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Structs simples

I e En C++ comme en C on retrouve la notion de struct

 En C++ il nest pas utile d’utiliser typedef

#ifndef COORDS_H_INCLUDED
#define COORDS_H_INCLUDED

struct Coords

double x, y;
¥

#tendif

coords.h

C++

#ifndef COORDS_H_ INCLUDED
#define COORDS_H_ INCLUDED

typedef struct coords
double x, y;
}

t_coords;

#endif

coords.h



Structs simples

e En C++ comme en C on retrouve la notion de struct

 En C++ il nest pas utile d’utiliser typedef

I
I

struct Coords

double x, y;
¥

coords.h

C++

typedef struct coords

double x, y;
}

t_coords;

coords.h



F Structs simples

I e En C++ comme en C on retrouve la notion de struct

 En C++ il nest pas utile d’utiliser typedef

Convention

I Majuscule coords.h C++
universelle

struct Coords

Attention au ; a la fin !

N double X, y; L’oublier conduit a des
@ erreurs méchantes dans le(s)
fichier(s) ou le .h est inclus

coords.h C

typedef struct coords

double x, y;
}

t_coords;




r Structs simples

I  En C++ comme en C la struct est gérée par valeur
* En C++ on peut affecter une valeur litterale sans caster

I #include "coords.h" main.cpp C++
int main()
{

Coords a = {3.1, 2.5};

std: :cout << "a r " << a.x << " " << ay << std::endl;
Coords b =
{4.5, 6. 6},
std::cout << "a "<k ax <" " < ay << std::endl;
std::cout << "b : " << b.x << " " << b.y << std::endl;
#include "coords.h" main.c C

int main()

t_coords a ={3.1, 2.5};
printf("a : / 1f %.1f\n", a.x, a.y);
t coords b =

(t_ coords){4 5, 6.6};
prlntf( a : %.1f %.1f\n", a.x, a.y);
printf("b : %.1f %.1f\n", b.x, b.y);




r Structs simples

I  En C++ comme en C la struct est gérée par valeur

I * En C++ on peut affecter une valeur litterale sans caster

#include "coords.h" main.cpp C++
int main()
{

Coords a = {3.1, 2.5};
Coords b = a;

a ={4.5, 6.6};

#include "coords.h" main.c C
int main()

t coords a = {3.1, 2.5};

t _coords b = a; Caster

a = (t_coords){4.5, 6.6};




r Structs simples a

I  En C++ la struct se comporte « comme un scalaire »

e En C++ |a struct est en fait une classe !

I #include "coords.h" main.cpp C++
int main()
{

Coords a = {3.1, 2.5};

Coords b = a;

a = {4.5, 6.6};

e [ a struct est une classe mais une classe avec des
attributs publiques

* En genéral en orienté objet on se méfie des attributs
publiques : ca rompt le principe d’encapsulation...



r Structs simples “

I * Envisageables pour grouper peu d’infos élémentaires

* Pas pour des types d’objets complexes

I coords.h C++

struct Coords

double x, y;
¥

* Par exemple la bibliotheque standard propose la
struct std::pair< > avec les attributs first et second

* Nous verrons lors du cours sur les classes les
consequences possibles du non respect du principe
d’encapsulation


https://en.cppreference.com/w/cpp/utility/pair
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I
I

Pointeurs * et Reéférences & a

Les tableaux ont une sémantique par référence
Implicitement c’est I'adresse des données qui est
transmise aux sous-programmes, donnéees pas copiées

Les types scalaires et les classes (class ou struct)
ont une sémantique par valeur, par défaut c’est une
copie des donnees qui est transmise aux sous-progs.

Ceci a une conséquence sur les performances :
copier des donnees codte plus cher qu’une adresse

Une autre conséquence est que si un sous-programme
doit modifier des données de l'appelant Il faut soit :

— Retourner la nouvelle valeur
— Utiliser explicitement un passage par adresse



I
I

Pointeurs * et Références &

* Modification donnée appelant par valeur retour
« 1° copie de donnée a l'appel, 2°™ copie au retour
* Performance ok pour quelques octets

int doubler(int x)

{
¥

int main()

{

return 2*x;

int val = 3;

val = doubler( val );

std: :cout << val << std::endl;

C++




I
I

Pointeurs * et Références &

* Modification donnée appelant par valeur retour
« 1° copie de donnée a l'appel, 2°™ copie au retour
* Performance ok pour quelques octets

int doubler(int x
{
return 2*x;
} 6 3

int main()
int val = 3;

val = doubler( val );

std: :cout << val << std::endl;

C++




* Modification donnée appelant par adresse
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéféerences &

void doubler(int *px) C++
{

¥

int main()

{

*px = 2 * *px;

int val = 3;

doubler( &val );

std: :cout << val << std::endl;




* Modification donnée appelant par adresse
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéféerences &

void doubler(int *pxJe C++
{

*px = 2 * *px;
} modifier adresse de val
int main() val
{

int val = 3;

doubler( &val );

std::cout << val << std::endl; tj




* Modification donnée appelant par adresse
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéféerences &

void doubler(int @px) Déclarer un passage par adresse C++

{
¥

int main()

{

@px = 2 * @px; Déréférencement : « valeur a cette adresse »

int val = 3;
Indirection : « adresse de cette variable »
doubler( @/al );

std::cout << val << std::endl; E—'




* Modification donnée appelant par référence
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéférences & G

void doubler(int& x) C++

int main()

{

int val = 3;

doubler( val );

std: :cout << val << std::endl;




* Modification donnée appelant par référence
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéférences & a

¥Oid doubler(in@ x) Déclarer un passage par référence C++
X = 2 * X; Lors de cet appel x est un alias pour val

}

int main()

{

int val = 3;
Rien a préciser au niveau de I'appelant
doubler( val );

std::cout << val << std::endl; E—'




Pointeurs * et Reéférences & a

I * En déclarant (ou pas) un parametre par référence

— Il suffit de mettre (ou pas) & apres le type
I — Le code appelant reste le méme (pas de &var)
- Le code appelé reste le méme (pas de *param)

* On peut aussi déclarer une référence a une variable,
c’est moins utile que pour les parametres...

* Techniguement une reférence type& est gerée
par I'exécutable comme un pointeur type* mais la
référence a des regles différentes :

— Elle doit étre initialisée a sa déclaration
— Elle ne pourra pas réferencer une autre donnee
— Elle ne peut pas réferencer « rien » (pas de NULL)



* Une référence est donc une liaison irrevocable avec
les données référencees jusqu’a ce que la mort
fin du scope les séepare

r Pointeurs * et Reéféerences &

int a = 3; C++
int& b = a;

std::cout << a << " " << b << std::endl;

int c = 4;

b = c;

std::cout << a << " " << b << std::endl;

a = 5;

std::cout << a << " " << b << std::endl;




* Une référence est donc une liaison irrevocable avec
les données référencees jusqu’a ce que la mort
fin du scope les séepare

r Pointeurs * et Reéféerences &

int a = 3; C++
int& b = a; Laréférence b est définitivement un alias de a
std::cout << a << " " << b << std::endl;
int ¢ = 4; ] o .
b = c Ceci est équivalenta a = c;
std::cout << a << " " << b << std::endl;
a = 5;

std::cout << a << " " << b << std::endl;




I
I

Pointeurs * et Références &

* Une référence est donc une liaison irrevocable avec
les données référencees jusqu’a ce que la mort
fin du scope les séepare

char mat[6][7]; C++
. remplissage de La matrice ...

for (int lig=5; lig>0; --1lig)
for (int col=0; col<7; ++col)

{
char& caseIci = mat[lig][col];
char& caseHaut = mat[lig-1][col];
if ( caselci== && caseHaut!= )
{
caselci = caseHaut;
caseHaut = 5
}
}

Ce code fait « tomber » les caracteres dans la matrice (code pour jeu de Puissance 4)



I
I

Pointeurs * et Références &

* Equivalent au code précedent sans reférences :
le code est plus court mais moins explicite

char mat[6][7]; C++
. remplissage de La matrice ...

for (int lig=5; lig>0; --1lig)
for (int col=0; col<7; ++col)

%f ( mat[lig][col]== && mat[lig-1][col]!= )

mat[lig][col] = mat[lig-1][col];
} mat[lig-1][col] = 5
}

Ce code fait « tomber » les caracteres dans la matrice (code pour jeu de Puissance 4)



Pointeurs * et Reéférences & G

I  Comme pour les pointeurs avec * la position du & pour
déclarer les réferences n’a pas d’'importance

I * En terme de « style » de codage

— on peut coller le & a la variable ou parametre
float &x

— ou coller le & au type : style majoritaire dans les docs
float& x

> Google C++ Style Guide :Pointer and Reference Expressions
When declaring a pointer variable or argument, you may place the asterisk adjacent to either the type or to the variable name:
// These ar

char *c;
const string &str:;

]

fine, space preceding.

// These are fine, space followling.
char* c:
const strings& str;

You should do this consistently within a single file, so, when modifying an existing file, use the style in that file.


https://google.github.io/styleguide/cppguide.html#Pointer_and_Reference_Expressions

Pointeurs * et Références &

I * C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

» Sans référence, modifier un objet par valeur retour
( ici c’est acceptable : I'objet est leger )

Coords normaliser(Coords vecteur) C++

{

double norme = sgrt( pow(vecteur.x, 2) + pow(vecteur.y, 2) );
Coords resultat = {vecteur.x/norme, vecteur.y/norme};
return resultat; A

} Attention risque division par 0

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x <« " " << v.y << std::endl;

v = normaliser(v);
std::cout << "v : " << v.x <« " " << v.y << std::endl;




I
I

Pointeurs * et Références &

* C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

» Sans référence, modifier un objet par valeur retour
Version courte avec objet-valeur retourné directement

Coords normaliser(Coords vecteur) C++

double norme = sqgrt( pow(vecteur.x, 2) + pow(vecteur.y, 2) );
return norme ? {vecteur.x/norme, vecteur.y/norme} : vecteur;

¥

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x << " " << v.y << std::endl;

v = normaliser(v);
std::cout << "v : " << v.x << " " << v.y << std::endl;



I
I

Pointeurs * et Références &

* C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

* Sans reference, modifier un objet par adresse
Noter & dans l'appel et -> a la place de . dans l'appelé

void normaliser(Coords* vecteur) C++

{
double norme = sqgrt( pow(vecteur->x, 2) + pow(vecteur->y, 2) );
if ( norme!=0 )
{ vecteur->x /= norme; vecteur->y /= norme; }

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x << " " K< v.y << std::endl;

normaliser(&v);
std::cout << "v : " << v.x << " " K< v.y << std::endl;



Pointeurs * et Références &

I * C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

* Sans reference, modifier un objet par adresse
Noter & dans l'appel et -> a la place de . dans l'appelé

void normaliser(Coords* vecteur) C++

double norme = sqgrt( pow(vecteu(::k, 2) + pow(vecteu(::y, 2) );

if ( normel!=0 )

{ vecteu /= norme; vecteuf-3y /= norme; }
}

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x << " " K< v.y << std::endl;

normaliser‘;
std::cout << "v : " << v.x << " " K< v.y << std::endl;




* C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

* Avec référence, modifier un objet par référence
Noter pas de & dans l'appel et . dans 'appelé

Iﬁ!
r Pointeurs * et Reéférences & a

void normaliser(Coords& vecteur) C++

{

double norme = sqgrt( pow(vecteur.x, 2) + pow(vecteur.y, 2) );
if ( norme!=0 )
{ vecteur.x /= norme; vecteur.y /= norme; }

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x << " " << v.y << std::endl;

normaliser(v);
std::cout << "v : " << v.x << " " << v.y << std::endl;




Pointeurs * et Reéférences & a

C’est dans la communication des objets aux sous-
programmes que les réferences auront le plus d'utilité

Sauf raison particuliere de vouloir demander un
pointeur a I'appelant, on préfere donc le passage par
reférence au passage par adresse...

En revanche stocker des references (vecteurs...) sera
difficile: on utilisera des pointeurs pour les collections...

Attention, le terme « référence » est utilisé dans des
situations differentes et peut vouloir dire 2 choses

— La référence & technique spécifique du C++

— La référence en conception orientée objet
(sur des diagrammes d’objets...) qui pourra se
traduire en C++ parfois par & parfois par *




Pointeurs * et Références & G

Attention a ne pas tout meélanger

symbole

=
* &
déclaration pointeur sur reférence a
coxt « type a gauche » « type a gauche »
contexte
Utilisation dereférencement : indirection :
Y valeur pointée par adresse de




* Le passage par reference n’est pas utilise que pour
permettre a un sous-programme de modifier des
données de l'appelant, on l'utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

r Pointeurs * et Reéférences & G

void afficherCoords(Coords& c) C++
{

std::cout << c.x << " " << c.y << std::endl;
}

void afficherlListeCoords(std: :vector<Coords>& 1lst)
for (size_t i=0; i<lst.size(); ++1i)

afficherCoords(1lst[i]);
}

int main()

std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };

afficherListeCoords(quad);




* Le passage par reference n’est pas utilise que pour
permettre a un sous-programme de modifier des
données de l'appelant, on l'utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

r Pointeurs * et Reéférences & G

void afficherCoords(Coords& c) 1 Coords pése 16 octet, la copie serait acceptable C 4+
{

std::cout << c.x << " " << c.y << std::endl;
}

Une collection de Coords peut peser lourd — référence
void afficherListeCoords(std: :vector<Coords>& 1lst)

for (size_t i=0; i<lst.size(); ++1i)
afficherCoords(1lst[i]);
}

int main()

std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };
afficherListeCoords(quad);
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r La qualification const




Iﬁﬂ
r La qualification const G

* Le passage par reference n’est pas utilise que pour
permettre a un sous-programme de modifier des
données de l'appelant, on l'utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

Référence
. . y 4
void afficherCoords(Coords& c) C++
{
std::cout << c.x << " " << c.y << std::endl; Référence
¥

void afficherListeCoords(std: :vector<Coords>& 1st)
for (size_t i=0; i<lst.size(); ++1i)

afficherCoords(1lst[i]);
}

int main()

std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };

afficherListeCoords(quad);



La qualification const a

I * Ca implique qu’on confie des « données originales »
a des sous-programmes destinés a ne pas les modifier

I Ils pourraient les modifier mais ne le feront pas...
void afficherCoords(Coords& c) C++
{
std: :cout <<Q<< "M << c.yX< std::endl;
} h Affichage
Lecture
seule faite

Lecture possible
i i Ecriture possible
int main()

std: :vector<Coords> quad = { {1,1},{4,2}, {2,3} };

afficherListeCoords(quad);




I
I

La qualification const

Ca implique qu’on confie des « donnees originales »
a des sous-programmes destinés a ne pas les modifier

lls pourraient les modifier mais ne le feront pas...
Exemple : on affiche une info spécifique pour les coords
qui sont sur les diagonales (origine exclue)

void afficherCoords(Coords& c) C++

{

int main()

{

std::cout << c.x << " " << c.y;

if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale";

std::cout << std::endl;

Diagonale

-1 Diagonale

std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, @}, {1, -1} };
afficherlListeCoords(quad);



La qualification const

Ca implique qu’on confie des « donnees originales »
a des sous-programmes destinés a ne pas les modifier
lls pourraient les modifier mais ne le feront pas...

» Sauf par accident !

{

{

int main()

void afficherCoords(Coords& c) C++

std::cout << c.x << " " << c.y;

if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale";

std::cout << std::endl;

Diagonale

-1 Diagonale

std: :vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, @}, {1, -1} };
afficherlListeCoords(quad);



La qualification const

I * Ca implique qu’on confie des « données originales »
a des sous-programmes destinés a ne pas les modifier
I Ils pourraient les modifier mais ne le feront pas...

» Sauf par accident !

void afficherCoords(Coords& c) C++
{
std::cout << c.x << " " << c.y;
if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale"; ) -
std::cout << std::endl; 1°" appel 2°™ appel

Diagonale 1 1 Diagonale

-1 Diagonale 1 -1 Diagonale

int main()

{
std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };

afficherlListeCoords(quad); Beaucoup de temps et de code
afficherlListeCoords(quad); entre les 2 appels...




La qualification const

Chercher I’erreur ( 4H de debug )

void afficherCoords(Coords& c)

{

int main()

{

std::cout << c.x << << C.Y;

if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale"”; ‘

std::cout << std::endl; 1°" appel 2°™ appel

Diagonale 1 1 Diagonale

1 Diagonale 1 -1 Diagonale

std: :vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, O}, {1, -1} };

afficherlListeCoords(quad); Beaucoup de temps et de code
afficherListeCoords(quad); entre les 2 appels...

0 error(s), 0 warning(s)



r La qualification const

I * Le sous-programme afficherCoords n’a pas vocation
a modifier les données : mais il modifie les données

void afficherCoords(Coords& c) C++
{
std::cout << c.x <« '/« c.VY;
if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale"”; -
std::cout << std::endl; @u lieu dea

¥




La qualification const

Quel est le probleme ?

Pour ne pas tomber
Il suffit de ne pas mettre
le pied au mauvais endroit !

La programmation c’est
carrément moins dangereux !

Seuls les débilos font
= a la place de ==

Vraiment ?
Qui prendra le risque ?




La qualification const

Acceptabilité des risques pour les projets C/C++

Inacceptables

Santé

Transport
Commerce
Finance / banque
Industries lourdes

Infrastructures S.I.
-0S
- Serveurs

— Fichiers

— BDD

— HTTPS

- Compilateurs
- Machines virtuelles
- Bibliothéques

A éviter

e Jeux / divertissement

Bureautique
Multimeédia
Création

Navigateurs ?

Acceptables

* Les exercices
guand on apprend la
programmation C++

if (x=3)

std: :cout<<"OK\n";
else

std: :cout<<"?\n";

* Quoi d’autre ?



r La qualification const G

I * Les problemes de sécurité du passage par référence
comme facon d’améliorer les performances en évitant
I les copies de données :

- Augmente les risques de propager des
corruptions de données en multipliant les
lignes de codes qui ont acces en ecriture
aux donnees initiales de l'appelant

- Rend confus le réle des parametres :
est-ce qu’un parametre est par référence pour
pouvoir étre modifié ou juste pour optimiser ?

- Rend difficile le débogage en cas de probleme,
qui pourrait croire qu’une innocente fonction
d’affichage peut corrompre ses données ?



r La qualification const 0

I * La qualification const complete une déclaration pour
indiquer que I'objet ou la donnée reférence ou pointeé
I ne doit pas étre modifié par I'appele

 Méme pas par accident !

void afficherCoords(const Coords& c) C++

{
std::cout << c.x << " " << c.y;

if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale";
std::cout << std::endl;
}

error: assignment of member 'Coords: :x'
in read-only object

int main()

std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, @}, {1, -1} };
afficherListeCoords(quad);
afficherListeCoords(quad);




r La qualification const 0

I * La qualification const complete une déclaration pour
indiquer que l'objet ou la donnée référence ou pointé
I ne doit pas étre modifié par I'appele

 Méme pas par accident !

void afficher'Coor‘dsCoor‘ds& c) C++
{

C.X=-C.Yy <>
}

error: assignment of member 'Coords: :x'
in read-only object




r La qualification const 0

I * Le developpeur du code appelé ne risque plus de
modifier accidentellement une donnée entrante

* Le developpeur du code appelant peut étre sar
que c’est une donnée entrante et non modifiable

void afficher'Coor‘dsCoor‘ds& c) C++
{

_ Apres correction rapide
0 error(s), 0 warning(s) du code fautif par le dev.
du code appele...

Le dev. du code appelant

peut en toute confiance
considérer que les données

ne seront pas modifiées,

sans avoir a lire le code appelé !




r La qualification const

I * Une donnée non-const peut étre confiée a un
parametre const

* Une donnée const peut étre confiee a un
parametre const

void afficherCoords(const Coords& c)

{
¥

std::cout << c.x << " " << c.y;

void afficherListeCoords(const std::vector<Coords>& 1lst)
for (size_t i=0; i<lst.size(); ++1i)

afficherCoords(1st[i]);
}

int main()

std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, @}, {1, -1} };
afficherlListeCoords(quad);




r La qualification const 0

* Une donnée non-const peut étre confiée a un
parametre const

* Une donnée const peut étre confiee a un
parametre const

void afficherCoords(const Coords& c)

{
¥

const Ist[i] C++
vers

std::cout << c.x << " " << c.y; const ¢

void afficherListeCoords(const std::vectorfCoords>& 1lst)

non-const quad
vers

const Ist

for (size_t i=0; i<lst.size(); ++1
afficherCoords(1lst[i]);
}

int main()

std: :vector<Coords> quad = { {9,0}, {0,1},

. . ) {1J @}, {1’ _1} };
afficherListeCoords(quad);




r La qualification const 0

I * Une donnée const ne peut pas étre confiée a un
parametre non-const !

* Le qualité de constance est contagieuse de l'appelant
vers I'appele : tous les appelés doivent coopérer

void afficherCoords(Coords& c

{
¥

const Ist[i]
vers

std::cout << c.x << " " << c.y; non-const ¢

void afficherListeCoords(const std::vectorkCoords>& 1lst)

for (size_t i=0; i<lst.size(); ++1i)
afficherCoords(1lst[i]);

error: binding 'const value type
{aka const Coords}' to reference of
type 'Coordsé&' discards qualifiers




r La qualification const a

I * Indiquer et utiliser systematiquement la qualification
const partout ou cela fait sens est une discipline

I » Cette discipline doit partir du bas : les codes de bas
niveau (appelés) sont ceux qui autorisent ou pas

l'utilisation de const par les codes clients (appelants)
Voir slide précedent

* Quand tous les développeurs adherent a cette rigueur
le code est caractérisé par sa « Const Correctness »

* Cela fait partie des « bonnes pratiques »



La qualification const

https://isocpp.org/wiki/fag/const-correctness

raQ Should | try to get things const correct “sooner” or “later”?

At the very, very, very beginning,

Back-patching const correctness results in a snowball effect: every const you add “over here” requires four more

there.”

Add const early and often.

raQ What do “X const& x” and “X const* p” mean?

X const& xisequivalentto const X& x,and X const* xisequivalenttoconst X* x,


https://isocpp.org/wiki/faq/const-correctness

La qualification const

AU début ce n’est pas tres gratifiant, ca n’ajoute
aucune fonctionnalité au programme et souvent
ca bloque la compilation, on se sent géne, mais ...

= : r '_._'___.——'-"""-.-_

C’est secure
Code de qualité

C’est pro

r
r
- i -
- =
I
;
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r La qualification const 0

I e Attention cependant, le C++ est un code exécuté sans
superviseur et les indices tableau non controles :

n’importe quel sous-programme peut écrabouiller
n’importe quel octet de I'application !

|l suffit d’un seul tab[1]=50; avec | trop grand !

* En C++ const est une protection des données contre
certains types d’accidents, pas contre toutes les
erreurs de la vie du programmeur, ni la malveillance...
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r La qualification const

I * Les langages superviseés offrent un niveau de
protection des donnéees supérieur

I * |Is peuvent crasher mais ils disent ou et pourquoi

E..: History | & Consale &2 =| Results | &Y Synchronize | < Search

<terminated = SalesPeople [Java &pplication] C:\Program Files! Javaljrel . 5.0 _06ibintjavaw. exe (Dec 14, 2008 11:29:56 4M)
Element at index 0 : John

Element at index 1 : Paul
Element at index 2 :© George
Element at index 3 : Ringo

Exception in thread "main"™ Java.lang.ArrayIindexOutOfBEoundsException: 4

at sales:zlUl.2alesPeople.maini(ialesPeople. Java:ld)




I
I

La qualification const

* Les langages superviseés offrent un niveau de
protection des données supérieur (mais moins de perfs)

o B | N e o 1
[ o .I.l. / per g ; A 4 d
? o ¥ r , 152 o8
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Valeurs parametres par défaut




Valeurs parametres par déefaut a

* Une option sympathique du C++ :
donner une valeur initiale aux parametres
quand ceux-ci ne sont pas explicitement donnes

 Ce sont des valeurs par défaut

void dessinerCarre(int taille,
char remplissage =
std::string titre =

C++

ne érr &) :l valeurs par défaut

{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig) Carra
for (int col=0; col<taille; ++col) =
std::cout << remplissage;
std::cout << std::endl;
}
}

int main()

dessinerCarre(3); :l 2°m et 3°™ parametres pas explicitement donnés



Valeurs parametres par défaut

* Une option sympathique du C++ :
donner une valeur initiale aux parametres
quand ceux-ci he sont pas explicitement donnes

* Ce sont des valeurs par défaut

void dessinerCarre(int taille, C++
char remplissage = s
std::string titre = "Carré")

{

std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig) Carraé
for (int col=0; col<taille; ++col) ++
std::cout << remplissage;
std::cout << std::endl;

++

}

¥

int main()

dessinerCarre(2, );



Valeurs parametres par défaut

I * Une option sympathique du C++ :
donner une valeur initiale aux parametres

quand ceux-ci he sont pas explicitement donnes
* Ce sont des valeurs par défaut
void dessinerCarre(int taille, C++
char remplissage = s
std::string titre = "Carré")
{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig) Gros carré avec didsec
for (int col=0; col<taille; ++col) i
std: :cout << remplissage; HHHAH
std::cout << std::endl; HHHH
} $HHE

}
int main()

dessinerCarre(4, , "Gros carré avec dieses");




Valeurs parametres par défaut

I * Les parametres par défaut sont toujours en dernier

* A l'appel ils sont spécifiés dans I'ordre du 1°" au dernier
I * On ne peut pas « sauter » un parametre

void dessinerCarre(int taille,
char remplissage =

J

std::string titre = "Carré")
{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig)
for (int col=0; col<taille; ++col)
std::cout << remplissage;
std::cout << std::endl;
}
}

int main() orror: invalid conversion from 'const char*' to 'char'

dessinerCarre(3, "Carré avec étoiles");




Valeurs parametres par défaut

I * Les parametres par défaut sont toujours en dernier

* A l'appel ils sont spécifiés dans I'ordre du 1°" au dernier
I * On ne peut pas « sauter » un parametre

void dessinerCarre(int taille,
char remplissage =

J

std::string titre = "Carré")
{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig)
for (int col=0; col<taille; ++col)
std::cout << remplissage;
std::cout << std::endl;
}
}

int main()

error: invalid conversi rom 'const char*' to 'char'

dessinerCarre(B(:5Carré avec étoiles");




Valeurs parametres par défaut

I * Les parametres par défaut sont toujours en dernier

* A l'appel ils sont spécifiés dans I'ordre du 1°" au dernier
I * Ici OK, les 3 parametres sont donneés explicitement

void dessinerCarre(int taille,

C++
char remplissage =

J

std::string titre = "Carré")
{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig) Carré aver &toiles
for (int col=0; col<taille; ++col) wEE
std::cout << remplissage;
std::cout << std::endl;
}
}

int main()

dessinerCarre(3, , "Carré avec étoiles")




Valeurs parametres par défaut

On va souvent utiliser une/des valeur(s) par defaut
pour neutraliser un/des parametre(s)

On verra une alternative au chapitre suivant (surcharge)

int

int

. . . C++
somme(int a, int b, int c=0)

return a + b + c;

main()

std::cout << somme(1l, 2) << " " << somme(1l, 2, 3) << std::endl;



Valeurs parametres par défaut

On va souvent utiliser une/des valeur(s) par defaut
pour neutraliser un/des parametre(s)

On verra une alternative au chapitre suivant (surcharge)

int

int

C++
maxi(int a, int b, int c=std::numeric_limits<int>::min())

if (a>b && a>c)
return a;
if (b>c)
return b;
return c;

main()

std::cout << maxi(1l, 2) << " " << maxi(1l, 2, 3) << std::endl;
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Surcharge de fonctions




Surcharge de fonctions 0

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

» C’est la surcharge (overloading)

C++
float moyenne(float a, float b, float c)
return (a + b + ¢) / 3.0; On dit que la fonction
! moyenne est surchargée
float moyenne(float a, float b) Fonction ou sous-programme : Synonymes

return (a + b) / 2.0;
} 1.5 2

int main()

std::cout << moyenne(l, 2) << " " << moyenne(l, 2, 3) << std::endl;



Surcharge de fonctions 0

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

* Le compilateur met en correspondance (overload resolution)

C++
float moyenne(float a, float b, float c) Conversion de 3 int

vers 3 floats OK

return (a + b + ¢) / 3.0;

¥

float moyenne(float a, float b) (Conversion de 2 int

return (a + b) / 2.0; vers 2 floats OK

¥

int main()

std::cout << moyenne(l, 2) << " " << moyenne(l, 2, 3) << std::endl;


https://en.cppreference.com/w/cpp/language/overload_resolution

Surcharge de fonctions

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

* [ci I'approche parametre par défaut n’était pas correcte

FAUX! C++

float moyenne(float a, float b, float c=0)

return (a + b + ¢) / 3.0;

¥

(1) 2

int main()

std: :cout <<<E§g%nne(1£:E§><< " " << moyenne(l, 2, 3) << std::endl;




Surcharge de fonctions 0

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

e La surcharge joue aussi sur les types des parametres

saisies.h
void saisie(std::string& x); Prototypes

void saisie(bool& x);

void saisie(unsigned int& x);



Surcharge de fonctions 0

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

* Surcharge combinée avec parametre par défaut !

. saisies.h
void saisie(std::string& x, std::string message = ""); Prototypes
void saisie(bool& x, std::string message = ""); valeur par défaut

void saisie(unsigned int& x, std::string message = "");



Surcharge de fonctions

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

* Chaque implémentation va étre specifique...

. —_ : ) saisies.cpp
void saisie(std::string& x, std::string message) Implémentations

if (!message.empty())
std::cout << message; /.
Noter ici pas de valeur par défaut :

std::getline(std::cin, x); la valeur par défaut est donnée
} dans la déclaration (prototype)
pas dans la définition (implementation)

la substitution du parametre
par la valeur par défaut
s’opere au niveau de l'appelant ...



Surcharge de fonctions

I * On n’est pas oblige de donner des noms difféerents a
des sous-programmes qui ont un role similaire mais

qui prennent des listes de parametres differentes
* Chaque implémentation va étre specifique...
saisies.cpp
void saisie(bool& x, std::string message) Implémentations

if (!message.empty())

std::cout << message;
std::string ligne;
std::getline(std::cin, ligne);
while ( ligne!="non" && ligne!="oui" )

std::cout << "Reponse [oui/non] attendue, recommencer : ";

std: :getline(std::cin, ligne);
}

x = ligne=="oui";




Surcharge de fonctions

I * On n’est pas oblige de donner des noms difféerents a
des sous-programmes qui ont un role similaire mais
I qui prennent des listes de parametres differentes

* Chaque implémentation va étre specifique...

saisies.cpp
Implémentations

void saisie(unsigned int& x, std::string message)

if (!message.empty())

std::cout << message; Seule fagon de « blinder »
std::string ligne; une saisie utilisateur :
bool correct; entrer une ligne sous forme
‘{j° de chaine puis analyser la ligne
std::getline(std::cin, ligne); puis accepter ou rejeter

correct = ligne.size()>0 && ligne.size()<10;
for (size_t i=0; correct && i<ligne.size(); ++1i)
if ( ligne[i]< || ligne[i]> )
correct = false;
if (!correct)
std::cout << "Entier positif attendu, recommencer : ";
} while (!correct);

x = std::stoul(ligne);




Surcharge de fonctions 0

I * On n’est pas oblige de donner des noms difféerents a
des sous-programmes qui ont un role similaire mais
I qui prennent des listes de parametres differentes

* Ce gros travall est payant au niveau du code client

int main() main.cpp
Code utilisateur

std::string vall;
bool val2;
unsigned int val3;

saisie(vall);
saisie(val2);
saisie(val3);

std::cout << std::endl;
std: :cout << "valeur 1 saisie : " << vall << std::endl;

std: :cout << "valeur 2 saisie : " << val2 << std::endl;
std: :cout << "valeur 3 saisie : " << val3 << std::endl;




Surcharge de fonctions 0

I * On n’est pas oblige de donner des noms difféerents a
des sous-programmes qui ont un role similaire mais
I qui prennent des listes de parametres differentes

* Ce gros travall est payant au niveau du code client

int main() main.cpp
Code utilisateur

std::string vall;
bool val2;
unsigned int val3;

saisie(vall, "Une phrase SVP : ");
saisie(val2, "Avez vous vu le Big Bang [oui/non] ? ");
saisie(val3, "Votre age SVP : ");

std::cout << std::endl;

std: :cout << "valeur 1 saisie : " << vall << std::endl;
std: :cout << "valeur 2 saisie : " << val2 << std::endl;
std: :cout << "valeur 3 saisie : " << val3 << std::endl;




Surcharge de fonctions

* Un cession interactive avec le code précédent
* En vert les saisies utilisateur
* Le blindage des entiers positifs est a améliorer...

Une phrase SVP :

Avez vous vu le Big Bang [oui/non] ?
Reponse [oui/non] attendue, recommencer :
Reponse [oui/non] attendue, recommencer :
Votre age SVP :

Entier positif attendu, recommencer :
Entier positif attendu, recommencer :
Entier positif attendu, recommencer : 5 .
Entier positif attendu, recommencer : OVERLORD

valeur 1 saisie : Bonjour le Monde ! #
valeur 2 saisie : 1 OVERLOAD

valeur 3 saisie : 999999999

Process returned @ (0x0) execution time : 46.378 s
Press any key to continue.
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Surcharge d’opérateurs
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Surcharge d’opérateurs 0

I * En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* Le nom des ces fonctions est operator+ operator-
operator* operator/ operator% etc...

C++
+ - * / % ~ & | ~ 1 =
< > 4= =-= *¥= [= Y= "= &=
|= << > 5= <= == = «=
>= & || +#+ -- , > () []

https://en.cppreference.com/w/cpp/language/operators

https://isocpp.org/wiki/fag/operator-overloading



https://en.cppreference.com/w/cpp/language/operators
https://isocpp.org/wiki/faq/operator-overloading

I

Surcharge d’opérateurs 0

* En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* Utiliser + entre 2 variables de type Type appellera
Type operator+(const Type& tl, const Type& t2)

C++
+ - * / % ~ & | ~ 1 =
< > 4= =-= *¥= [= Y= "= &=
|= << > 5= <= == = «=
>= & || +#+ -- , > () []

https://en.cppreference.com/w/cpp/language/operators

https://isocpp.org/wiki/fag/operator-overloading


https://en.cppreference.com/w/cpp/language/operators
https://isocpp.org/wiki/faq/operator-overloading

Surcharge d’opérateurs 0

I * En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* On pourra définir ces fonctions operateurs pour
enrichir le langage et faciliter I'ecriture du code...

C++

Coords operator+(const Coords& cl, const Coords& c2)
{

Coords s;

S.X = cl.Xx + c2.X;

s.y = cl.y + c2.y,;

return s;
}

int main()

{ . .
Coords a{l, 2}; (3, 5)

Coords b{2, 3};
Coords c;
C =a + b;

std::cout << "(" << c.x << ", " << c.y << ")" << std::endl;



Surcharge d’opérateurs 0

I * En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* On pourra définir ces fonctions operateurs pour
enrichir le langage et faciliter I'ecriture du code...

Coords operator+(const Coords& cl, const Coords& c2)

{ Coords s;

S.X = cl.x + c2.X;

ié}c/u:n%;y tc2.y; a+b déclenche I'appel operator+(a, b)
}
%nt main()

(3, 5)

Coords a{l, 2};
Coords b{2, 3};
Coords_c;

std::cout << "(" << c.x << ", " << c.y << ")" << std::endl;




Surcharge d’opérateurs

I * En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* On pourra définir ces fonctions operateurs pour
enrichir le langage et faciliter I'ecriture du code...

C++

Coords operator+(const Coords& cl, const Coords& c2)
{

return {cl.x + c2.x, cl.y + c2.y};
}
double operator*(const Coords& cl, const Coords& c2)
{

return cl.x*c2.x + cl.y*c2.y;
}

Coords operator*(double m, const Coords& c)

{
¥

return {m*c.x, m*c.y};




Surcharge d’opérateurs

* En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* En surchargeant l'opérateur d’insertion on rend les
des classes d’objets compatibles avec std::cout

std: :ostream& operator<<(std::ostream& out, const Coords& c)

{

¥

out << "(" << c.x <<« ", " << c.y << ")
return out;

int main()

{

Coords a{l, 2};
Coords b{2, 3};

std::cout << a << std::endl;
std::cout << b << std::endl;




Surcharge d’opérateurs

* Finalement on peut intégrer les objets d’une classe

dans le langage presque comme un type elementaire...

* Complique la vie de ceux qui développent une classe
mais facilite le travail des utilisateurs de la classe

int main()

Coords a{l, 2};
Coords b{2, 3};

std::cout << a << std::endl; P————
endl << std::endl;

std::cout << b << std::

Coords c;
c =a + b;

std::cout << c << std::

Coords d = 4*b;

std..cout << d << std:

std::cout << a+b << std::
std::cout << a*b << std:

:endl <<'jff::fff}i,———””””””' ?3- )
endl,/ {5 'I':l

endl << std::endl; ? '8, 12)

:endl;

: : endl; / (24, 40)
std::cout << -1*a+3*b << std::endl; —””’,,,—/—””””"

std::cout << a*b*(a+b) << std::endl;

C++
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Allocation dynamique new/delete




Allocation dynamique new/delete G

C C++
allouer malloc new
libérer free delete
void afficher(const Coords& c); C++

void saisir(Coords& c);
int main()
Coords* pa = nullptr;
pa = new Coords;

saisir(*pa);
afficher(*pa);

delete pa;

return 0O;
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C C++
allouer malloc new
libérer free delete
void afficher(const Coords& c); C++

void saisir(Coords& c);
int main()
Coords* pa = nullptr;
allouer
<:E§ = new Coords;

saisir(*pa);
afficher(*pa);

(:aélete pa;

return 0O;

utiliser!

libérer

}
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C C++
allouer malloc new
libérer free delete
void afficher(const Coords& c); C++

void saisir(Coords& c);
int main()
Coords* pa = nullptr;
pa = new Coords;
saisiy{*pa); déréférencer ici, on a un pointeur sur Coords
afficker(*pa);/ les parametres attendent un Coords
( une référence sur Coords attend le type Coords, pas Coords™ )

delete pa;

return 0O;
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Allocation dynamique new/delete 0

I » C’était un exemple d’allocation dynamique
* Si on peut éviter d’allouer on évite !

I * [ci il est préférable d’utiliser une variable automatique

void afficher(const Coords& c); C++
void saisir(Coords& c);

int main()

Coords a;

saisir(a);
afficher(a);

return 0O;

¥




Allocation dynamique new/delete 0

I e C’etait un exemple d’allocation dynamique

* Si on peut éviter d’allouer on évite !

* [ci il est préferable d'utiliser une variable automatique

void afficher(const Coords& c); C++
void saisir(Coords& c);

int main()

Goords aD déclarer suffit a allouer I’espace de stockage des données

saisir(a); h ,
afficher(a); utiliser !

return 0O;

¥

libération automatique a la fermeture du scope
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Allocation dynamique new/delete 0

I * Initialisation d’une variable automatique
* |Il'y a des variantes (en général équivalentes)

Coords a = {5, 6}; // Historique (compatible C) implique une copie
Coords a(5, 6); // C++ classique (C++98) appel au constructeur
Coords a{5, 6}; // C++ moderne (C++11) braced initialization

void afficher(const Coords& c); C++

void saisir(Coords& c);
int main()

Coords a{5, 6};

afficher(a);

return 0;

¥


http://blog.quasardb.net/cpp-braced-initialization/
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* Initialisation d’un objet alloue dynamiquement
* C’est nhouveau (avec malloc on ne pouvait pas)
* On verra avec les classes : ici constructeur implicite

void afficher(const Coords& c); C++
void saisir(Coords& c);

int main()
Coords* pa = nullptr;

pa = new Coords{5, 6};
afficher(*pa);

delete pa;

return 0;
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Allocation dynamique new/delete

* Bon mais alors si on peut faire en gros les méme
choses avec des données automatiques alors les
données allouees dynamiquement, ca sert a quoi ?

* Par exemple a retourner des données sans copie

{

int main()

Coords* pa = nullptr;

Coords* faireCoordsDiago(double z) C++

Coords* pc = nullptr;
pc = new Coords;
pC->X = Z;

pc-2y = Z;

return pc;

pa :tfaireCoordsDiago(B);
afficher(*pa);

delete pa;
return 0;

Communication a I’appelant

d’un nouvel espace de stockage :

4 octets a transmettre quel que

soit la taille de I’espace de stockage
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I * Bon mais alors si on peut faire en gros les méme
choses avec des données automatiques alors les
I données allouees dynamiquement, ca sert a quoi ?

* Par exemple a retourner des données sans copie

Coords* faireCoordsDiago(double z)  Eduivalentau code precedent C++
{ avec une rédaction plus compacte

return new Coords{z, z};
}

int main() >
{

<
Coords* pa = faireCoordsDiago(3);

Attention avec un objet alloué retourné

afficher(*pa); par une fonction appelée, I’'appelant devient
responsable de la gestion du cycle de vie

delete pa; de cet objet. Il doit soit le libérer soit

return 9; en confier la responsabilité a un autre etc...
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I * Un « retour par valeur » copie plus de données

* [ci un passage par reference de a serait possible
parce que l'appelant a déja I'espace de stockage
a remplir mais ce n’est pas toujours le cas

Coords faireCoordsDiago(double z) C++
{

Coords c;

C.X = Z;

c.y = z;

int main() return c;
{ }
Coords a;

— : Copie a I’'appelant des données
a = faireCoordsDiago(3); nombre d’octets a transmettre

: ) proportionnel a la taille des données :
afficher(a); potentiellement trés grand !

return 0;
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I * La ou l'allocation dynamique est indispensable c’est
lors de la création des objets persistants qui vont
I peupler nos collections : « les instances » du modele

* Les objets arrivent et quittent un logiciel orienté objet
en fonction des besoins :
besoin d’un nouvel objet -> appeler new
plus besoin d’un objet -> appeler delete

» Slide suivant :
un ajout « tant qu’on veut » de nouvelles coords
dans une collection de Coords, un cas typique
d'utilisation de l'allocation dynamique



Allocation dynamique new/delete a

void utiliser(std::vector<Coords*>& 1lst); Fabriquer des objets en fonction
void saisir(Coords& c); de la demande utilisateur, un cas

typique d’utilisation de I’allocation
int main()

std: :vector<Coords*> mesCoords;

bool continuer;
do

{

Coords* nouveau = new Coords;
saisir(*nouveau);

mesCoords.push back(nouveau);
std::cout << "continuer [true/false] ?" << std::endl;
std::cin >> std::boolalpha >> continuer;

} while (continuer);

utiliser(mesCoords);

for(size_t i=0; i<mesCoords.size(); ++i)
delete mesCoords[i];

return 0O;
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