Robin FERCOQ

r|!| ECE PARIS NS e 019

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++



POO - C++

Sommaire general du semestre

COURS

Intro, concepts, 1 exemple
Modélisation objet / UML

C++ pratique 1

C++ pratique 2

Classes & C++ : bases
Classes & C++ : compléments
Conteneurs & C++ : la STL
Héritage / polymorphisme

. Modeles objets avances
10.Exceptions, flots, fichiers ..
11.Templates cote developpeur
12.Gestion méemoire / smarts ptrs

© 00 NO O A WDNRHR

© 0 NOOAWDNR

Semaine suivante
> TPs

Organisation objet des données
Diagrammes de classe UML

C++ pratique, E/S, string, vector
C++ pratique, type &, surcharge
Date : une classe simple en C++
UML et C++, associations
Gestion de collections complexes
Collections polymorphes

. Modele composite et graphismes

10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...



C++ pratique 2




COURS 4

A) Structs simples

B) Pointeurs * et Réferences &

C) La qualification const

D) Valeurs parametres par defaut
E) Surcharge de fonctions

F) Surcharge d’opérateurs

G) Allocation dynamique new/delete



COURS 4

A) Structs simples

B) Pointeurs * et Réferences &

C) La qualification const

D) Valeurs parametres par defaut
E) Surcharge de fonctions

F) Surcharge d’opérateurs

G) Allocation dynamique new/delete



Structs simples




Structs simples

I e En C++ comme en C on retrouve la notion de struct

 En C++ il nest pas utile d’utiliser typedef

#ifndef COORDS_H_INCLUDED
#define COORDS_H_INCLUDED

struct Coords

double x, y;
¥

#tendif

coords.h

C++

#ifndef COORDS_H_ INCLUDED
#define COORDS_H_ INCLUDED

typedef struct coords
double x, y;
}

t_coords;

#endif

coords.h



Structs simples

e En C++ comme en C on retrouve la notion de struct

 En C++ il nest pas utile d’utiliser typedef

I
I

struct Coords

double x, y;
¥

coords.h

C++

typedef struct coords

double x, y;
}

t_coords;

coords.h



F Structs simples

I e En C++ comme en C on retrouve la notion de struct

 En C++ il nest pas utile d’utiliser typedef

Convention

I Majuscule coords.h C++
universelle

struct Coords

Attention au ; a la fin !

N double X, y; L’oublier conduit a des
@ erreurs méchantes dans le(s)
fichier(s) ou le .h est inclus

coords.h C

typedef struct coords

double x, y;
}

t_coords;




r Structs simples

I  En C++ comme en C la struct est gérée par valeur
* En C++ on peut affecter une valeur litterale sans caster

I #include "coords.h" main.cpp C++
int main()
{

Coords a = {3.1, 2.5};

std: :cout << "a r " << a.x << " " << ay << std::endl;
Coords b =
{4.5, 6. 6},
std::cout << "a "<k ax <" " < ay << std::endl;
std::cout << "b : " << b.x << " " << b.y << std::endl;
#include "coords.h" main.c C

int main()

t_coords a ={3.1, 2.5};
printf("a : / 1f %.1f\n", a.x, a.y);
t coords b =

(t_ coords){4 5, 6.6};
prlntf( a : %.1f %.1f\n", a.x, a.y);
printf("b : %.1f %.1f\n", b.x, b.y);




r Structs simples

I  En C++ comme en C la struct est gérée par valeur

I * En C++ on peut affecter une valeur litterale sans caster

#include "coords.h" main.cpp C++
int main()
{

Coords a = {3.1, 2.5};
Coords b = a;

a ={4.5, 6.6};

#include "coords.h" main.c C
int main()

t coords a = {3.1, 2.5};

t _coords b = a; Caster

a = (t_coords){4.5, 6.6};




r Structs simples a

I  En C++ la struct se comporte « comme un scalaire »

e En C++ |a struct est en fait une classe !

I #include "coords.h" main.cpp C++
int main()
{

Coords a = {3.1, 2.5};

Coords b = a;

a = {4.5, 6.6};

e [ a struct est une classe mais une classe avec des
attributs publiques

* En genéral en orienté objet on se méfie des attributs
publiques : ca rompt le principe d’encapsulation...



r Structs simples “

I * Envisageables pour grouper peu d’infos élémentaires

* Pas pour des types d’objets complexes

I coords.h C++

struct Coords

double x, y;
¥

* Par exemple la bibliotheque standard propose la
struct std::pair< > avec les attributs first et second

* Nous verrons lors du cours sur les classes les
consequences possibles du non respect du principe
d’encapsulation


https://en.cppreference.com/w/cpp/utility/pair

14

__ﬁ

COURS 4

A) Structs simples

B) Pointeurs * et Réferences &

C) La qualification const

D) Valeurs parametres par defaut
E) Surcharge de fonctions

F) Surcharge d’opérateurs

G) Allocation dynamique new/delete



15

Pointeurs * et Références &




I
I

Pointeurs * et Reéférences & a

Les tableaux ont une sémantique par référence
Implicitement c’est I'adresse des données qui est
transmise aux sous-programmes, donnéees pas copiées

Les types scalaires et les classes (class ou struct)
ont une sémantique par valeur, par défaut c’est une
copie des donnees qui est transmise aux sous-progs.

Ceci a une conséquence sur les performances :
copier des donnees codte plus cher qu’une adresse

Une autre conséquence est que si un sous-programme
doit modifier des données de l'appelant Il faut soit :

— Retourner la nouvelle valeur
— Utiliser explicitement un passage par adresse



I
I

Pointeurs * et Références &

* Modification donnée appelant par valeur retour
« 1° copie de donnée a l'appel, 2°™ copie au retour
* Performance ok pour quelques octets

int doubler(int x)

{
¥

int main()

{

return 2*x;

int val = 3;

val = doubler( val );

std: :cout << val << std::endl;

C++




I
I

Pointeurs * et Références &

* Modification donnée appelant par valeur retour
« 1° copie de donnée a l'appel, 2°™ copie au retour
* Performance ok pour quelques octets

int doubler(int x
{
return 2*x;
} 6 3

int main()
int val = 3;

val = doubler( val );

std: :cout << val << std::endl;

C++




* Modification donnée appelant par adresse
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéféerences &

void doubler(int *px) C++
{

¥

int main()

{

*px = 2 * *px;

int val = 3;

doubler( &val );

std: :cout << val << std::endl;




* Modification donnée appelant par adresse
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéféerences &

void doubler(int *pxJe C++
{

*px = 2 * *px;
} modifier adresse de val
int main() val
{

int val = 3;

doubler( &val );

std::cout << val << std::endl; tj




* Modification donnée appelant par adresse
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéféerences &

void doubler(int @px) Déclarer un passage par adresse C++

{
¥

int main()

{

@px = 2 * @px; Déréférencement : « valeur a cette adresse »

int val = 3;
Indirection : « adresse de cette variable »
doubler( @/al );

std::cout << val << std::endl; E—'




* Modification donnée appelant par référence
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéférences & G

void doubler(int& x) C++

int main()

{

int val = 3;

doubler( val );

std: :cout << val << std::endl;




* Modification donnée appelant par référence
* Copie de 'adresse des données a I'appel

* [’appelé accede directement aux donnees appelant

r Pointeurs * et Reéférences & a

¥Oid doubler(in@ x) Déclarer un passage par référence C++
X = 2 * X; Lors de cet appel x est un alias pour val

}

int main()

{

int val = 3;
Rien a préciser au niveau de I'appelant
doubler( val );

std::cout << val << std::endl; E—'




Pointeurs * et Reéférences & a

I * En déclarant (ou pas) un parametre par référence

— Il suffit de mettre (ou pas) & apres le type
I — Le code appelant reste le méme (pas de &var)
- Le code appelé reste le méme (pas de *param)

* On peut aussi déclarer une référence a une variable,
c’est moins utile que pour les parametres...

* Techniguement une reférence type& est gerée
par I'exécutable comme un pointeur type* mais la
référence a des regles différentes :

— Elle doit étre initialisée a sa déclaration
— Elle ne pourra pas réferencer une autre donnee
— Elle ne peut pas réferencer « rien » (pas de NULL)



* Une référence est donc une liaison irrevocable avec
les données référencees jusqu’a ce que la mort
fin du scope les séepare

r Pointeurs * et Reéféerences &

int a = 3; C++
int& b = a;

std::cout << a << " " << b << std::endl;

int c = 4;

b = c;

std::cout << a << " " << b << std::endl;

a = 5;

std::cout << a << " " << b << std::endl;




* Une référence est donc une liaison irrevocable avec
les données référencees jusqu’a ce que la mort
fin du scope les séepare

r Pointeurs * et Reéféerences &

int a = 3; C++
int& b = a; Laréférence b est définitivement un alias de a
std::cout << a << " " << b << std::endl;
int ¢ = 4; ] o .
b = c Ceci est équivalenta a = c;
std::cout << a << " " << b << std::endl;
a = 5;

std::cout << a << " " << b << std::endl;




I
I

Pointeurs * et Références &

* Une référence est donc une liaison irrevocable avec
les données référencees jusqu’a ce que la mort
fin du scope les séepare

char mat[6][7]; C++
. remplissage de La matrice ...

for (int lig=5; lig>0; --1lig)
for (int col=0; col<7; ++col)

{
char& caseIci = mat[lig][col];
char& caseHaut = mat[lig-1][col];
if ( caselci== && caseHaut!= )
{
caselci = caseHaut;
caseHaut = 5
}
}

Ce code fait « tomber » les caracteres dans la matrice (code pour jeu de Puissance 4)



I
I

Pointeurs * et Références &

* Equivalent au code précedent sans reférences :
le code est plus court mais moins explicite

char mat[6][7]; C++
. remplissage de La matrice ...

for (int lig=5; lig>0; --1lig)
for (int col=0; col<7; ++col)

%f ( mat[lig][col]== && mat[lig-1][col]!= )

mat[lig][col] = mat[lig-1][col];
} mat[lig-1][col] = 5
}

Ce code fait « tomber » les caracteres dans la matrice (code pour jeu de Puissance 4)



Pointeurs * et Reéférences & G

I  Comme pour les pointeurs avec * la position du & pour
déclarer les réferences n’a pas d’'importance

I * En terme de « style » de codage

— on peut coller le & a la variable ou parametre
float &x

— ou coller le & au type : style majoritaire dans les docs
float& x

> Google C++ Style Guide :Pointer and Reference Expressions
When declaring a pointer variable or argument, you may place the asterisk adjacent to either the type or to the variable name:
// These ar

char *c;
const string &str:;

]

fine, space preceding.

// These are fine, space followling.
char* c:
const strings& str;

You should do this consistently within a single file, so, when modifying an existing file, use the style in that file.


https://google.github.io/styleguide/cppguide.html#Pointer_and_Reference_Expressions

Pointeurs * et Références &

I * C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

» Sans référence, modifier un objet par valeur retour
( ici c’est acceptable : I'objet est leger )

Coords normaliser(Coords vecteur) C++

{

double norme = sgrt( pow(vecteur.x, 2) + pow(vecteur.y, 2) );
Coords resultat = {vecteur.x/norme, vecteur.y/norme};
return resultat; A

} Attention risque division par 0

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x <« " " << v.y << std::endl;

v = normaliser(v);
std::cout << "v : " << v.x <« " " << v.y << std::endl;




I
I

Pointeurs * et Références &

* C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

» Sans référence, modifier un objet par valeur retour
Version courte avec objet-valeur retourné directement

Coords normaliser(Coords vecteur) C++

double norme = sqgrt( pow(vecteur.x, 2) + pow(vecteur.y, 2) );
return norme ? {vecteur.x/norme, vecteur.y/norme} : vecteur;

¥

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x << " " << v.y << std::endl;

v = normaliser(v);
std::cout << "v : " << v.x << " " << v.y << std::endl;



I
I

Pointeurs * et Références &

* C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

* Sans reference, modifier un objet par adresse
Noter & dans l'appel et -> a la place de . dans l'appelé

void normaliser(Coords* vecteur) C++

{
double norme = sqgrt( pow(vecteur->x, 2) + pow(vecteur->y, 2) );
if ( norme!=0 )
{ vecteur->x /= norme; vecteur->y /= norme; }

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x << " " K< v.y << std::endl;

normaliser(&v);
std::cout << "v : " << v.x << " " K< v.y << std::endl;



Pointeurs * et Références &

I * C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

* Sans reference, modifier un objet par adresse
Noter & dans l'appel et -> a la place de . dans l'appelé

void normaliser(Coords* vecteur) C++

double norme = sqgrt( pow(vecteu(::k, 2) + pow(vecteu(::y, 2) );

if ( normel!=0 )

{ vecteu /= norme; vecteuf-3y /= norme; }
}

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x << " " K< v.y << std::endl;

normaliser‘;
std::cout << "v : " << v.x << " " K< v.y << std::endl;




* C’est dans la communication des objets aux Sous-
programmes que les réferences auront le plus d'utilité

* Avec référence, modifier un objet par référence
Noter pas de & dans l'appel et . dans 'appelé

Iﬁ!
r Pointeurs * et Reéférences & a

void normaliser(Coords& vecteur) C++

{

double norme = sqgrt( pow(vecteur.x, 2) + pow(vecteur.y, 2) );
if ( norme!=0 )
{ vecteur.x /= norme; vecteur.y /= norme; }

int main()

Coords v{4.0, 3.0};
std::cout << "v : " << v.x << " " << v.y << std::endl;

normaliser(v);
std::cout << "v : " << v.x << " " << v.y << std::endl;




Pointeurs * et Reéférences & a

C’est dans la communication des objets aux sous-
programmes que les réferences auront le plus d'utilité

Sauf raison particuliere de vouloir demander un
pointeur a I'appelant, on préfere donc le passage par
reférence au passage par adresse...

En revanche stocker des references (vecteurs...) sera
difficile: on utilisera des pointeurs pour les collections...

Attention, le terme « référence » est utilisé dans des
situations differentes et peut vouloir dire 2 choses

— La référence & technique spécifique du C++

— La référence en conception orientée objet
(sur des diagrammes d’objets...) qui pourra se
traduire en C++ parfois par & parfois par *




Pointeurs * et Références & G

Attention a ne pas tout meélanger

symbole

=
* &
déclaration pointeur sur reférence a
coxt « type a gauche » « type a gauche »
contexte
Utilisation dereférencement : indirection :
Y valeur pointée par adresse de




* Le passage par reference n’est pas utilise que pour
permettre a un sous-programme de modifier des
données de l'appelant, on l'utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

r Pointeurs * et Reéférences & G

void afficherCoords(Coords& c) C++
{

std::cout << c.x << " " << c.y << std::endl;
}

void afficherlListeCoords(std: :vector<Coords>& 1lst)
for (size_t i=0; i<lst.size(); ++1i)

afficherCoords(1lst[i]);
}

int main()

std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };

afficherListeCoords(quad);




* Le passage par reference n’est pas utilise que pour
permettre a un sous-programme de modifier des
données de l'appelant, on l'utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

r Pointeurs * et Reéférences & G

void afficherCoords(Coords& c) 1 Coords pése 16 octet, la copie serait acceptable C 4+
{

std::cout << c.x << " " << c.y << std::endl;
}

Une collection de Coords peut peser lourd — référence
void afficherListeCoords(std: :vector<Coords>& 1lst)

for (size_t i=0; i<lst.size(); ++1i)
afficherCoords(1lst[i]);
}

int main()

std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };
afficherListeCoords(quad);




COURS 4

A) Structs simples

B) Pointeurs * et Réferences &

C) La qualification const

D) Valeurs parametres par defaut
E) Surcharge de fonctions

F) Surcharge d’opérateurs

G) Allocation dynamique new/delete



40
r La qualification const




Iﬁﬂ
r La qualification const G

* Le passage par reference n’est pas utilise que pour
permettre a un sous-programme de modifier des
données de l'appelant, on l'utilise aussi pour
éviter des copies inutiles (pour plus de quelques octets)

Référence
. . y 4
void afficherCoords(Coords& c) C++
{
std::cout << c.x << " " << c.y << std::endl; Référence
¥

void afficherListeCoords(std: :vector<Coords>& 1st)
for (size_t i=0; i<lst.size(); ++1i)

afficherCoords(1lst[i]);
}

int main()

std::vector<Coords> quad = { {1,1}, {3,0}, {4,2}, {2,3} };

afficherListeCoords(quad);



La qualification const a

I * Ca implique qu’on confie des « données originales »
a des sous-programmes destinés a ne pas les modifier

I Ils pourraient les modifier mais ne le feront pas...
void afficherCoords(Coords& c) C++
{
std: :cout <<Q<< "M << c.yX< std::endl;
} h Affichage
Lecture
seule faite

Lecture possible
i i Ecriture possible
int main()

std: :vector<Coords> quad = { {1,1},{4,2}, {2,3} };

afficherListeCoords(quad);




I
I

La qualification const

Ca implique qu’on confie des « donnees originales »
a des sous-programmes destinés a ne pas les modifier

lls pourraient les modifier mais ne le feront pas...
Exemple : on affiche une info spécifique pour les coords
qui sont sur les diagonales (origine exclue)

void afficherCoords(Coords& c) C++

{

int main()

{

std::cout << c.x << " " << c.y;

if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale";

std::cout << std::endl;

Diagonale

-1 Diagonale

std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, @}, {1, -1} };
afficherlListeCoords(quad);



La qualification const

Ca implique qu’on confie des « donnees originales »
a des sous-programmes destinés a ne pas les modifier
lls pourraient les modifier mais ne le feront pas...

» Sauf par accident !

{

{

int main()

void afficherCoords(Coords& c) C++

std::cout << c.x << " " << c.y;

if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale";

std::cout << std::endl;

Diagonale

-1 Diagonale

std: :vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, @}, {1, -1} };
afficherlListeCoords(quad);



La qualification const

I * Ca implique qu’on confie des « données originales »
a des sous-programmes destinés a ne pas les modifier
I Ils pourraient les modifier mais ne le feront pas...

» Sauf par accident !

void afficherCoords(Coords& c) C++
{
std::cout << c.x << " " << c.y;
if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale"; ) -
std::cout << std::endl; 1°" appel 2°™ appel

Diagonale 1 1 Diagonale

-1 Diagonale 1 -1 Diagonale

int main()

{
std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, 0}, {1, -1} };

afficherlListeCoords(quad); Beaucoup de temps et de code
afficherlListeCoords(quad); entre les 2 appels...




La qualification const

Chercher I’erreur ( 4H de debug )

void afficherCoords(Coords& c)

{

int main()

{

std::cout << c.x << << C.Y;

if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale"”; ‘

std::cout << std::endl; 1°" appel 2°™ appel

Diagonale 1 1 Diagonale

1 Diagonale 1 -1 Diagonale

std: :vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, O}, {1, -1} };

afficherlListeCoords(quad); Beaucoup de temps et de code
afficherListeCoords(quad); entre les 2 appels...

0 error(s), 0 warning(s)



r La qualification const

I * Le sous-programme afficherCoords n’a pas vocation
a modifier les données : mais il modifie les données

void afficherCoords(Coords& c) C++
{
std::cout << c.x <« '/« c.VY;
if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale"”; -
std::cout << std::endl; @u lieu dea

¥




La qualification const

Quel est le probleme ?

Pour ne pas tomber
Il suffit de ne pas mettre
le pied au mauvais endroit !

La programmation c’est
carrément moins dangereux !

Seuls les débilos font
= a la place de ==

Vraiment ?
Qui prendra le risque ?




La qualification const

Acceptabilité des risques pour les projets C/C++

Inacceptables

Santé

Transport
Commerce
Finance / banque
Industries lourdes

Infrastructures S.I.
-0S
- Serveurs

— Fichiers

— BDD

— HTTPS

- Compilateurs
- Machines virtuelles
- Bibliothéques

A éviter

e Jeux / divertissement

Bureautique
Multimeédia
Création

Navigateurs ?

Acceptables

* Les exercices
guand on apprend la
programmation C++

if (x=3)

std: :cout<<"OK\n";
else

std: :cout<<"?\n";

* Quoi d’autre ?



r La qualification const G

I * Les problemes de sécurité du passage par référence
comme facon d’améliorer les performances en évitant
I les copies de données :

- Augmente les risques de propager des
corruptions de données en multipliant les
lignes de codes qui ont acces en ecriture
aux donnees initiales de l'appelant

- Rend confus le réle des parametres :
est-ce qu’un parametre est par référence pour
pouvoir étre modifié ou juste pour optimiser ?

- Rend difficile le débogage en cas de probleme,
qui pourrait croire qu’une innocente fonction
d’affichage peut corrompre ses données ?



r La qualification const 0

I * La qualification const complete une déclaration pour
indiquer que I'objet ou la donnée reférence ou pointeé
I ne doit pas étre modifié par I'appele

 Méme pas par accident !

void afficherCoords(const Coords& c) C++

{
std::cout << c.x << " " << c.y;

if ( c.x!=0 && (c.x=-c.y || c.x==c.y) )
std::cout << " Diagonale";
std::cout << std::endl;
}

error: assignment of member 'Coords: :x'
in read-only object

int main()

std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, @}, {1, -1} };
afficherListeCoords(quad);
afficherListeCoords(quad);




r La qualification const 0

I * La qualification const complete une déclaration pour
indiquer que l'objet ou la donnée référence ou pointé
I ne doit pas étre modifié par I'appele

 Méme pas par accident !

void afficher'Coor‘dsCoor‘ds& c) C++
{

C.X=-C.Yy <>
}

error: assignment of member 'Coords: :x'
in read-only object




r La qualification const 0

I * Le developpeur du code appelé ne risque plus de
modifier accidentellement une donnée entrante

* Le developpeur du code appelant peut étre sar
que c’est une donnée entrante et non modifiable

void afficher'Coor‘dsCoor‘ds& c) C++
{

_ Apres correction rapide
0 error(s), 0 warning(s) du code fautif par le dev.
du code appele...

Le dev. du code appelant

peut en toute confiance
considérer que les données

ne seront pas modifiées,

sans avoir a lire le code appelé !




r La qualification const

I * Une donnée non-const peut étre confiée a un
parametre const

* Une donnée const peut étre confiee a un
parametre const

void afficherCoords(const Coords& c)

{
¥

std::cout << c.x << " " << c.y;

void afficherListeCoords(const std::vector<Coords>& 1lst)
for (size_t i=0; i<lst.size(); ++1i)

afficherCoords(1st[i]);
}

int main()

std::vector<Coords> quad = { {0,0}, {0,1}, {1,1}, {1, @}, {1, -1} };
afficherlListeCoords(quad);




r La qualification const 0

* Une donnée non-const peut étre confiée a un
parametre const

* Une donnée const peut étre confiee a un
parametre const

void afficherCoords(const Coords& c)

{
¥

const Ist[i] C++
vers

std::cout << c.x << " " << c.y; const ¢

void afficherListeCoords(const std::vectorfCoords>& 1lst)

non-const quad
vers

const Ist

for (size_t i=0; i<lst.size(); ++1
afficherCoords(1lst[i]);
}

int main()

std: :vector<Coords> quad = { {9,0}, {0,1},

. . ) {1J @}, {1’ _1} };
afficherListeCoords(quad);




r La qualification const 0

I * Une donnée const ne peut pas étre confiée a un
parametre non-const !

* Le qualité de constance est contagieuse de l'appelant
vers I'appele : tous les appelés doivent coopérer

void afficherCoords(Coords& c

{
¥

const Ist[i]
vers

std::cout << c.x << " " << c.y; non-const ¢

void afficherListeCoords(const std::vectorkCoords>& 1lst)

for (size_t i=0; i<lst.size(); ++1i)
afficherCoords(1lst[i]);

error: binding 'const value type
{aka const Coords}' to reference of
type 'Coordsé&' discards qualifiers




r La qualification const a

I * Indiquer et utiliser systematiquement la qualification
const partout ou cela fait sens est une discipline

I » Cette discipline doit partir du bas : les codes de bas
niveau (appelés) sont ceux qui autorisent ou pas

l'utilisation de const par les codes clients (appelants)
Voir slide précedent

* Quand tous les développeurs adherent a cette rigueur
le code est caractérisé par sa « Const Correctness »

* Cela fait partie des « bonnes pratiques »



La qualification const

https://isocpp.org/wiki/fag/const-correctness

raQ Should | try to get things const correct “sooner” or “later”?

At the very, very, very beginning,

Back-patching const correctness results in a snowball effect: every const you add “over here” requires four more

there.”

Add const early and often.

raQ What do “X const& x” and “X const* p” mean?

X const& xisequivalentto const X& x,and X const* xisequivalenttoconst X* x,


https://isocpp.org/wiki/faq/const-correctness

La qualification const

AU début ce n’est pas tres gratifiant, ca n’ajoute
aucune fonctionnalité au programme et souvent
ca bloque la compilation, on se sent géne, mais ...

= : r '_._'___.——'-"""-.-_

C’est secure
Code de qualité

C’est pro

r
r
- i -
- =
I
;



50
r La qualification const 0

I e Attention cependant, le C++ est un code exécuté sans
superviseur et les indices tableau non controles :

n’importe quel sous-programme peut écrabouiller
n’importe quel octet de I'application !

|l suffit d’un seul tab[1]=50; avec | trop grand !

* En C++ const est une protection des données contre
certains types d’accidents, pas contre toutes les
erreurs de la vie du programmeur, ni la malveillance...



61
r La qualification const

I * Les langages superviseés offrent un niveau de
protection des donnéees supérieur

I * |Is peuvent crasher mais ils disent ou et pourquoi

E..: History | & Consale &2 =| Results | &Y Synchronize | < Search

<terminated = SalesPeople [Java &pplication] C:\Program Files! Javaljrel . 5.0 _06ibintjavaw. exe (Dec 14, 2008 11:29:56 4M)
Element at index 0 : John

Element at index 1 : Paul
Element at index 2 :© George
Element at index 3 : Ringo

Exception in thread "main"™ Java.lang.ArrayIindexOutOfBEoundsException: 4

at sales:zlUl.2alesPeople.maini(ialesPeople. Java:ld)




I
I

La qualification const

* Les langages superviseés offrent un niveau de
protection des données supérieur (mais moins de perfs)

o B | N e o 1
[ o .I.l. / per g ; A 4 d
? o ¥ r , 152 o8
’ | '] - _'
/ \ \ |II i J : - :i .
\ 1 \ 1 ——————
\ \




COURS 4

A) Structs simples

B) Pointeurs * et Réferences &

C) La qualification const

D) Valeurs parametres par defaut
E) Surcharge de fonctions

F) Surcharge d’opérateurs

G) Allocation dynamique new/delete



Valeurs parametres par défaut




Valeurs parametres par déefaut a

* Une option sympathique du C++ :
donner une valeur initiale aux parametres
quand ceux-ci ne sont pas explicitement donnes

 Ce sont des valeurs par défaut

void dessinerCarre(int taille,
char remplissage =
std::string titre =

C++

ne érr &) :l valeurs par défaut

{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig) Carra
for (int col=0; col<taille; ++col) =
std::cout << remplissage;
std::cout << std::endl;
}
}

int main()

dessinerCarre(3); :l 2°m et 3°™ parametres pas explicitement donnés



Valeurs parametres par défaut

* Une option sympathique du C++ :
donner une valeur initiale aux parametres
quand ceux-ci he sont pas explicitement donnes

* Ce sont des valeurs par défaut

void dessinerCarre(int taille, C++
char remplissage = s
std::string titre = "Carré")

{

std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig) Carraé
for (int col=0; col<taille; ++col) ++
std::cout << remplissage;
std::cout << std::endl;

++

}

¥

int main()

dessinerCarre(2, );



Valeurs parametres par défaut

I * Une option sympathique du C++ :
donner une valeur initiale aux parametres

quand ceux-ci he sont pas explicitement donnes
* Ce sont des valeurs par défaut
void dessinerCarre(int taille, C++
char remplissage = s
std::string titre = "Carré")
{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig) Gros carré avec didsec
for (int col=0; col<taille; ++col) i
std: :cout << remplissage; HHHAH
std::cout << std::endl; HHHH
} $HHE

}
int main()

dessinerCarre(4, , "Gros carré avec dieses");




Valeurs parametres par défaut

I * Les parametres par défaut sont toujours en dernier

* A l'appel ils sont spécifiés dans I'ordre du 1°" au dernier
I * On ne peut pas « sauter » un parametre

void dessinerCarre(int taille,
char remplissage =

J

std::string titre = "Carré")
{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig)
for (int col=0; col<taille; ++col)
std::cout << remplissage;
std::cout << std::endl;
}
}

int main() orror: invalid conversion from 'const char*' to 'char'

dessinerCarre(3, "Carré avec étoiles");




Valeurs parametres par défaut

I * Les parametres par défaut sont toujours en dernier

* A l'appel ils sont spécifiés dans I'ordre du 1°" au dernier
I * On ne peut pas « sauter » un parametre

void dessinerCarre(int taille,
char remplissage =

J

std::string titre = "Carré")
{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig)
for (int col=0; col<taille; ++col)
std::cout << remplissage;
std::cout << std::endl;
}
}

int main()

error: invalid conversi rom 'const char*' to 'char'

dessinerCarre(B(:5Carré avec étoiles");




Valeurs parametres par défaut

I * Les parametres par défaut sont toujours en dernier

* A l'appel ils sont spécifiés dans I'ordre du 1°" au dernier
I * Ici OK, les 3 parametres sont donneés explicitement

void dessinerCarre(int taille,

C++
char remplissage =

J

std::string titre = "Carré")
{
std::cout << titre << std::endl;
for (int lig=0; lig<taille; ++1ig) Carré aver &toiles
for (int col=0; col<taille; ++col) wEE
std::cout << remplissage;
std::cout << std::endl;
}
}

int main()

dessinerCarre(3, , "Carré avec étoiles")




Valeurs parametres par défaut

On va souvent utiliser une/des valeur(s) par defaut
pour neutraliser un/des parametre(s)

On verra une alternative au chapitre suivant (surcharge)

int

int

. . . C++
somme(int a, int b, int c=0)

return a + b + c;

main()

std::cout << somme(1l, 2) << " " << somme(1l, 2, 3) << std::endl;



Valeurs parametres par défaut

On va souvent utiliser une/des valeur(s) par defaut
pour neutraliser un/des parametre(s)

On verra une alternative au chapitre suivant (surcharge)

int

int

C++
maxi(int a, int b, int c=std::numeric_limits<int>::min())

if (a>b && a>c)
return a;
if (b>c)
return b;
return c;

main()

std::cout << maxi(1l, 2) << " " << maxi(1l, 2, 3) << std::endl;



COURS 4

A) Structs simples

B) Pointeurs * et Réferences &

C) La qualification const

D) Valeurs parametres par defaut
E) Surcharge de fonctions

F) Surcharge d’opérateurs

G) Allocation dynamique new/delete



Surcharge de fonctions




Surcharge de fonctions 0

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

» C’est la surcharge (overloading)

C++
float moyenne(float a, float b, float c)
return (a + b + ¢) / 3.0; On dit que la fonction
! moyenne est surchargée
float moyenne(float a, float b) Fonction ou sous-programme : Synonymes

return (a + b) / 2.0;
} 1.5 2

int main()

std::cout << moyenne(l, 2) << " " << moyenne(l, 2, 3) << std::endl;



Surcharge de fonctions 0

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

* Le compilateur met en correspondance (overload resolution)

C++
float moyenne(float a, float b, float c) Conversion de 3 int

vers 3 floats OK

return (a + b + ¢) / 3.0;

¥

float moyenne(float a, float b) (Conversion de 2 int

return (a + b) / 2.0; vers 2 floats OK

¥

int main()

std::cout << moyenne(l, 2) << " " << moyenne(l, 2, 3) << std::endl;


https://en.cppreference.com/w/cpp/language/overload_resolution

Surcharge de fonctions

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

* [ci I'approche parametre par défaut n’était pas correcte

FAUX! C++

float moyenne(float a, float b, float c=0)

return (a + b + ¢) / 3.0;

¥

(1) 2

int main()

std: :cout <<<E§g%nne(1£:E§><< " " << moyenne(l, 2, 3) << std::endl;




Surcharge de fonctions 0

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

e La surcharge joue aussi sur les types des parametres

saisies.h
void saisie(std::string& x); Prototypes

void saisie(bool& x);

void saisie(unsigned int& x);



Surcharge de fonctions 0

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

* Surcharge combinée avec parametre par défaut !

. saisies.h
void saisie(std::string& x, std::string message = ""); Prototypes
void saisie(bool& x, std::string message = ""); valeur par défaut

void saisie(unsigned int& x, std::string message = "");



Surcharge de fonctions

* On n’est pas obligé de donner des noms differents a
des sous-programmes qui ont un role similaire mais
qui prennent des listes de parametres differentes

* Chaque implémentation va étre specifique...

. —_ : ) saisies.cpp
void saisie(std::string& x, std::string message) Implémentations

if (!message.empty())
std::cout << message; /.
Noter ici pas de valeur par défaut :

std::getline(std::cin, x); la valeur par défaut est donnée
} dans la déclaration (prototype)
pas dans la définition (implementation)

la substitution du parametre
par la valeur par défaut
s’opere au niveau de l'appelant ...



Surcharge de fonctions

I * On n’est pas oblige de donner des noms difféerents a
des sous-programmes qui ont un role similaire mais

qui prennent des listes de parametres differentes
* Chaque implémentation va étre specifique...
saisies.cpp
void saisie(bool& x, std::string message) Implémentations

if (!message.empty())

std::cout << message;
std::string ligne;
std::getline(std::cin, ligne);
while ( ligne!="non" && ligne!="oui" )

std::cout << "Reponse [oui/non] attendue, recommencer : ";

std: :getline(std::cin, ligne);
}

x = ligne=="oui";




Surcharge de fonctions

I * On n’est pas oblige de donner des noms difféerents a
des sous-programmes qui ont un role similaire mais
I qui prennent des listes de parametres differentes

* Chaque implémentation va étre specifique...

saisies.cpp
Implémentations

void saisie(unsigned int& x, std::string message)

if (!message.empty())

std::cout << message; Seule fagon de « blinder »
std::string ligne; une saisie utilisateur :
bool correct; entrer une ligne sous forme
‘{j° de chaine puis analyser la ligne
std::getline(std::cin, ligne); puis accepter ou rejeter

correct = ligne.size()>0 && ligne.size()<10;
for (size_t i=0; correct && i<ligne.size(); ++1i)
if ( ligne[i]< || ligne[i]> )
correct = false;
if (!correct)
std::cout << "Entier positif attendu, recommencer : ";
} while (!correct);

x = std::stoul(ligne);




Surcharge de fonctions 0

I * On n’est pas oblige de donner des noms difféerents a
des sous-programmes qui ont un role similaire mais
I qui prennent des listes de parametres differentes

* Ce gros travall est payant au niveau du code client

int main() main.cpp
Code utilisateur

std::string vall;
bool val2;
unsigned int val3;

saisie(vall);
saisie(val2);
saisie(val3);

std::cout << std::endl;
std: :cout << "valeur 1 saisie : " << vall << std::endl;

std: :cout << "valeur 2 saisie : " << val2 << std::endl;
std: :cout << "valeur 3 saisie : " << val3 << std::endl;




Surcharge de fonctions 0

I * On n’est pas oblige de donner des noms difféerents a
des sous-programmes qui ont un role similaire mais
I qui prennent des listes de parametres differentes

* Ce gros travall est payant au niveau du code client

int main() main.cpp
Code utilisateur

std::string vall;
bool val2;
unsigned int val3;

saisie(vall, "Une phrase SVP : ");
saisie(val2, "Avez vous vu le Big Bang [oui/non] ? ");
saisie(val3, "Votre age SVP : ");

std::cout << std::endl;

std: :cout << "valeur 1 saisie : " << vall << std::endl;
std: :cout << "valeur 2 saisie : " << val2 << std::endl;
std: :cout << "valeur 3 saisie : " << val3 << std::endl;




Surcharge de fonctions

* Un cession interactive avec le code précédent
* En vert les saisies utilisateur
* Le blindage des entiers positifs est a améliorer...

Une phrase SVP :

Avez vous vu le Big Bang [oui/non] ?
Reponse [oui/non] attendue, recommencer :
Reponse [oui/non] attendue, recommencer :
Votre age SVP :

Entier positif attendu, recommencer :
Entier positif attendu, recommencer :
Entier positif attendu, recommencer : 5 .
Entier positif attendu, recommencer : OVERLORD

valeur 1 saisie : Bonjour le Monde ! #
valeur 2 saisie : 1 OVERLOAD

valeur 3 saisie : 999999999

Process returned @ (0x0) execution time : 46.378 s
Press any key to continue.



COURS 4

A) Structs simples

B) Pointeurs * et Réferences &

C) La qualification const

D) Valeurs parametres par defaut
E) Surcharge de fonctions

F) Surcharge d’opérateurs

G) Allocation dynamique new/delete



Surcharge d’opérateurs

G PHETIN B L HYH o | 5 T 1 . - b HRFE ]
. A Ny TH PR ] A
Wi B o . . L -
- . * J P

; - _..-a-'i-*'l"

L e .
¥ ey al
— '..'
: =l

5.5

e




88
Surcharge d’opérateurs 0

I * En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* Le nom des ces fonctions est operator+ operator-
operator* operator/ operator% etc...

C++
+ - * / % ~ & | ~ 1 =
< > 4= =-= *¥= [= Y= "= &=
|= << > 5= <= == = «=
>= & || +#+ -- , > () []

https://en.cppreference.com/w/cpp/language/operators

https://isocpp.org/wiki/fag/operator-overloading



https://en.cppreference.com/w/cpp/language/operators
https://isocpp.org/wiki/faq/operator-overloading

I

Surcharge d’opérateurs 0

* En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* Utiliser + entre 2 variables de type Type appellera
Type operator+(const Type& tl, const Type& t2)

C++
+ - * / % ~ & | ~ 1 =
< > 4= =-= *¥= [= Y= "= &=
|= << > 5= <= == = «=
>= & || +#+ -- , > () []

https://en.cppreference.com/w/cpp/language/operators

https://isocpp.org/wiki/fag/operator-overloading


https://en.cppreference.com/w/cpp/language/operators
https://isocpp.org/wiki/faq/operator-overloading

Surcharge d’opérateurs 0

I * En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* On pourra définir ces fonctions operateurs pour
enrichir le langage et faciliter I'ecriture du code...

C++

Coords operator+(const Coords& cl, const Coords& c2)
{

Coords s;

S.X = cl.Xx + c2.X;

s.y = cl.y + c2.y,;

return s;
}

int main()

{ . .
Coords a{l, 2}; (3, 5)

Coords b{2, 3};
Coords c;
C =a + b;

std::cout << "(" << c.x << ", " << c.y << ")" << std::endl;



Surcharge d’opérateurs 0

I * En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* On pourra définir ces fonctions operateurs pour
enrichir le langage et faciliter I'ecriture du code...

Coords operator+(const Coords& cl, const Coords& c2)

{ Coords s;

S.X = cl.x + c2.X;

ié}c/u:n%;y tc2.y; a+b déclenche I'appel operator+(a, b)
}
%nt main()

(3, 5)

Coords a{l, 2};
Coords b{2, 3};
Coords_c;

std::cout << "(" << c.x << ", " << c.y << ")" << std::endl;




Surcharge d’opérateurs

I * En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* On pourra définir ces fonctions operateurs pour
enrichir le langage et faciliter I'ecriture du code...

C++

Coords operator+(const Coords& cl, const Coords& c2)
{

return {cl.x + c2.x, cl.y + c2.y};
}
double operator*(const Coords& cl, const Coords& c2)
{

return cl.x*c2.x + cl.y*c2.y;
}

Coords operator*(double m, const Coords& c)

{
¥

return {m*c.x, m*c.y};




Surcharge d’opérateurs

* En C++ on peut "customiser" les opérateurs qui sont
en fait considerés comme des fonctions surchargéees

* En surchargeant l'opérateur d’insertion on rend les
des classes d’objets compatibles avec std::cout

std: :ostream& operator<<(std::ostream& out, const Coords& c)

{

¥

out << "(" << c.x <<« ", " << c.y << ")
return out;

int main()

{

Coords a{l, 2};
Coords b{2, 3};

std::cout << a << std::endl;
std::cout << b << std::endl;




Surcharge d’opérateurs

* Finalement on peut intégrer les objets d’une classe

dans le langage presque comme un type elementaire...

* Complique la vie de ceux qui développent une classe
mais facilite le travail des utilisateurs de la classe

int main()

Coords a{l, 2};
Coords b{2, 3};

std::cout << a << std::endl; P————
endl << std::endl;

std::cout << b << std::

Coords c;
c =a + b;

std::cout << c << std::

Coords d = 4*b;

std..cout << d << std:

std::cout << a+b << std::
std::cout << a*b << std:

:endl <<'jff::fff}i,———””””””' ?3- )
endl,/ {5 'I':l

endl << std::endl; ? '8, 12)

:endl;

: : endl; / (24, 40)
std::cout << -1*a+3*b << std::endl; —””’,,,—/—””””"

std::cout << a*b*(a+b) << std::endl;

C++



95

__ﬁ

COURS 4

A) Structs simples

B) Pointeurs * et Réferences &

C) La qualification const

D) Valeurs parametres par defaut
E) Surcharge de fonctions

F) Surcharge d’opérateurs

G) Allocation dynamique new/delete



Allocation dynamique new/delete




Allocation dynamique new/delete G

C C++
allouer malloc new
libérer free delete
void afficher(const Coords& c); C++

void saisir(Coords& c);
int main()
Coords* pa = nullptr;
pa = new Coords;

saisir(*pa);
afficher(*pa);

delete pa;

return 0O;




Allocation dynamique new/delete a

C C++
allouer malloc new
libérer free delete
void afficher(const Coords& c); C++

void saisir(Coords& c);
int main()
Coords* pa = nullptr;
allouer
<:E§ = new Coords;

saisir(*pa);
afficher(*pa);

(:aélete pa;

return 0O;

utiliser!

libérer

}



Allocation dynamique new/delete a

C C++
allouer malloc new
libérer free delete
void afficher(const Coords& c); C++

void saisir(Coords& c);
int main()
Coords* pa = nullptr;
pa = new Coords;
saisiy{*pa); déréférencer ici, on a un pointeur sur Coords
afficker(*pa);/ les parametres attendent un Coords
( une référence sur Coords attend le type Coords, pas Coords™ )

delete pa;

return 0O;



100

Allocation dynamique new/delete 0

I » C’était un exemple d’allocation dynamique
* Si on peut éviter d’allouer on évite !

I * [ci il est préférable d’utiliser une variable automatique

void afficher(const Coords& c); C++
void saisir(Coords& c);

int main()

Coords a;

saisir(a);
afficher(a);

return 0O;

¥




Allocation dynamique new/delete 0

I e C’etait un exemple d’allocation dynamique

* Si on peut éviter d’allouer on évite !

* [ci il est préferable d'utiliser une variable automatique

void afficher(const Coords& c); C++
void saisir(Coords& c);

int main()

Goords aD déclarer suffit a allouer I’espace de stockage des données

saisir(a); h ,
afficher(a); utiliser !

return 0O;

¥

libération automatique a la fermeture du scope




102

Allocation dynamique new/delete 0

I * Initialisation d’une variable automatique
* |Il'y a des variantes (en général équivalentes)

Coords a = {5, 6}; // Historique (compatible C) implique une copie
Coords a(5, 6); // C++ classique (C++98) appel au constructeur
Coords a{5, 6}; // C++ moderne (C++11) braced initialization

void afficher(const Coords& c); C++

void saisir(Coords& c);
int main()

Coords a{5, 6};

afficher(a);

return 0;

¥


http://blog.quasardb.net/cpp-braced-initialization/

103
r Allocation dynamique new/delete 0

* Initialisation d’un objet alloue dynamiquement
* C’est nhouveau (avec malloc on ne pouvait pas)
* On verra avec les classes : ici constructeur implicite

void afficher(const Coords& c); C++
void saisir(Coords& c);

int main()
Coords* pa = nullptr;

pa = new Coords{5, 6};
afficher(*pa);

delete pa;

return 0;



105

Allocation dynamique new/delete

* Bon mais alors si on peut faire en gros les méme
choses avec des données automatiques alors les
données allouees dynamiquement, ca sert a quoi ?

* Par exemple a retourner des données sans copie

{

int main()

Coords* pa = nullptr;

Coords* faireCoordsDiago(double z) C++

Coords* pc = nullptr;
pc = new Coords;
pC->X = Z;

pc-2y = Z;

return pc;

pa :tfaireCoordsDiago(B);
afficher(*pa);

delete pa;
return 0;

Communication a I’appelant

d’un nouvel espace de stockage :

4 octets a transmettre quel que

soit la taille de I’espace de stockage



105
r Allocation dynamique new/delete 0

I * Bon mais alors si on peut faire en gros les méme
choses avec des données automatiques alors les
I données allouees dynamiquement, ca sert a quoi ?

* Par exemple a retourner des données sans copie

Coords* faireCoordsDiago(double z)  Eduivalentau code precedent C++
{ avec une rédaction plus compacte

return new Coords{z, z};
}

int main() >
{

<
Coords* pa = faireCoordsDiago(3);

Attention avec un objet alloué retourné

afficher(*pa); par une fonction appelée, I’'appelant devient
responsable de la gestion du cycle de vie

delete pa; de cet objet. Il doit soit le libérer soit

return 9; en confier la responsabilité a un autre etc...




106
Allocation dynamique new/delete

I * Un « retour par valeur » copie plus de données

* [ci un passage par reference de a serait possible
parce que l'appelant a déja I'espace de stockage
a remplir mais ce n’est pas toujours le cas

Coords faireCoordsDiago(double z) C++
{

Coords c;

C.X = Z;

c.y = z;

int main() return c;
{ }
Coords a;

— : Copie a I’'appelant des données
a = faireCoordsDiago(3); nombre d’octets a transmettre

: ) proportionnel a la taille des données :
afficher(a); potentiellement trés grand !

return 0;




107
r Allocation dynamique new/delete 0

I * La ou l'allocation dynamique est indispensable c’est
lors de la création des objets persistants qui vont
I peupler nos collections : « les instances » du modele

* Les objets arrivent et quittent un logiciel orienté objet
en fonction des besoins :
besoin d’un nouvel objet -> appeler new
plus besoin d’un objet -> appeler delete

» Slide suivant :
un ajout « tant qu’on veut » de nouvelles coords
dans une collection de Coords, un cas typique
d'utilisation de l'allocation dynamique



Allocation dynamique new/delete a

void utiliser(std::vector<Coords*>& 1lst); Fabriquer des objets en fonction
void saisir(Coords& c); de la demande utilisateur, un cas

typique d’utilisation de I’allocation
int main()

std: :vector<Coords*> mesCoords;

bool continuer;
do

{

Coords* nouveau = new Coords;
saisir(*nouveau);

mesCoords.push back(nouveau);
std::cout << "continuer [true/false] ?" << std::endl;
std::cin >> std::boolalpha >> continuer;

} while (continuer);

utiliser(mesCoords);

for(size_t i=0; i<mesCoords.size(); ++i)
delete mesCoords[i];

return 0O;



Sécurité & savoir-faire en 1913

HETE S "1 ™

w



|
Relire les cours

I * Les cours font beaucoup de slides mais beaucoup de
slides se répetent pour faire des « effets d’animation »
I par exemple avec I'apparition de commentaires etc...

* En mode défilement cette présentation peut étre
fastidieuse. En configurant le lecteur de pdf vous
pouvez faire défiler les slides comme en cours :

R . o
Fenétre Aijde

( Rotation 3 OOP _C++_cours3_... X

Mavigation de pages » N
l A M O@ o
J
o E
ffichage de page @ Une seule page

'i.l'
Zoom b I —
= [y Activer le défilement
'3 T o
QL tils 3 ﬁﬁ LlelX [pages
L

I—I—\_L . - B . [ ]
Lk Lleldx pages avec defilement



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110

