
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Modèles objets avancés
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

Classes & C++ : bases

4

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

5

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

6

La classe en C++

interface implémentation

code client

7

La classe en C++

Pour illustrer le format général de la classe en C++
reprenons la classe Compte, avec 2 attributs
(modèle très simplifié : plus tard le titulaire sera un objet...)

➔ titulaire : chaîne de caractères
➔ solde : une valeur flottante

et 5 méthodes
➔ Créer un compte avec solde initial paramétrable
➔ Libérer un compte
➔ Afficher un compte
➔ Créditer un compte avec crédit en paramètre
➔ Débiter un compte avec débit en paramètre

8

La classe en C++

La classe Compte en notation UML normalisée

Compte
- titulaire : String
- solde : Real
+ Compte (titulaire : String, solde_init : Real = 0.0)
+ ~Compte ()
+ afficher ()
+ crediter (credit : Real)
+ debiter (debit : Real)

!

9

La classe en C++

La classe Compte en notation UML normalisée

Compte
- titulaire : String
- solde : Real
+ Compte (titulaire : String, solde_init : Real = 0.0)
+ ~Compte ()
+ afficher ()
+ crediter (credit : Real)
+ debiter (debit : Real)

Classe

Attributs

Méthodes

Membres privés

Membres publics

Méthode créer : Constructeur

Méthode libérer : Destructeur

!

10

La classe en C++

En C++ on distingue

 l'interface d'une classe et
l'implémentation d'une classe
sont le code utilisé ou appelé

c’est le code qu’on doit
écrire pour développer
la classe

 le code utilisateur du type
ou code client ou appelant

11

La classe en C++

● Attention confusion de terminologie OBJET / C++
● En termes de conception orientée objet

Compte
- titulaire : String
- solde : Real
+ Compte (titulaire : String, solde_init : Real = 0.0)
+ ~Compte ()
+ afficher ()
+ crediter (credit : Real)
+ debiter (debit : Real)

INTERFACE OBJET
Membres publiques
utilisables par le client

INTERFACE OBJET ≠ INTERFACE C++

12

La classe en C++

● Attention confusion de terminologie OBJET / C++
● En termes de C++ interface = déclarations du .h

compte.h/// Déclaration d'un type "compte en banque"
class Compte
{
 /// Attributs : déclarations
 private :
 std::string m_titulaire;
 float m_solde;

 /// Méthodes : déclarations (prototypes)
 public :
 Compte(std::string titulaire, float solde_init=0);
 ~Compte();
 void afficher() const;
 void crediter(float credit);
 void debiter(float debit);

};

INTERFACE
C++

!

13

La classe en C++

● C’est l’interface OBJET qui doit rester stable :
la changer conduit à casser le code appelant

compte.h

Seules les méthodes de l'objet
ont accès aux données internes
déclarées « private » ceci ne fait
pas partie de l’interface OBJET :
on peut changer des choses ici
sans casser le code client

Les méthodes publiques constituent
l’interface OBJET de la classe :
changer les formats d’appel de
l’interface casse le code client

On peut toujours ajouter de
nouvelle méthode sans rien casser

/// Déclaration d'un type "compte en banque"
class Compte
{
 /// Attributs : déclarations
 private :
 std::string m_titulaire;
 float m_solde;

 /// Méthodes : déclarations (prototypes)
 public :
 Compte(std::string titulaire, float solde_init=0);
 ~Compte();
 void afficher() const;
 void crediter(float credit);
 void debiter(float debit);

};

!

14

La classe en C++

● C’est l’interface OBJET qui doit rester stable :
la changer conduit à casser le code appelant

compte.h
class Compte
{

 private :

 public :

};

INTERFACE AU SENS OBJET
mode d’emploi à respecter pour
utiliser la classe

INTERFACE AU SENS C++
technique : fichier à inclure
pour utiliser la classe

15

La classe en C++

Le fichier .cpp donne l'implémentation (définitions)
des méthodes déclarées dans le fichier.h

compte.cpp#include "compte.h"

#include <iostream>
#include <string>
#include <stdexcept>

/// Méthodes : définitions

Compte::Compte(std::string titulaire, float solde_init)
{ ... }
Compte::~Compte()
{ ... }
void Compte::afficher() const
{ ... }
void Compte::crediter(float credit)
{ ... }
void Compte::debiter(float debit)
{ ... }
std::string Compte::getTitulaire() const
{ ... }

IMPLÉMENTATION
C++

!

16

La classe en C++

Le fichier .cpp donne l'implémentation (définitions)
des méthodes déclarées dans le fichier.h

compte.cpp

void Compte::crediter(float credit)
{ ... }

IMPLÉMENTATION
C++

Code d’implémentation,
ceci ne fait pas partie de
l’interface OBJET :
on peut changer des choses ici
sans casser le code client
à condition que la méthode
continue de jouer le même rôle

17

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

18

L’encapsulation

19

L’encapsulation

L’encapsulation est la « protection des données »
mais aussi leur dissimulation derrière l’interface

compte.cpp

Implémentation d’une 1ère version
du logiciel : utilisation d’un attribut
pour stocker le solde du client

void Compte::crediter(float credit)
{
 m_solde += credit;
}

void Compte::crediter(float credit)
{
 /// Create a DATABASE connexion
 sql::Driver* driver = get_driver_instance();
 sql::Connection* con =
 driver->connect("tcp://myBank:3306", "root", "1234");

 /// Connect to the MySQL ClientAccounts database
 con->setSchema("ClientAccounts");

 ...
 ... m_dbKey
 ...
}

Implémentation d’une 2ème version
du logiciel : utilisation d’une base
de donnée pour stocker le solde
du client.

L’attribut m_solde disparaît de la
classe, il est remplacé par une
clé de table de base de donnée

2020

2021

20

L’encapsulation

L’encapsulation est la « protection des données »
mais aussi leur dissimulation derrière l’interface

compte.h

Implémentation d’une 1ère version
du logiciel : utilisation d’un attribut
pour stocker le solde du client

Implémentation d’une 2ème version
du logiciel : utilisation d’une base
de donnée pour stocker le solde
du client.

L’attribut m_solde disparaît de la
classe, il est remplacé par une
clé de table de base de donnée

2020

2021

stable

stable

class Compte
{
 private :
 std::string m_titulaire;
 float m_solde;

 public :
 void crediter(float credit);
 ...
};

class Compte
{
 private :
 std::string m_titulaire;
 std::uint64_t m_dbKey;

 public :
 void crediter(float credit);
 ...
};

instable

instable

21

L’encapsulation

Le code client n’est pas exposé aux changements
de représentation interne des entités

!

... client(...)
{
 std::vector<Compte*> cpts;

 ...
 cpts[i]->crediter(x);
 ...

 ...
 cpts[recipient]->crediter(y);
 ...

 ...
 cpts[rollback]->crediter(z);
 ...

class Compte
{
 private :
 std::string m_titulaire;
 std::uint64_t m_dbKey;

 public :
 void crediter(float credit);
 ...
};

class Compte
{
 private :
 std::string m_titulaire;
 float m_solde;

 public :
 void crediter(float credit);
 ...
};

client.cpp compte.h

compte.h

2020

2021

~ 200000 lignes de code

22

L’encapsulation

Le code client n’est pas exposé aux changements
de représentation interne des entités

!

... client(...)
{
 std::vector<Compte*> cpts;

 ...
 cpts[i]->crediter(x);
 ...

 ...
 cpts[recipient]->crediter(y);
 ...

 ...
 cpts[rollback]->crediter(z);
 ...

class Compte
{
 private :
 std::string m_titulaire;
 std::uint64_t m_dbKey;

 public :
 void crediter(float credit);
 ...
};

class Compte
{
 private :
 std::string m_titulaire;
 float m_solde;

 public :
 void crediter(float credit);
 ...
};

client.cpp compte.h

compte.h

2020

2021

~ 200000 lignes de code

23

L’encapsulation

Le code client n’est pas exposé aux changements
de représentation interne des entités

!

... client(...)
{
 std::vector<Compte*> cpts;

 ...
 cpts[i]->crediter(x);
 ...

 ...
 cpts[recipient]->crediter(y);
 ...

 ...
 cpts[rollback]->crediter(z);
 ...

class Compte
{
 private :
 std::string m_titulaire;
 std::uint64_t m_dbKey;

 public :
 void crediter(float credit);
 ...
};

class Compte
{
 private :
 std::string m_titulaire;
 float m_solde;

 public :
 void crediter(float credit);
 ...
};

client.cpp compte.h

compte.h

2020

2021

~ 200000 lignes de code

24

L’encapsulation

Supposons un non-respect de l’encapsulation
des données membres ...

... client(...)
{
 std::vector<Compte*> cpts;

 ...
 cpts[i]->m_solde += x;
 ...

 ...
 cpts[recipient]->m_solde += y;
 ...

 ...
 cpts[rollback]->m_solde += z;
 ...

class Compte
{
 public :
 std::string m_titulaire;
 std::uint64_t m_dbKey;

 public :
 // Pas besoin de méthode ?
 ...
};

class Compte
{
 public :
 std::string m_titulaire;
 float m_solde;

 public :
 // Pas besoin de méthode !
 ...
};

client.cpp compte.h

compte.h

2020

2021

~ 200000 lignes de code

25

L’encapsulation

Supposons un non-respect de l’encapsulation
des données membres ...

... client(...)
{
 std::vector<Compte*> cpts;

 ...
 cpts[i]->m_solde += x;
 ...

 ...
 cpts[recipient]->m_solde += y;
 ...

 ...
 cpts[rollback]->m_solde += z;
 ...

class Compte
{
 public :
 std::string m_titulaire;
 std::uint64_t m_dbKey;

 public :
 // Pas besoin de méthode ?
 ...
};

class Compte
{
 public :
 std::string m_titulaire;
 float m_solde;

 public :
 // Pas besoin de méthode !
 ...
};

client.cpp compte.h

compte.h

2020

2021

~ 200000 lignes de code

26

L’encapsulation

Supposons un non-respect de l’encapsulation
des données membres ...

... client(...)
{
 std::vector<Compte*> cpts;

 ...
 cpts[i]->m_solde += x;
 ...

 ...
 cpts[recipient]->m_solde += y;
 ...

 ...
 cpts[rollback]->m_solde += z;
 ...

class Compte
{
 public :
 std::string m_titulaire;
 std::uint64_t m_dbKey;

 public :
 // Pas besoin de méthode ?
 ...
};

class Compte
{
 public :
 std::string m_titulaire;
 float m_solde;

 public :
 // Pas besoin de méthode !
 ...
};

client.cpp compte.h

compte.h

2020

2021

~ 200000 lignes de code

?!

27

L’encapsulation

Le risque n’est pas que ça passe inaperçu !
Le risque est de passer beaucoup plus de temps...

... client(...)
{
 std::vector<Compte*> cpts;

 ...
 cpts[i]->m_solde += x;
 ...

 ...
 cpts[recipient]->m_solde += y;
 ...

 ...
 cpts[rollback]->m_solde += z;
 ...

class Compte
{
 public :
 std::string m_titulaire;
 std::uint64_t m_dbKey;

 public :
 // Pas besoin de méthode ?
 ...
};

class Compte
{
 public :
 std::string m_titulaire;
 float m_solde;

 public :
 // Pas besoin de méthode !
 ...
};

client.cpp compte.h

compte.h

2020

2021

~ 200000 lignes de code
~ 477 occurrences de m_solde
 en = en += en -= en == etc...

?!

28

L’encapsulation

● Résultat du non respect du principe
d’encapsulation des données membres

– Ou on va renoncer à faire un changement
nécessaire de la représentation interne

– Ou on va perdre beaucoup de temps
avec un risque considérable d’introduire
des erreurs, courir après les incohérences...

– Dans les 2 cas on perd sur la concurrence
● L’encapsulation n’est pas une commodité
● C’est la viabilité à moyen et long terme

d’un système logiciel complexe en évolution

29

L’encapsulation

● Dans tous les cas on ne doit proposer au client
(càd mettre en public) que les membres qui ont
vocation à rester stables à long terme (+20 ans)

● L’expérience montre que c’est possible pour des
méthodes bien conçues, pas pour les attributs

méthode attribut

public OUI
C’est l’interface OBJET

NON
Mauvaise pratique

private POSSIBLE
Traitements auxiliaires

OUI
Données "encapsulées"

membre

accès

!

30

L’encapsulation

● Selon le contexte, l’entreprise, l’expérience, la
case attribut publique est plus ou moins taboue

● En C++ une struct est une classe en accès
publique par défaut : pourquoi garder la struct ?

méthode attribut

public OUI
C’est l’interface OBJET

struct !
Mauvaise pratique ?

private POSSIBLE
Traitements auxiliaires

OUI
Données "encapsulées"

membre

accès

!

31

L’encapsulation

● compatibilité avec C => struct en C++
● Elle peut être utilisée après mûre réflexion :

pour grouper des données dont on pense
qu’elle seront stables sur le long terme...

● Pour des petits objets « techniques »

méthode attribut

public OUI
C’est l’interface OBJET

peut-être (struct)
Avec circonspection

private POSSIBLE
Traitements auxiliaires

OUI
Données "encapsulées"

accès

!

32

L’encapsulation

● Mais attention il n’y a pas qu’un problème de
stabilité des attributs: il y a aussi un problème de
cohérence des données

● L’usage systématique d’une interface composée
de méthode publique peut la garantir...

● Pour trouver la date du lendemain vous préférez
bidouiller directement les attributs jour/mois/année
d’un objet struct Date ? Les mois à 30 à 31 jours ?
Le mois de février ? Les année bissextiles ? L’internationalisation ?

● Ou passer par la méthode nextDay de class Date

Date demain = aujourdhui.nextDay();

!

33

L’encapsulation

Il est possible (fréquent) d’avoir des méthodes
privées : traitements auxiliaires internes ...

compte.hclass Compte
{
 /// Attributs
 private :
 std::string m_titulaire;
 std::uint64_t m_dbKey;
 sql::Connection* m_sqlConnex;

 /// Méthodes
 private :
 void ouvrirConnexionDB(); // Utile pour crediter et debiter

 public :
 Compte(std::string titulaire, float solde_init=0);
 ~Compte();
 void afficher() const;
 void crediter(float credit);
 void debiter(float debit);
};

En 2021 cette méthode est utile
aux autres méthodes de la classe.
Peut-être qu’en 2024 elle disparaîtra.
Et elle ne correspond pas à un
service direct qu’un objet Compte
joue logiquement pour le code client.
Elle ne fait donc pas partie de
l’interface OBJET, elle est privée !

34

L’encapsulation

En dehors des cas particuliers :

Les fonctions membres (méthodes) sont publiques
→en tout cas les méthodes qui intéressent le client

Les données membres (attributs) sont privées

méthode attribut

public
OUI

C’est l’interface
OBJET

peut-être (struct)
Avec circonspection

private POSSIBLE
Traitements auxiliaires

OUI
Données

"encapsulées"

35

L’encapsulation

L’ordre de déclaration des sections private/public
n’a pas d’importance techniquement...

compte.h

class Compte
{

 private :

 public :

};

Compte
- attribut1
- attribut2
+ methode1(…)
+ methode2(…)
+ methode3(…)

Notation « naturelle »
on utilise le même ordre

que la notation UML

Pour faciliter le passage du modèle UML au C++
pour l’instant c’est l’ordre de déclaration qui sera utilisé

36

L’encapsulation

L’ordre de déclaration des sections private/public
n’a pas d’importance techniquement mais...

compte.h

class Compte
{

 public :

 private :

};

Compte
- attribut1
- attribut2
+ methode1(…)
+ methode2(…)
+ methode3(…)

Notation recommandée à terme
l’interface OBJET en 1er !

Quand on fait le modèle objet
il est fréquent de commencer
d’abord par les données...
La classe UML présente les
données au dessus des méthodes

Quand on fait #include pour
utiliser la classe on s’intéresse
avant tout au « mode d’emploi »
donc au met l’interface OBJET en 1er
et on "enterre" les attributs privés

https://google.github.io/styleguide/cppguide.html#Declaration_Order

37

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

38

Les méthodes, this, const

39

Les méthodes, this, const

Les méthodes sont comme des sous-programmes
avec un paramètre implicite : l’objet cible de l’appel

compte.h/// Déclaration d'un type "compte en banque"
class Compte
{
 /// Attributs
 private :
 std::string m_titulaire;
 float m_solde;

 /// Méthodes
 public :
 Compte(std::string titulaire, float solde_init=0);
 ~Compte();
 void afficher() const;
 void crediter(float credit);
 void debiter(float debit);

};

40

Les méthodes, this, const

Les méthodes sont comme des sous-programmes
avec un paramètre implicite : l’objet cible de l’appel

compte.h

L'objet de type Compte, cible de l’appel,
n'est pas mentionné explicitement :
il est transmis implicitement à la méthode

Valeur par défaut d'un paramètre

Constructeur→

Destructeur→

/// Déclaration d'un type "compte en banque"
class Compte
{
 /// Attributs
 private :
 std::string m_titulaire;
 float m_solde;

 /// Méthodes
 public :
 Compte(std::string titulaire, float solde_init=0);
 ~Compte();
 void afficher() const;
 void crediter(float credit);
 void debiter(float debit);

};

Données membres préfixées par m_
convention utile pour éviter les confusions

Paramètres, préfixés par _
ou non préfixés (plus léger)

Ici pas de préfixe
Compte::

41

Les méthodes, this, const

L’implémentation d’une méthode dans le cpp

compte.cpp
void Compte::crediter(float credit)
{
 m_solde += credit;
}

 Compte::
Opérateur de résolution
de portée

Les attributs privés
inaccessible pour le
code client de la classe
sont accessible aux
méthodes de la classe

L'objet de type Compte, cible de l’appel,
n'est pas mentionné explicitement :
il est transmis implicitement à la méthode

42

Les méthodes, this, const

L’implémentation d’une méthode dans le cpp :
on traite un objet Compte à la fois ! Lequel ?

compte.cpp
void Compte::crediter(float credit)
{
 m_solde += credit;
}

Bon sang
mais qui est

crédité ?!

43

Les méthodes, this, const

On traite un objet Compte à la fois :
celui qui sert de cible à l’appel de méthode

compte.cpp
void Compte::crediter(float credit)
{
 m_solde += credit;
}

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(20);
 b.crediter(30);

client.cpp

Code appelé

Code appelant

!

44

Les méthodes, this, const

On traite un objet Compte à la fois :
celui qui sert de cible à l’appel de méthode

compte.cpp
void Compte::crediter(float credit)
{
 m_solde += credit;
}

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(20);

client.cpp

Code appelé

Code appelant

!

this object

45

Les méthodes, this, const

On traite un objet Compte à la fois :
celui qui sert de cible à l’appel de méthode

compte.cpp
void Compte::crediter(float credit)
{
 m_solde += credit;
}

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 b.crediter(30);

client.cpp

Code appelé

Code appelant

!

this object

46

Les méthodes, this, const

On traite un objet Compte à la fois :
celui qui sert de cible à l’appel de méthode

compte.cpp
void Compte::crediter(float credit)
{
 m_solde += credit;
}

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(20);
 b.crediter(30);

client.cpp

1er appel, on modifie
le solde du compte a

2ème appel, on modifie
le solde du compte b

Code appelé

Code appelant

!

47

Les méthodes, this, const

Ça fonctionne comme si l’appelant envoyait
par adresse une struct à modifier

void crediter(Compte* this,
 float credit)
{
 this->m_solde += credit;
}

void client()
{
 Compte a={"Zig", 0};
 Compte b={"Zag", 0};

 crediter(&a, 20);
 crediter(&b, 30);

void Compte::crediter
 (float credit)
{
 m_solde += credit;
}

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(20);
 b.crediter(30);

C

CC++

C++

48

Les méthodes, this, const

L’objet de cible de l’appel est donc bien passé à
l’appelant : c’est le « paramètre » this implicite

void crediter(Compte* this,
 float credit)
{
 this->m_solde += credit;
}

void Compte::crediter
 (float credit)
{
 m_solde += credit;
}

Fonction C : this objet cible
 du traitement est
 explicite

Méthode C++ : this objet cible
 du traitement est
 implicite

void client()
{
 Compte a={"Zig", 0};
 Compte b={"Zag", 0};

 crediter(&a, 20);
 crediter(&b, 30);

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(20);
 b.crediter(30);
Cibler un objet Passage par adresse explicite

Désignation explicite objet cibleObjet cible implicite

C

CC++

C++

49

Les méthodes, this, const

Si ce « paramètre » this est implicite comment
le qualifier, par exemple le rendre const ?

void afficher(const Compte* this)
{
 printf("%f", this->m_solde);
 ...
}

void Compte::afficher() const
{
 std::cout << m_solde;
 ...
}

void client()
{
 Compte a={"Zig", 0};
 Compte b={"Zag", 0};

 afficher(&a);
 afficher(&b);

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.afficher();
 b.afficher();

C

CC++

C++

50

Les méthodes, this, const

En qualifiant la méthode de const : la qualification
est indiquée après le prototype (.h et .cpp)

void afficher(const Compte* this)
{
 printf("%f", this->m_solde);
 ...
 ...
}

void Compte::afficher() const
{
 std::cout << m_solde;
 ...
 ...
}

void client()
{
 Compte a={"Zig", 0};
 Compte b={"Zag", 0};

 afficher(&a);
 afficher(&b);

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.afficher();
 b.afficher();

Pas de param.
à qualifier !

L’objet cible est
constant !

L’objet cible est
constant ! C

CC++

C++

51

Les méthodes, this, const

En qualifiant la méthode de const on interdit toute
modification des données de l’objet cible

!

void Compte::afficher() const
{
 std::cout << m_solde;
 if (m_solde=0) std::cout << "Vide!";
 ...
}

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.afficher();
 b.afficher();

error: assignment of member
 'Compte::m_solde'
 in read-only object

52

Les méthodes, this, const

Le pointeur this sur l’objet cible de l’appel
n’est pas une fiction : il est utilisable explicitement

!

void Compte::afficher() const
{
 std::cout << this->m_solde;
 ...
 std::cout << this; // Debug : affichage adresse objet cible
}

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.afficher();
 b.afficher();

Utilisation explicite, pas utile ici mais possible

A chaque appelle « le compilateur »
renseigne automatiquement le pointeur this
de la méthode avec l’adresse de l’objet cible
this est de type Classe* (Compte* sur cet exemple)

compte.cpp

client.cpp

53

Les méthodes, this, const

Fonctions : l’objet peut être passé par valeur (copie)
par référence (pas de copie) par adresse (pas de copie)

!

void client()
{
 Compte a{"Zig", 0};

 testVal(a);

 testRef(a);

 testPtr(&a);

intermediaire.cpp

client.cpp

// Par valeur
void testVal(Compte c) { c.afficher(); }

// Par référence
void testRef(Compte& refC) { refC.afficher(); }

// Par adresse
void testPtr(Compte* ptrC) { ptrC->afficher(); }

Attention aux notations
spécifiques pointeurs
Méthode pointée ->
Adresse de l’objet &

54

Les méthodes, this, const

Passage d’objet en paramètre de méthode :
pas de règles particulière, idem que fonctions

!

// Créditer un objet depuis un autre compte
void Compte::crediter(float credit, Compte& debiteur)
{
 if (debiteur.m_solde>=credit)
 {
 debiteur.m_solde -= credit;
 m_solde += credit;
 }/// else what ?
}

compte.cpp

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(30); // Zig a 30
 b.crediter(20, a); // Zag prend 20 a Zig : Zag a 20, Zig a 10

client.cpp

55

Les méthodes, this, const

Comme pour les fonctions, les méthodes peuvent
être surchargées (on ne se gênera pas)

!

// Créditer un objet depuis un autre compte
void Compte::crediter(float credit, Compte& debiteur)
{
 if (debiteur.m_solde>=credit)
 {
 debiteur.m_solde -= credit;
 m_solde += credit;
 }/// else what ?
}

compte.cpp

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(30); // Zig a 30
 b.crediter(20, a); // Zag prend 20 a Zig : Zag a 20, Zig a 10

client.cpp

56

Les méthodes, this, const

En C++ (idem Java, C#...) les restrictions d’accès
sont de niveau classe, pas de niveau objet (smalltalk)

// Créditer un objet depuis un autre compte
void Compte::crediter(float credit, Compte& debiteur)
{
 if (debiteur.m_solde>=credit)
 {
 debiteur.m_solde -= credit;
 m_solde += credit;
 }/// else what ?
}

compte.cpp

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(30); // Zig a 30
 b.crediter(20, a); // Zag prend 20 a Zig : Zag a 20, Zig a 10

client.cpp

Zag peut non seulement lire
mais aussi modifier directement
les attributs privés de Zig

Les différentes instances d’une
même classe sont intimes entre elles
Chouette ! Est-ce une bonne idée ?

57

Les méthodes, this, const

Même si une méthode a accès direct aux datas de
this et des objets de la même classe, on réfléchit !

compte.cpp

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(30); // Zig a 30
 b.crediter(20, a); // Zag prend 20 a Zig : Zag a 20, Zig a 10

client.cpp

void Compte::crediter(float credit, Compte& debiteur)
{
 if (debiteur.solvable(credit))
 {
 debiteur.debiter(credit);
 crediter(credit);
 }
 /// else what ?
}

Moins de promiscuité avec
les attributs privés de this
et de l’objet reçu en paramètre :
L’ambiance est plus saine

58

Les méthodes, this, const

Eviter de manipuler directement les attributs privés
conduit à décrire de nombreux « comportements »

compte.cpp
En programmation objet
on n’écrit pas une nouvelle
méthode parce qu’il y a beaucoup
de choses à y faire. De nombreuses
méthodes seront très courtes mais
offrent un meilleur profil d’utilisation
pour le code client...
Et la classe elle même est sa 1ère cliente !

// Le compte peut-il débiter une certaine somme ?
bool Compte::solvable(float montant)
{
 return montant <= m_solde;
}

void Compte::crediter(float credit, Compte& debiteur)
{
 if (debiteur.solvable(credit))
 {
 debiteur.debiter(credit);
 crediter(credit);
 }
 /// else what ?
}

compte.cpp

59

Les méthodes, this, const

Finalement quand on veut manipuler "symétriquement"
2 objets on n’utilisera pas une méthode mais une fonction

compte.cpp// Opération de débiter depuis un compte debiteur
// en créditant vers un autre compte beneficiaire
/// Pas une méthode mais presque !
/// Fonction fortement associée à la classe Compte :
/// prototyper dans compte.h, implémenter dans compte.cpp
void transferer(Compte& debiteur,
 Compte& beneficiaire,
 float montant)
{
 /// Plus clair !
 if (debiteur.solvable(montant))
 {
 debiteur.debiter(montant);
 beneficiaire.crediter(montant);
 }
 /// else what ?
}

void client()
{
 Compte a{"Zig", 0};
 Compte b{"Zag", 0};

 a.crediter(30);

 // 20€ de Zig à Zag !
 transferer(a, b, 20);

client.cpp

60

Les méthodes, this, const

 Quick-and-dirty dev. of a class : all in main.cpp
 Dès que ça fait plus de 50 lignes on sépare

main.cpp

class Thing
{
 private :
 std::string m_stuff;
 std::vector<int> m_moreStuff;
 ...

 public :
 char doThat (OtherThing& z);
 void doThere(int x, int y);
 ...
};

char Thing::doThat (OtherThing& z)
{
 ...
}

void Thing::doThere(int x, int y)
{
 ...
}

int main()
{
 Thing myThing{...};
 myThing.doThere(6, 18);

compte.hclass Thing
{
 private :
 std::string m_stuff;
 std::vector<int> m_moreStuff;
 ...

 public :
 char doThat (OtherThing& z);
 void doThere(int x, int y);
 ...
};

char Thing::doThat (OtherThing& z)
{
 ...
}

void Thing::doThere(int x, int y)
{
 ...
}

compte.cpp

main.cppint main()
{
 Thing myThing{...};
 myThing.doThere(6, 18);

main.cpp

possible
≠

recommandé

61

Les méthodes, this, const

Séparer interface / implémentation / code client

main.cpp

compte.h#include "OtherThing.h"
#include <string>
#include <vector>

class Thing
{
 private :
 std::string m_stuff;
 std::vector<int> m_moreStuff;
 ...

 public :
 char doThat (OtherThing& z);
 void doThere(int x, int y);
 ...
};

#include "compte.h"
#include <iostream>
...

char Thing::doThat (OtherThing& z)
{
 ...
}

void Thing::doThere(int x, int y)
{
 ...
}

compte.cpp

client.cpp#include "compte.h"
#include <iostream>
...

void client()
{
 Thing myThing{...};
 myThing.doThere(6, 18);
 ...

!!

interface implémentation

code client

62

Les méthodes, this, const

 Format général appelé / appelant

classe.cpp

client.cpp

Code appelé

Code appelant

!

objetCible.methode(param1, …)

TypeRetour Classe::methode(Type1 param1, …)
{
 … m_attribut1 … param1 …
 … m_attribut2 … if else for while …
 … return …
}

const
ou pas

63

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

64

Cycles de vie des objets

Création

Destruction

Utilisation

65

Cycles de vie des objets

Cycle de vie objet : création-utilisation-destruction
Les objets automatiques à privilégier

!

void Client()
{
 Compte a{...};

 Compte b{...};

 if (...)
 {
 Compte e{...};

 }

}

La destruction des objets automatiques
est automatique !
A la fin du scope l’objet est détruit
Fin scope = fermeture bloc { } ou return

L’ordre de construction est toujours celui des déclarations

L’ordre de destruction est toujours l’ordre inverse

Dernier objet construit Premier détruit !
Principe de pile (Last In First Out)

Le langage C++ est fortement structuré, tout bloc ouvert doit être fermé :
les variables automatiques offrent une garantie forte de ne pas fuir ...

66

Cycles de vie des objets

Cycle de vie objet : création-utilisation-destruction
Les objets automatiques structurellement safe !

a
b

e

!

void Client()
{
 Compte a{...};

 Compte b{...};

 if (...)
 {
 Compte e{...};

 }

}

déclaration directe

} (automatique fin scope)

L’ordre de construction est toujours celui des déclarations

L’ordre de destruction est toujours l’ordre inverse

Dernier objet construit Premier détruit !
Principe de pile (Last In First Out)

Le langage C++ est fortement structuré, tout bloc ouvert doit être fermé :
les variables automatiques offrent une garantie forte de ne pas fuir ...

La destruction des objets automatiques
est automatique !
A la fin du scope l’objet est détruit
Fin scope = fermeture bloc { } ou return

67

Cycles de vie des objets

Cycle de vie objet : création-utilisation-destruction
Les objets dynamiques peuvent fuir facilement

Compte *allouer(...)
{
 Compte* r;
 ...
 r = new Compte{...};
 ...
 return r;
}

!

void Client()
{

 Compte* c = new Compte{...};
 Compte* d = nullptr;

 if (...)
 {

 d = allouer(...);
 }

 delete c;

 if (...)
 liberer(d);

}

void liberer(Compte *s)
{
 ...
 if (s!=nullptr)
 delete s;
 ...
}

Objets dynamiques sont persistants, ils survivent à la fin du scope
La construction d’un objet dynamique est manuelle avec new
La destruction d’un objet dynamique est manuelle avec delete
Oubli de delete et perte du pointeur => fuite mémoire

68

Cycles de vie des objets

Cycle de vie objet : création-utilisation-destruction
Les objets dynamiques peuvent fuir facilement

Compte *allouer(...)
{
 Compte* r;
 ...
 r = new Compte{...};
 ...
 return r;
}

*c

!

void Client()
{

 Compte* c = new Compte{...};
 Compte* d = nullptr;

 if (...)
 {

 d = allouer(...);
 }

 delete c;

 if (...)
 liberer(d);

}

void liberer(Compte *s)
{
 ...
 if (s!=nullptr)
 delete s;
 ...
}

new

delete (manuellement)

Ici l’utilisation de l’allocation
dynamique présente peu d’intérêt
objet automatique serait préférable ici !

Si on oublie le delete
l’espace mémoire d’un
objet Compte est perdu :
sizeof(Compte) octets

69

Cycles de vie des objets

Cycle de vie objet : création-utilisation-destruction
Les objets dynamiques : entités persistantes

Compte *allouer(...)
{
 Compte* r;
 ...
 r = new Compte{...};
 ...
 return r;
}

!

void Client()
{

 Compte* c = new Compte{...};
 Compte* d = nullptr;

 if (...)
 {

 d = allouer(...);
 }

 delete c;

 if (...)
 liberer(d);

}

void liberer(Compte *s)
{
 ...
 if (s!=nullptr)
 delete s;
 ...
}

new

delete (manuellement)

*d

*r

*s

Ici l’objet a un cycle de vie complexe
Il doit survivre aux bloc fermants
Il est peut-être créé, peut-être pas
On veut éviter de copier ses données

70

Cycles de vie des objets

Cycle de vie objet : création-utilisation-destruction
Les objets dynamiques : entités persistantes

Compte *allouer(...)
{
 Compte* r;
 ...
 r = new Compte{...};
 ...
 return r;
}

*c

*d

*r

!

void liberer(Compte *s)
{
 ...
 if (s!=nullptr)
 delete s;
 ...
}

*s

new

delete (manuellement)

void Client()
{

 Compte* c = new Compte{...};
 Compte* d = nullptr;

 if (...)
 {

 d = allouer(...);
 }

 delete c;

 if (...)
 liberer(d);

}

La création/destruction dynamique
se fait dans n’importe quel ordre...

Des chevauchements de temps de vies
d’objets sont possibles : perte de lisibilité

71

Cycles de vie des objets

Cycle de vie objet : création-utilisation-destruction
Les objets automatiques / dynamiques

Compte *allouer(...)
{
 Compte* r;
 ...
 r = new Compte{...};
 ...
 return r;
}

a
b

e

*c

*d

*r

!

void Client()
{
 Compte a{...};
 ...
 Compte b{...};
 Compte* c = new Compte{...};
 Compte* d = nullptr;
 ...
 if (...)
 {
 Compte e{...};
 ...
 d = allouer(...);
 }
 ...
 delete c;
 ...
 if (...)
 liberer(d);
 ...

}

void liberer(Compte *s)
{
 ...
 if (s!=nullptr)
 delete s;
 ...
}

*s

déclaration directe new

delete (manuellement)} (automatique fin scope)

72

Cycles de vie des objets

Cycle de vie objet : création-utilisation-destruction
● Les objets automatiques : simples, efficaces,

locaux, sécures
● Les objets dynamiques : situations complexes,

 persistants, risqués
● Les entités sont les objets persistants du modèle

La nature imprévisible du cycle de vie des entités
conduit à utiliser l’allocation dynamique...

● C’est une énorme problématique : 2 approches
➔ Garbage collector : Java, C#... pas de delete !
➔ C++ objets spécialisés gestion de ressources...

!

73

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

74

Constructeur(s)

75

Constructeur(s)

Un constructeur est une méthode spéciale
Appelée à la création de l’objet pour l’initialiser
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 ...
};

Compte::Compte(std::string titulaire, float solde_init)
{
 m_titulaire = titulaire;
 m_solde = solde_init;
}

compte.h

compte.cpp

client.cppvoid client()
{
 Compte a{"Zig", 100};
 Compte b{"Zag"};

!

76

Constructeur(s)

Un constructeur a le même nom que sa classe
Il n’a pas de type de retour, même pas void !
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 ...
};

Compte::Compte(std::string titulaire, float solde_init)
{
 m_titulaire = titulaire;
 m_solde = solde_init;
}

compte.h

compte.cpp

client.cppvoid client()
{
 Compte a{"Zig", 100};
 Compte b{"Zag"};

!

77

Constructeur(s)

Un constructeur ne réserve pas la mémoire
de l’objet créé : la zone mémoire pointée par this
existe déjà au début de l’exécution du constructeur

Compte::Compte(std::string titulaire, float solde_init)
{
 m_titulaire = titulaire;
 m_solde = solde_init;
}

compte.cpp

client.cppvoid client()
{
 Compte a{"Zig", 100};

this = malloc(1*sizeof(Compte))

Action générée implicitement par le compilateur
Allocation automatique de la mémoire objet

Pas d’allocation dans un constructeur
On initialise les valeurs des attributs

!

78

Constructeur(s)

Le but du constructeur est de livrer un objet dans
un état utilisable par le code client, en général
on souhaite que tous les attributs soient initialisés

On peut également faire d’autres actions,
des calculs, des saisies, des ouvertures de fichier...

Compte::Compte(std::string titulaire, float solde_init)
{
 std::cout << "Creation du compte " << titulaire << std::endl;

 if (solde_init < 0) // Est-ce une bonne idée de vouloir
 solde_init = 0; // "rattraper le coup" ? => signaler pb.

 m_titulaire = titulaire;
 m_solde = solde_init;
}

compte.cpp

!

79

Constructeur(s)

Il est fréquent que le constructeur commence par
copier directement les valeurs des paramètres
dans les attributs : dans ce cas il est préférable
d’utiliser la syntaxe spécifique aux constructeurs
dite liste d’initialisation (≠ std::initializer_list)

Compte::Compte(std::string titulaire, float solde_init)
 : m_titulaire{titulaire}, m_solde{solde_init}
{
 std::cout << "Creation du compte " << titulaire << std::endl;

 if (m_solde < 0) // Est-ce une bonne idée de vouloir
 m_solde = 0; // "rattraper le coup" ? => signaler pb.
}

compte.cpp

!

80

Constructeur(s)

Souvent on n’a pas d’autres actions à faire que
d’initialiser les attributs : dans ce cas le corps
de la méthode reste vide !

Compte::Compte(std::string titulaire, float solde_init)
 : m_titulaire{titulaire}, m_solde{solde_init}
{ }

compte.cpp

!

Le std::string m_titulaire est directement
créé avec sa valeur finale : plus efficace

Le corps d’un constructeur avec liste d’initialisation
reste souvent vide (il faut quand même le mettre)

81

Constructeur(s)

Le constructeur par défaut est le constructeur
qui sait construire l’objet avec aucun paramètre
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 ...
};

compte.h

client.cppvoid client()
{
 Compte a{"Zig", 100};
 Compte b{"Zag"};
 Compte c{};
 Compte c;

!

error: no matching function
for call to 'Compte::Compte()'

idem

Classe sans constructeur par défaut

82

Constructeur(s)

On obtient un constructeur par défaut avec des
valeurs par défaut de paramètres d’un constructeur

compte.h

client.cppvoid client()
{
 Compte a{"Zig", 100};
 Compte b{"Zag"};
 Compte c{};
 Compte c;

!

idem

Classe avec constructeur par défaut

class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire="", float solde_init=0);
 ...
};

Ok c sera un objet initialisé par défaut

83

Constructeur(s)

On obtient un constructeur par défaut avec un
constructeur sans paramètre

compte.h

client.cppvoid client()
{
 Compte a{"Zig", 100};
 Compte b{"Zag"};
 Compte c{};
 Compte c;

!

idem

constructeur par défaut

class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 Compte();
};

Ok c sera un objet initialisé par le constructeur par défaut

constructeur avec paramètres

Surcharge de constructeur !

84

Constructeur(s)

Le constructeur par défaut peut se contenter de
mettre des valeurs « neutres »
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 Compte();
};

compte.h

compte.cpp

client.cppvoid client()
{
 Compte x;
 Compte y;

!

Compte::Compte()
 : m_titulaire{""}, m_solde{0}
{ }

Ok x et y seront des objets initialisés par le constructeur par défaut

85

Constructeur(s)

Le constructeur par défaut peut si ça fait sens
mettre des valeurs spécifiques
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 Compte();
};

compte.h

compte.cpp

client.cppvoid client()
{
 Compte x;
 Compte y;

!

Compte::Compte()
 : m_titulaire{"AUCUN"}, m_solde{0}
{ }

Ok x et y seront des objets initialisés par le constructeur par défaut

86

Constructeur(s)

Un constructeur peut déléguer le travail d’initialiser
à un autre constructeur...
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 Compte();
};

compte.h

compte.cpp

client.cppvoid client()
{
 Compte x;
 Compte y;

!

Compte::Compte()
 : Compte{"AUCUN"}
{ }

Ok x et y seront des objets initialisés par le constructeur par défaut

87

Constructeur(s)

Un constructeur par défaut peut si ça fait sens
aller récupérer ailleurs les valeurs initiales
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 Compte();
};

compte.h

compte.cpp

client.cppvoid client()
{
 Compte x;
 Compte y;

!

Compte::Compte()
{
 std::cin >> m_titulaire;
 std::cin >> m_solde;
}

Ok x et y seront des objets saisis par l’utilisateur !

88

Constructeur(s)

En l’absence de tout constructeur déclaré le
compilateur en fournit un par défaut implicite...
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 // PAS DE Compte() DÉCLARÉ !
 // Il peut y avoir d’autres méthodes...
};

compte.h

compte.cpp

client.cppvoid client()
{
 Compte a; // m_solde = PAS INITIALISÉ

!

// PAS DE Compte::Compte() DÉFINI.

Méfiance

Mieux vaut ne pas se
fier au constructeur
par défaut fourni implicitement

89

Constructeur(s)

On n’est pas obligé d’avoir un constr. par défaut
Il est quasi-obligatoire d’avoir au moins un constr.
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire);
 ...// Pas d’autre constructeur
};

Compte::Compte(std::string titulaire)
 : m_titulaire{titulaire}, m_solde{0}
{ }

compte.h

compte.cpp

client.cppvoid client()
{
 Compte a{"Zig"};
 Compte b{"Zag"};

!

Ok une seule façon de créer un objet Compte

90

Constructeur(s)

Pour qu’un objet fonctionne « par valeur » (copies)
le compilateur génère des méthodes implicites...
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire);
 ...// Pas d’autre constructeur
};

compte.h

client.cpp

void client()
{
 Compte a{"Zig"};
 Compte b{"Zag"};
 Compte c{a};
 Compte d = b;
 c = b;
 b = Compte("Zog");
 a = Compte{"Zug"};
 d = {"Zyg"};

Ces méthodes implicites copient un par un les
attributs de l’objet source vers l’objet destination
On peut les coder explicitement (on verra plus tard)

Ok opérateur d’affectation implicite
(3 derniers : on passe par un objet temporaire)

Ok constructeur par copie implicite

!

91

Constructeur(s)

Beaucoup (trop) de façons de déclarer un objet !
La forme parenthèses est encore très courante
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire="", float solde_init=0);
 ...// Pas d’autre constructeur
};

compte.h

client.cppvoid client()
{
 Compte a{"Zig"};
 Compte b("Zag");

 Compte c;
 Compte d{};
 Compte e();

braced initialization (C++11)

Initialisation traditionnelle (comme un appel)

Objet par défaut ok

Déclaration d’une fonction e retournant un objet Compte

!

92

Constructeur(s)

Beaucoup (trop) de façons de déclarer un objet !

Ces variantes sont là pour des raisons techniques
(compatibilité, cohérence) et pratiques (lisibilité)

Ne soyez pas surpris de voir des déclarations
bizarroïdes dans les exemples sur les forums
y compris avec de simples types scalaires...

!

 for (int i=0; i<10; ++i) { ... } // Classique et de bon goût

 for (int i(0); i<10; ++i) { ... } // Très tendance... en 2017

 for (int i{0}; i<10; ++i) { ... } // Printemps-été 2020 ?

 for (int i={0}; i<10; ++i) { ... } // Abusé ! (ça marche)

93

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

94

Destructeur

95

Destructeur

Le destructeur est une méthode spéciale
Appelée à la destruction de l’objet, pour quoi faire ?

class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 ~Compte();
};

Compte::~Compte()
{
 // Rien !
}

compte.h

compte.cpp

client.cppvoid client()
{
 Compte a{"Zig", 100};
 ... // utiliser l’objet a
}

!

96

Destructeur

Le destructeur a le nom de sa classe préfixé par ~
Ni type de retour ni paramètre, il est unique
class Compte
{ private :
 std::string m_titulaire;
 float m_solde;

 public :
 Compte(std::string titulaire, float solde_init=0);
 ~Compte();
};

Compte::~Compte()
{
 // Rien !
}

compte.h

compte.cpp

client.cppvoid client()
{
 Compte a{"Zig", 100};
 ... // utiliser l’objet a
}

!

97

Destructeur

Le destructeur ne libère pas la mémoire
de l’objet détruit : la zone mémoire pointée par
this existe jusqu’à la fin du code du destructeur

L’objet est donc pleinement utilisable dans le
destructeur : par exemple on peut l’afficher ...

Compte::~Compte()
{
 // Rien !
}

compte.cpp

client.cppvoid client()
{
 Compte a{"Zig", 100};
 ... // utiliser l’objet a
}

Appel destructeur chaque attributs puis
free(this)

Action générée implicitement par le compilateur
Libération automatique de la mémoire objet

Pas de libération dans un destructeur

!

98

Destructeur

Le destructeur ne libère pas la mémoire
de l’objet détruit : la zone mémoire pointée par
this existe jusqu’à la fin du code du destructeur

L’objet est donc pleinement utilisable dans le
destructeur : par exemple on peut l’afficher ...

Compte::~Compte()
{
 std::cout << "Liberation du compte " << m_titulaire <<std::endl;
}

compte.cpp

void client()
{
 Compte a{"Zig", 100};
 ... // utiliser l’objet a
}

Pas de libération dans un destructeur

!

99

Destructeur

Le but du destructeur est de libérer des ressources
(autres que lui même) qui auraient été acquises
à sa création ou durant son utilisation

Typiquement un attribut de l’objet pointe sur une
ressource dynamique (obtenue avec new) et
l’objet a la responsabilité de le libérer (faire delete)
C’est un sujet délicat (plus tard...)

Compte::~Compte()
{
 // Rien pour l’instant car pas de new dans le constructeur !
}

compte.cpp

client.cppvoid client()
{
 Compte a{"Zig", 100};
 ... // utiliser l’objet a
}

!

100

Destructeur

En effet pour l’instant le destructeur ne nous sert
pas à grand chose à part éventuellement afficher
ou compter les destructions d’objet.

Si ces actions ne nous intéressent pas,
le destructeur implicite généré par le compilateur
convient parfaitement (contrairement au constr.)

client.cppvoid client()
{
 Compte a{"Zig", 100};
 ... // utiliser l’objet a
}

!

class Compte
{
 // PAS DE ~Compte() DÉCLARÉ !
 // Il peut y avoir d’autres méthodes, constructeur(s)...
};

compte.h

compte.cpp// PAS DE ~Compte::Compte() DÉFINI.

OK l’objet a est bien détruit
Même si on n’a pas écrit de
destructeur explicitement

101

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

102

Accesseurs et mutateurs

103

Accesseurs et mutateurs

Un code client mécontent :
« Comment ? J’ai sous les yeux
un objet Compte que j’ai rempli
moi même à l’instant, et vous me
dite que je ne peux pas savoir
qui est son titulaire ?! »

void client()
{
 Compte monCompte{"Durand", 100};

 std::cout << monCompte.m_titulaire << std::endl;

}

client.cpp

error: 'std::__cxx11::string Compte::m_titulaire' is private
error: within this context

104

Accesseurs et mutateurs

Au début on a l’impression que la POO n’est faite
que de restrictions ni très drôles ni très productives

Bien sûr si connaître le titulaire d’un compte est un
besoin légitime du code client alors le concepteur
de la classe a prévu un accesseur getTitulaire
mais pas de rendre publique l’attribut m_titulaire...

void client()
{
 Compte monCompte{"Durand", 100};

 std::cout << monCompte.getTitulaire() << std::endl;

}

client.cpp

OK, Compte offre un accesseur en lecture publique

105

Accesseurs et mutateurs

● Le travail du concepteur de la classe consiste à
fournir une interface cohérente vis-à-vis
du rôle que vont jouer les objets de la classe
et des comportements qu’on en attend

● Avoir des points d’accès aux attributs privés est
souvent un comportement souhaité

● Une méthode qui permet d’accéder en lecture
à une donnée privée est un accesseur
ou accesseur en lecture ou getter

● Une méthode qui permet d’accéder en écriture
à une donnée privée est un mutateur
ou accesseur en écriture ou setter

106

Accesseurs et mutateurs

● Par convention getters et setters sont préfixés
par get ou set

● Accesseur ou getter d’un attribut m_solde :

float getSolde() const;
ou
float get_solde() const;

● Mutateur ou setter d’un attribut m_solde :

void setSolde(float nouveauSolde);
ou
void set_solde(float nouveauSolde);

!

Noter qu’un getter est
en principe en lecture
seule donc il ne doit
pas modifier les données
de l’objet => const

107

Accesseurs et mutateurs

Une mauvaise compréhension de l’orienté objet :
tous les attributs en privé, mais pour tous un
accesseur et un mutateur publique

class Compte
{
 private :
 /// Attributs
 std::string m_titulaire;
 float m_solde;

 public :
 /// Constructeur(s), Destructeur
 ...
 /// Accesseurs et mutateurs
 std::string getTitulaire() const;
 void setTitulaire(std::string nouveauTitulaire);

 float getSolde() const;
 void setSolde(float nouveauSolde);
};

compte.h

108

Accesseurs et mutateurs

Une mauvaise compréhension de l’orienté objet :
tous les attributs en privé, mais pour tous un
accesseur et un mutateur publique

class Compte
{
 private :
 /// Attributs
 std::string m_titulaire;
 float m_solde;

 public :
 /// Constructeur(s), Destructeur
 ...
 /// Accesseurs et mutateurs
 std::string getTitulaire() const;
 void setTitulaire(std::string nouveauTitulaire);

 float getSolde() const;
 void setSolde(float nouveauSolde);
};

compte.hComme faire des trous
dans un sous-marin !

109

Accesseurs et mutateurs

Une mauvaise compréhension de l’orienté objet :
tous les attributs en privé, mais pour tous un
accesseur et un mutateur publique

Dans un setter on peut
en profiter pour faire
du contrôle des valeurs

Mais l’objet est-il en
situation de décider
ce qu’il convient de faire ?

std::string Compte::getTitulaire() const
{
 return m_titulaire;
}

void Compte::setTitulaire(std::string nouveauTitulaire)
{
 m_titulaire = nouveauTitulaire;
}

float Compte::getSolde() const
{
 return m_solde;
}

void Compte::setSolde(float nouveauSolde)
{
 if (nouveauSolde>=0)
 m_solde = nouveauSolde;
 /// else what ?
}

compte.cpp

110

Accesseurs et mutateurs

Une mauvaise compréhension de l’orienté objet :
pour chaque attribut accesseur / mutateur publique
au final on utilise la classe comme une struct !

client.cppvoid client()
{
 Compte monCompte{"Durand", 100};

 /// Débiter 50 à M. Durand
 float aDebiter = 50;
 monCompte.m_solde -= aDebiter;

client.cppvoid client()
{
 Compte monCompte{"Durand", 100};

 /// Débiter 50 à M. Durand
 float aDebiter = 50;
 monCompte.setSolde(monCompte.getSolde() - aDebiter);

error: 'float Compte::m_solde'
 is private
error: within this context

Avec les accesseurs ça passe...

Mais c’est un peu lourd non ?
C’est ça la programmation objet ?

111

Accesseurs et mutateurs

Une mauvaise compréhension de l’orienté objet :
pour chaque attribut accesseur / mutateur publique
au final on utilise la classe comme une struct !

client.cppvoid client()
{
 Compte monCompte{"Durand", 100};

 /// Débiter 50 à M. Durand
 float aDebiter = 50;

 if (aDebiter <= monCompte.getSolde())
 monCompte.setSolde(monCompte.getSolde() - aDebiter);
 else
 {
 std::cout << "échec de débit " << aDebiter;
 /// Traiter l'échec ...
 } Avec les accesseurs ça passe...

Mais c’est un peu lourd non ?
C’est ça la programmation objet ?

112

Accesseurs et mutateurs

Une bonne compréhension de l’orienté objet :
on a juste les accesseurs / mutateurs nécessaires
pour les comportements attendus de l’objet

client.cppvoid client()
{
 Compte monCompte{"Durand", 100};

 /// Débiter 50 à M. Durand
 float aDebiter = 50;

 if (monCompte.solvable(aDebiter))
 monCompte.debiter(aDebiter);
 else
 {
 std::cout << "échec de débit " << aDebiter;
 /// Traiter l'échec ...
 } Avec les bons accesseurs ça passe...

Et ça s’utilise sans trop de lourdeur.

!

113

Accesseurs et mutateurs

Une bonne compréhension de l’orienté objet :
on a juste les accesseurs / mutateurs nécessaires
pour les comportements attendus de l’objet

client.cpp

Avec les bons accesseurs ça passe...
Et ça s’utilise sans trop de lourdeur.

void client()
{
 Compte monCompte{"Durand", 100};

 /// Débiter 50 à M. Durand
 float aDebiter = 50;

 if (monCompte.solvable(aDebiter))
 monCompte.debiter(aDebiter);
 else
 {
 std::cout << "échec de débit " << aDebiter;
 /// Traiter l'échec ...
 }

114

Accesseurs et mutateurs

● On a envie (ça se discute) d’appeler les méthodes
solvable un accesseur et debiter un mutateur

● Peu importe : on comprend qu’il faut éviter que
le code client gère lui même des « détails »

● Pas toujours si simple !
● Le code client doit déléguer les opérations

à l’objet mais l’objet a une vision locale de
ses données, seul le code client a une vision
plus large du contexte, ça demande de
l’expérience mais la plupart du temps on peut
descendre les infos utiles en paramètres...

● Les « cas à problème » remontent à l’appelant

115

Accesseurs et mutateurs

Une façon de « remonter à l’appelant » les cas
à problème (on verra une alternative : les exceptions)

client.cppvoid client()
{
 Compte monCompte{"Durand", 100};
 float aDebiter = 50;

 if (!monCompte.debiter(aDebiter));
 {
 std::cout << "échec de débit " << aDebiter;
 /// Traiter l'échec ...
 }

bool Compte::debiter(float debit)
{
 if (!solvable(debit))
 return false;

 m_solde -= debit;
 return true;
}

compte.cpp

116

Accesseurs et mutateurs

En résumé : choisir soigneusement les méthodes !
compte.h

!

class Compte
{
 private :
 /// Attributs privés
 std::string m_titulaire;
 float m_solde;

 public :
 /// Méthodes publiques (interface)
 Compte(std::string titulaire, float solde_init=0);
 ~Compte();

 std::string getTitulaire() const;
 float getSolde() const;

 bool solvable(float montant) const;
 void crediter(float credit);
 bool debiter(float debit);
 void afficher() const;
};

void transferer(Compte& debiteur, Compte& beneficiaire, float montant);

Ceci n’est pas un corrigé officiel :
tout dépend du CDC !

Ici on a choisi de ne
pas avoir de mutateur
de m_titulaire :
on considère que cette
valeur doit être invariante
dès la création de l’objet

Le solde est modifiable
mais pas directement ...

// Ceci n’est pas une méthode mais une fonction associée à la classe

117

COURS 5

A) La classe en C++
B) L’encapsulation
C) Les méthodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)
F) Destructeur
G) Accesseurs et mutateurs
H) Composition entre classes

118

Composition entre classes

COMPOSITE

COMPOSANTS

119

Composition entre classes

● On a déjà composé une classe dans une classe
puisqu’on a utilisé un attribut std::string titulaire
dans la classe Compte et...

● std::string est une classe !
● C’est une classe bien conçue : l’utiliser comme

type attribut ne pose aucun problème
● On peut bien sûr composer avec nos propre

classes selon nos besoins
● Avec les « objets-valeurs » ça se passera bien :

objets qui ne dépendent de personne, non
partagés (sémantique par valeur) et copiables

!

120

Composition entre classes

● On a déjà parlé d’une struct Coords, on peut
la transformer en classe et l’utiliser comme
composant d’un nouveau type Cadre :

!

Cadre

- couleur : String

Coords

- x : Real
- y : Real

 1 position 1 taille

O 1 32 4 x

y

1

2

3

5

4

position

taille

class Cadre
{
 private :
 Coords m_position;
 Coords m_taille;
 std::string m_couleur;

 public :
 ...
};

class Coords
{
 private :
 double m_x;
 double m_y;

 public :
 ...
};

cadre.h

coords.h

121

Composition entre classes

● Utiliser une classe comme composant implique
souvent de faire un peu de plomberie au niveau
des constructeurs (il faut construire les attributs)

cadre.cppCadre::Cadre(double xpos, double ypos,
 double largeur, double hauteur,
 std::string couleur)
 : m_position{xpos, ypos},
 m_taille{largeur, hauteur},
 m_couleur{couleur}
{ }

Coords::Coords(double x, double y)
 : m_x{x}, m_y{y}
{ }

coords.cpp

122

coords.cpp

Composition entre classes

● Si la classe composante propose des opérations
intéressantes le travaille de la classe composite
est simplifié (ici : calcul vectoriel direct)

Coords operator+(const Coords& a, const Coords& b)
{
 return {a.m_x + b.m_x, a.m_y + b.m_y };
}

Coords operator-(const Coords& a, const Coords& b)
{
 return {a.m_x - b.m_x, a.m_y - b.m_y };
}

cadre.cpp

void Cadre::calerBasDroite(const Cadre& parent)
{
 m_position = parent.m_position + parent.m_taille - m_taille;
}

123

client.cpp

Composition entre classes

● Le client de la classe composite profite de
fonctionnalités avec un haut niveau d’abstraction

cadre.cppvoid Cadre::calerBasDroite(const Cadre& parent)
{
 m_position = parent.m_position + parent.m_taille - m_taille;
}

void client()
{
 Cadre grand(1, 2, 4, 2, "green");
 Cadre petit(2, 1, 1, 1, "red");

 petit.calerBasDroite(grand);
 petit.afficher();
}

O 1 32 4 x

y

1

2

3

5

4

O 1 32 4 x

y

1

2

3

5

4

position=(4, 3)
taille=(1, 1)
couleur=red

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110
	Diapo 111
	Diapo 112
	Diapo 113
	Diapo 114
	Diapo 115
	Diapo 116
	Diapo 117
	Diapo 118
	Diapo 119
	Diapo 120
	Diapo 121
	Diapo 122
	Diapo 123

