés offrent un niveau de
protection des données supérieur

● Ils peuvent crasher mais ils disent où et pourquoi

62

La qualification const

● Les langages supervisés offrent un niveau de
protection des données supérieur (mais moins de perfs)

 Programmation de haut niveau en toute décontraction

63

COURS 4

A) Structs simples
B) Pointeurs * et Références &
C) La qualification const
D) Valeurs paramètres par défaut
E) Surcharge de fonctions
F) Surcharge d’opérateurs
G) Allocation dynamique new/delete

64

Valeurs paramètres par défaut

65

Valeurs paramètres par défaut

● Une option sympathique du C++ :
donner une valeur initiale aux paramètres
quand ceux-ci ne sont pas explicitement donnés

● Ce sont des valeurs par défaut

C++

!

void dessinerCarre(int taille,
 char remplissage = '*',
 std::string titre = "Carré")
{
 std::cout << titre << std::endl;
 for (int lig=0; lig<taille; ++lig)
 {
 for (int col=0; col<taille; ++col)
 std::cout << remplissage;
 std::cout << std::endl;
 }
}

int main()
{
 dessinerCarre(3); 2ème et 3ème paramètres pas explicitement donnés

valeurs par défaut

66

Valeurs paramètres par défaut

● Une option sympathique du C++ :
donner une valeur initiale aux paramètres
quand ceux-ci ne sont pas explicitement donnés

● Ce sont des valeurs par défaut

C++void dessinerCarre(int taille,
 char remplissage = '*',
 std::string titre = "Carré")
{
 std::cout << titre << std::endl;
 for (int lig=0; lig<taille; ++lig)
 {
 for (int col=0; col<taille; ++col)
 std::cout << remplissage;
 std::cout << std::endl;
 }
}

int main()
{
 dessinerCarre(2, '+');

67

Valeurs paramètres par défaut

● Une option sympathique du C++ :
donner une valeur initiale aux paramètres
quand ceux-ci ne sont pas explicitement donnés

● Ce sont des valeurs par défaut

C++void dessinerCarre(int taille,
 char remplissage = '*',
 std::string titre = "Carré")
{
 std::cout << titre << std::endl;
 for (int lig=0; lig<taille; ++lig)
 {
 for (int col=0; col<taille; ++col)
 std::cout << remplissage;
 std::cout << std::endl;
 }
}

int main()
{
 dessinerCarre(4, '#', "Gros carré avec dièses");

68

Valeurs paramètres par défaut

● Les paramètres par défaut sont toujours en dernier

● A l’appel ils sont spécifiés dans l’ordre du 1er au dernier
● On ne peut pas « sauter » un paramètre

C++void dessinerCarre(int taille,
 char remplissage = '*',
 std::string titre = "Carré")
{
 std::cout << titre << std::endl;
 for (int lig=0; lig<taille; ++lig)
 {
 for (int col=0; col<taille; ++col)
 std::cout << remplissage;
 std::cout << std::endl;
 }
}

int main()
{
 dessinerCarre(3, "Carré avec étoiles");

error: invalid conversion from 'const char*' to 'char'

69

Valeurs paramètres par défaut

● Les paramètres par défaut sont toujours en dernier

● A l’appel ils sont spécifiés dans l’ordre du 1er au dernier
● On ne peut pas « sauter » un paramètre

C++void dessinerCarre(int taille,
 char remplissage = '*',
 std::string titre = "Carré")
{
 std::cout << titre << std::endl;
 for (int lig=0; lig<taille; ++lig)
 {
 for (int col=0; col<taille; ++col)
 std::cout << remplissage;
 std::cout << std::endl;
 }
}

int main()
{
 dessinerCarre(3, "Carré avec étoiles");

error: invalid conversion from 'const char*' to 'char'

?

70

Valeurs paramètres par défaut

● Les paramètres par défaut sont toujours en dernier

● A l’appel ils sont spécifiés dans l’ordre du 1er au dernier
● Ici OK, les 3 paramètres sont donnés explicitement

C++void dessinerCarre(int taille,
 char remplissage = '*',
 std::string titre = "Carré")
{
 std::cout << titre << std::endl;
 for (int lig=0; lig<taille; ++lig)
 {
 for (int col=0; col<taille; ++col)
 std::cout << remplissage;
 std::cout << std::endl;
 }
}

int main()
{
 dessinerCarre(3, '*', "Carré avec étoiles");

71

Valeurs paramètres par défaut

● On va souvent utiliser une/des valeur(s) par défaut
pour neutraliser un/des paramètre(s)

● On verra une alternative au chapitre suivant (surcharge)

C++/// 0 est l'élément neutre pour l'addition
int somme(int a, int b, int c=0)
{
 return a + b + c;
}

int main()
{
 std::cout << somme(1, 2) << " " << somme(1, 2, 3) << std::endl;

72

Valeurs paramètres par défaut

● On va souvent utiliser une/des valeur(s) par défaut
pour neutraliser un/des paramètre(s)

● On verra une alternative au chapitre suivant (surcharge)

C++/// La plus petite valeur possible est élément neutre pour le max
int maxi(int a, int b, int c=std::numeric_limits<int>::min())
{
 if (a>b && a>c)
 return a;
 if (b>c)
 return b;
 return c;
}

int main()
{
 std::cout << maxi(1, 2) << " " << maxi(1, 2, 3) << std::endl;

73

COURS 4

A) Structs simples
B) Pointeurs * et Références &
C) La qualification const
D) Valeurs paramètres par défaut
E) Surcharge de fonctions
F) Surcharge d’opérateurs
G) Allocation dynamique new/delete

74

Surcharge de fonctions

75

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● C’est la surcharge (overloading)

C++

!

/// moyenne à trois paramètres
float moyenne(float a, float b, float c)
{
 return (a + b + c) / 3.0;
}

/// moyenne à deux paramètres
float moyenne(float a, float b)
{
 return (a + b) / 2.0;
}

int main()
{
 std::cout << moyenne(1, 2) << " " << moyenne(1, 2, 3) << std::endl;

On dit que la fonction
moyenne est surchargée

Fonction ou sous-programme : synonymes

76

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● Le compilateur met en correspondance (overload resolution)

C++

!

/// moyenne à trois paramètres
float moyenne(float a, float b, float c)
{
 return (a + b + c) / 3.0;
}

/// moyenne à deux paramètres
float moyenne(float a, float b)
{
 return (a + b) / 2.0;
}

int main()
{
 std::cout << moyenne(1, 2) << " " << moyenne(1, 2, 3) << std::endl;

Conversion de 2 int
vers 2 floats OK

Conversion de 3 int
vers 3 floats OK

https://en.cppreference.com/w/cpp/language/overload_resolution

77

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● Ici l’approche paramètre par défaut n’était pas correcte

C++/// 0 est l'élément neutre pour la moyenne ?
float moyenne(float a, float b, float c=0)
{
 return (a + b + c) / 3.0;
}

int main()
{
 std::cout << moyenne(1, 2) << " " << moyenne(1, 2, 3) << std::endl;

FAUX !

78

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● La surcharge joue aussi sur les types des paramètres

/// Saisie pour des phrases
void saisie(std::string& x);

/// Saisie pour des booléens oui/non
void saisie(bool& x);

/// Saisie pour des entiers positifs
void saisie(unsigned int& x);

 saisies.h
Prototypes

!

79

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● Surcharge combinée avec paramètre par défaut !

 saisies.h
Prototypes

!

/// Saisie pour des phrases
void saisie(std::string& x, std::string message = "");

/// Saisie pour des booléens oui/non
void saisie(bool& x, std::string message = "");

/// Saisie pour des entiers positifs
void saisie(unsigned int& x, std::string message = "");

valeur par défaut

80

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● Chaque implémentation va être spécifique...

 saisies.cpp
Implémentations

/// Saisie pour des phrases
void saisie(std::string& x, std::string message)
{
 if (!message.empty())
 std::cout << message;

 std::getline(std::cin, x);
}

Noter ici pas de valeur par défaut :
la valeur par défaut est donnée
dans la déclaration (prototype)
pas dans la définition (implémentation)

la substitution du paramètre
par la valeur par défaut
s’opère au niveau de l’appelant ...

81

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● Chaque implémentation va être spécifique...

 saisies.cpp
Implémentations

/// Saisie pour des booléens oui/non
void saisie(bool& x, std::string message)
{
 if (!message.empty())
 std::cout << message;

 std::string ligne;
 std::getline(std::cin, ligne);
 while (ligne!="non" && ligne!="oui")
 {
 std::cout << "Reponse [oui/non] attendue, recommencer : ";
 std::getline(std::cin, ligne);
 }

 x = ligne=="oui";
}

82

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● Chaque implémentation va être spécifique...

 saisies.cpp
Implémentations

/// Saisie pour des entiers positifs
void saisie(unsigned int& x, std::string message)
{
 if (!message.empty())
 std::cout << message;

 std::string ligne;
 bool correct;
 do
 {
 std::getline(std::cin, ligne);
 correct = ligne.size()>0 && ligne.size()<10;
 for (size_t i=0; correct && i<ligne.size(); ++i)
 if (ligne[i]<'0' || ligne[i]>'9')
 correct = false;
 if (!correct)
 std::cout << "Entier positif attendu, recommencer : ";
 } while (!correct);

 x = std::stoul(ligne);
}

Seule façon de « blinder »
une saisie utilisateur :
entrer une ligne sous forme
de chaîne puis analyser la ligne
puis accepter ou rejeter

83

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● Ce gros travail est payant au niveau du code client

 main.cpp
Code utilisateur

int main()
{

 std::string val1;
 bool val2;
 unsigned int val3;

 saisie(val1);
 saisie(val2);
 saisie(val3);

 std::cout << std::endl;

 std::cout << "valeur 1 saisie : " << val1 << std::endl;
 std::cout << "valeur 2 saisie : " << val2 << std::endl;
 std::cout << "valeur 3 saisie : " << val3 << std::endl;

!

84

Surcharge de fonctions

● On n’est pas obligé de donner des noms différents à
des sous-programmes qui ont un rôle similaire mais
qui prennent des listes de paramètres différentes

● Ce gros travail est payant au niveau du code client

 main.cpp
Code utilisateur

int main()
{

 std::string val1;
 bool val2;
 unsigned int val3;

 saisie(val1, "Une phrase SVP : ");
 saisie(val2, "Avez vous vu le Big Bang [oui/non] ? ");
 saisie(val3, "Votre age SVP : ");

 std::cout << std::endl;

 std::cout << "valeur 1 saisie : " << val1 << std::endl;
 std::cout << "valeur 2 saisie : " << val2 << std::endl;
 std::cout << "valeur 3 saisie : " << val3 << std::endl;

!

85

Surcharge de fonctions

● Un cession interactive avec le code précédent
● En vert les saisies utilisateur
● Le blindage des entiers positifs est à améliorer...

Une phrase SVP : Bonjour le Monde !
Avez vous vu le Big Bang [oui/non] ? peut-être
Reponse [oui/non] attendue, recommencer : euh
Reponse [oui/non] attendue, recommencer : oui
Votre age SVP : 15000000000
Entier positif attendu, recommencer : quinze milliards
Entier positif attendu, recommencer : -1
Entier positif attendu, recommencer : 9999999999
Entier positif attendu, recommencer : 999999999

valeur 1 saisie : Bonjour le Monde !
valeur 2 saisie : 1
valeur 3 saisie : 999999999

Process returned 0 (0x0) execution time : 46.378 s
Press any key to continue.

OVERLORD

≠
OVERLOAD

86

COURS 4

A) Structs simples
B) Pointeurs * et Références &
C) La qualification const
D) Valeurs paramètres par défaut
E) Surcharge de fonctions
F) Surcharge d’opérateurs
G) Allocation dynamique new/delete

87

Surcharge d’opérateurs

88

Surcharge d’opérateurs

● En C++ on peut "customiser" les opérateurs qui sont
en fait considérés comme des fonctions surchargées

● Le nom des ces fonctions est operator+ operator-
operator* operator/ operator% etc...

C++

!

+ - * / % ^ & | ~ ! =

< > += -= *= /= %= ^= &=

|= << >> >>= <<= == != <=

>= && || ++ -- , -> () []

https://en.cppreference.com/w/cpp/language/operators

https://isocpp.org/wiki/faq/operator-overloading

https://en.cppreference.com/w/cpp/language/operators
https://isocpp.org/wiki/faq/operator-overloading

89

Surcharge d’opérateurs

● En C++ on peut "customiser" les opérateurs qui sont
en fait considérés comme des fonctions surchargées

● Utiliser + entre 2 variables de type Type appellera
Type operator+(const Type& t1, const Type& t2)

C++

!

+ - * / % ^ & | ~ ! =

< > += -= *= /= %= ^= &=

|= << >> >>= <<= == != <=

>= && || ++ -- , -> () []

https://en.cppreference.com/w/cpp/language/operators

https://isocpp.org/wiki/faq/operator-overloading

https://en.cppreference.com/w/cpp/language/operators
https://isocpp.org/wiki/faq/operator-overloading

90

Surcharge d’opérateurs

● En C++ on peut "customiser" les opérateurs qui sont
en fait considérés comme des fonctions surchargées

● On pourra définir ces fonctions opérateurs pour
enrichir le langage et faciliter l’écriture du code...

C++

!

/// Somme vectorielle (version longue)
Coords operator+(const Coords& c1, const Coords& c2)
{
 Coords s;
 s.x = c1.x + c2.x;
 s.y = c1.y + c2.y;
 return s;
}

int main()
{
 Coords a{1, 2};
 Coords b{2, 3};
 Coords c;
 c = a + b;

 std::cout << "(" << c.x << ", " << c.y << ")" << std::endl;

91

Surcharge d’opérateurs

● En C++ on peut "customiser" les opérateurs qui sont
en fait considérés comme des fonctions surchargées

● On pourra définir ces fonctions opérateurs pour
enrichir le langage et faciliter l’écriture du code...

C++/// Somme vectorielle (version longue)
Coords operator+(const Coords& c1, const Coords& c2)
{
 Coords s;
 s.x = c1.x + c2.x;
 s.y = c1.y + c2.y;
 return s;
}

int main()
{
 Coords a{1, 2};
 Coords b{2, 3};
 Coords c;
 c = a + b;

 std::cout << "(" << c.x << ", " << c.y << ")" << std::endl;

a+b déclenche l’appel operator+(a, b)

!

92

Surcharge d’opérateurs

● En C++ on peut "customiser" les opérateurs qui sont
en fait considérés comme des fonctions surchargées

● On pourra définir ces fonctions opérateurs pour
enrichir le langage et faciliter l’écriture du code...

C++/// Somme vectorielle (version courte)
Coords operator+(const Coords& c1, const Coords& c2)
{
 return {c1.x + c2.x, c1.y + c2.y};
}

/// Produit scalaire
double operator*(const Coords& c1, const Coords& c2)
{
 return c1.x*c2.x + c1.y*c2.y;
}

/// Multiplication par un réel
Coords operator*(double m, const Coords& c)
{
 return {m*c.x, m*c.y};
}

93

Surcharge d’opérateurs

● En C++ on peut "customiser" les opérateurs qui sont
en fait considérés comme des fonctions surchargées

● En surchargeant l’opérateur d’insertion on rend les
des classes d’objets compatibles avec std::cout

C++/// Opérateur d'insertion dans un flot d'affichage
std::ostream& operator<<(std::ostream& out, const Coords& c)
{
 out << "(" << c.x << ", " << c.y << ")";
 return out;
}

int main()
{
 Coords a{1, 2};
 Coords b{2, 3};

 std::cout << a << std::endl;
 std::cout << b << std::endl;

94

Surcharge d’opérateurs

● Finalement on peut intégrer les objets d’une classe
dans le langage presque comme un type élémentaire...

● Complique la vie de ceux qui développent une classe
mais facilite le travail des utilisateurs de la classe

C++int main()
{
 Coords a{1, 2};
 Coords b{2, 3};

 std::cout << a << std::endl;
 std::cout << b << std::endl << std::endl;

 Coords c;
 c = a + b;
 std::cout << c << std::endl << std::endl;

 Coords d = 4*b;
 std::cout << d << std::endl << std::endl;

 std::cout << a+b << std::endl;
 std::cout << a*b << std::endl;
 std::cout << -1*a+3*b << std::endl;
 std::cout << a*b*(a+b) << std::endl;

95

COURS 4

A) Structs simples
B) Pointeurs * et Références &
C) La qualification const
D) Valeurs paramètres par défaut
E) Surcharge de fonctions
F) Surcharge d’opérateurs
G) Allocation dynamique new/delete

96

Allocation dynamique new/delete

97

Allocation dynamique new/delete

C++

!

C C++
allouer malloc new

libérer free delete
void afficher(const Coords& c);
void saisir(Coords& c);

int main()
{
 Coords* pa = nullptr;

 pa = new Coords;

 saisir(*pa);
 afficher(*pa);

 delete pa;

 return 0;
}

98

Allocation dynamique new/delete

C++

!

C C++
allouer malloc new

libérer free delete
void afficher(const Coords& c);
void saisir(Coords& c);

int main()
{
 Coords* pa = nullptr;

 pa = new Coords;

 saisir(*pa);
 afficher(*pa);

 delete pa;

 return 0;
}

allouer

libérer

utiliser !

99

Allocation dynamique new/delete

C++

!

C C++
allouer malloc new

libérer free delete
void afficher(const Coords& c);
void saisir(Coords& c);

int main()
{
 Coords* pa = nullptr;

 pa = new Coords;

 saisir(*pa);
 afficher(*pa);

 delete pa;

 return 0;
}

déréférencer ici, on a un pointeur sur Coords
les paramètres attendent un Coords
(une référence sur Coords attend le type Coords, pas Coords*)

100

Allocation dynamique new/delete

● C’était un exemple d’allocation dynamique
● Si on peut éviter d’allouer on évite !
● Ici il est préférable d’utiliser une variable automatique

C++

!

void afficher(const Coords& c);
void saisir(Coords& c);

int main()
{
 Coords a;

 saisir(a);
 afficher(a);

 return 0;
}

101

Allocation dynamique new/delete

● C’était un exemple d’allocation dynamique
● Si on peut éviter d’allouer on évite !
● Ici il est préférable d’utiliser une variable automatique

C++

!

void afficher(const Coords& c);
void saisir(Coords& c);

int main()
{
 Coords a;

 saisir(a);
 afficher(a);

 return 0;
}

déclarer suffit à allouer l’espace de stockage des données

libération automatique à la fermeture du scope

utiliser !

102

Allocation dynamique new/delete

● Initialisation d’une variable automatique
● Il y a des variantes (en général équivalentes)

Coords a = {5, 6}; // Historique (compatible C) implique une copie
Coords a(5, 6); // C++ classique (C++98) appel au constructeur
Coords a{5, 6}; // C++ moderne (C++11) braced initialization

C++

!

void afficher(const Coords& c);
void saisir(Coords& c);

int main()
{
 Coords a{5, 6};

 afficher(a);

 return 0;
}

http://blog.quasardb.net/cpp-braced-initialization/

103

Allocation dynamique new/delete

● Initialisation d’un objet alloué dynamiquement
● C’est nouveau (avec malloc on ne pouvait pas)
● On verra avec les classes : ici constructeur implicite

C++

!

void afficher(const Coords& c);
void saisir(Coords& c);

int main()
{
 Coords* pa = nullptr;

 pa = new Coords{5, 6};

 afficher(*pa);

 delete pa;

 return 0;
}

104

Allocation dynamique new/delete

● Bon mais alors si on peut faire en gros les même
choses avec des données automatiques alors les
données allouées dynamiquement, ça sert à quoi ?

● Par exemple à retourner des données sans copie

C++Coords* faireCoordsDiago(double z)
{
 Coords* pc = nullptr;
 pc = new Coords;
 pc->x = z;
 pc->y = z;
 return pc;
}

int main()
{
 Coords* pa = nullptr;

 pa = faireCoordsDiago(3);

 afficher(*pa);

 delete pa;
 return 0;
}

Communication à l’appelant
d’un nouvel espace de stockage :
4 octets à transmettre quel que
soit la taille de l’espace de stockage

105

Allocation dynamique new/delete

● Bon mais alors si on peut faire en gros les même
choses avec des données automatiques alors les
données allouées dynamiquement, ça sert à quoi ?

● Par exemple à retourner des données sans copie

C++

int main()
{
 Coords* pa = faireCoordsDiago(3);

 afficher(*pa);

 delete pa;
 return 0;
}

Attention avec un objet alloué retourné
par une fonction appelée, l’appelant devient
responsable de la gestion du cycle de vie
de cet objet. Il doit soit le libérer soit
en confier la responsabilité à un autre etc...

Coords* faireCoordsDiago(double z)
{
 return new Coords{z, z};
}

Équivalent au code précédent
avec une rédaction plus compacte

!

106

Allocation dynamique new/delete

● Un « retour par valeur » copie plus de données

● Ici un passage par référence de a serait possible
parce que l’appelant a déjà l’espace de stockage
à remplir mais ce n’est pas toujours le cas

C++Coords faireCoordsDiago(double z)
{
 Coords c;

 c.x = z;
 c.y = z;
 return c;
}

int main()
{
 Coords a;

 a = faireCoordsDiago(3);

 afficher(a);

 return 0;
}

Copie à l’appelant des données
nombre d’octets à transmettre
proportionnel à la taille des données :
potentiellement très grand !

107

Allocation dynamique new/delete

● Là où l’allocation dynamique est indispensable c’est
lors de la création des objets persistants qui vont
peupler nos collections : « les instances » du modèle

● Les objets arrivent et quittent un logiciel orienté objet
en fonction des besoins :
besoin d’un nouvel objet -> appeler new
plus besoin d’un objet -> appeler delete

● Slide suivant :
 un ajout « tant qu’on veut » de nouvelles coords
 dans une collection de Coords, un cas typique
 d’utilisation de l’allocation dynamique

!

108

Allocation dynamique new/delete

C++

void utiliser(std::vector<Coords*>& lst);
void saisir(Coords& c);

int main()
{
 std::vector<Coords*> mesCoords;

 bool continuer;
 do
 {
 Coords* nouveau = new Coords;
 saisir(*nouveau);

 mesCoords.push_back(nouveau);

 std::cout << "continuer [true/false] ?" << std::endl;
 std::cin >> std::boolalpha >> continuer;
 } while (continuer);

 utiliser(mesCoords);

 for(size_t i=0; i<mesCoords.size(); ++i)
 delete mesCoords[i];

 return 0;
}

Fabriquer des objets en fonction
de la demande utilisateur, un cas
typique d’utilisation de l’allocation

!

109

Sécurité & savoir-faire en 1913

110

Relire les cours

● Les cours font beaucoup de slides mais beaucoup de
slides se répètent pour faire des « effets d’animation »
par exemple avec l’apparition de commentaires etc...

● En mode défilement cette présentation peut être
fastidieuse. En configurant le lecteur de pdf vous
pouvez faire défiler les slides comme en cours :

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110

