Robin FERCOQ

|-|!| ECE PARIS NS e 019

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++



r POO - C++

I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des donneées
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++ : complements 6. UML et C++, associations
/. Conteneurs & C++ : la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Modeles objets avances 9. Modele composite et graphismes
10.Exceptions, flots, fichiers .. 10.Persistance / fichiers / except.
11.Templates cote developpeur 11.Développement de templates

12.Gestion méemoire / smarts ptrs 12.Soutenance de projet ...



Classes & C++ : bases

GO forward _ . % Turn left

‘ % Back off )
BATTERIES i

INCLUDED

Turn Right

Car Door
Open/shut



COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes



COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes



La classe en C++

implémentation

code client



I La classe en C++

I Pour illustrer le format général de la classe en C++

reprenons la classe Compte, avec 2 attributs
I ( modele tres simplifié : plus tard le titulaire sera un objet... )

> titulaire : chaine de caracteres
> solde : une valeur flottante

et 5 méthodes

> Créer un compte avec solde initial parametrable
> Libérer un compte

> Afficher un compte

> Crediter un compte avec crédit en parametre

> Debiter un compte avec debit en parametre




La classe Compte en notation UML normalisée

1
La classe en C++ G

Compte

- titulaire : String
- solde : Real

+ Compte (titulaire : String, solde _init : Real = 0.0)
+ ~Compte ()

+ afficher ()

+ crediter ( credit : Real )

+ debiter ( debit : Real )




I La classe en C++ a

La classe Compte en notation UML normalisée

Membres privés Classe

/ Attributs
Compte * /
3Litu|aire - String
-/solde : Real Méthodes
+ Compte (titulaire : String, solde _init : Real = 0.0)
+|~Compte ()
+ [afficher ()
+/crediter ( credit : Real )
+/ debiter ( debit : Real )

Méthode créer : Constructeur&
Membres publics Méthode libérer : Destructeur




I La classe en C++

I En C++ on distingue

I [interfaced'une classe et
J'implémentation-d'une classe

sont le code utilisé ou appelée

c’est le code qu'on doit 35 banque._cpp
ecrire pour developper 58 Source:
la classe o] comptecpp

------ main.cpp

—-E? Headers




I La classe en C++

I * Attention confusion de terminologie OBJET / C++
* En termes de conception orientée objet

I Compte

- titulaire : String
- solde : Real

+ Compte (titulaire : String, solde_init : Real = 0.0)
INTERFACE OBJET | | + ~Compte ()

Membres publiques Iiﬁﬂﬁﬁi?ﬁlmd-t Real )
< ) 1 It .
utilisables parle client | |, gepiter ( debit : Real )

INTERFACE OBJET # INTERFACE C++



I La classe en C++ 0

* Attention confusion de terminologie OBJET / C++
* En termes de C++ interface = déclarations du .h

///@éclaratio® d'un type "compte en banque" Ccompte.h D
class Compte
{ INTERFACE

/// Attributs :(ﬂéglaration C++

private :
std::string m_titulaire;
float m_solde;

/// Méthodes :(&éElaratiEES)(prototypes)
public :
Compte(std::string titulaire, float solde init=90);
~Compte();
void afficher() const;
void crediter(float credit);
void debiter(float debit);

}s



La classe en C++ 0

* C’est l'interface OBJET qui doit rester stable :
la changer conduit a casser le code appelant

/// Déclaration d'un type "compte en banque” Ccompte.h D
class Compte , _
Seules les méthodes de I'objet
. . . ont acces aux données internes
/// Attributs : déclarations / déclarées « private » ceci ne fait
private e«— pas partie de l'interface OBJET :
std::string m titulaire; on peut changer des choses ici

float m_solde; sans casser le code client

/// Méthodes : déclarations (prototypes)

public :

Compte(std::string titulaire, float solde init=0);
~Compte();

void afficher() const;

void crediter(float credit);
void debiter(float debit);

Les méthodes publiques constituent
'interface OBJET de la classe :
changer les formats d’appel de
'interface casse le code client

On peut toujours ajouter de
nouvelle méthode sans rien casser

}s




I La classe en C++

I * C’est l'interface OBJET qui doit rester stable :
la changer conduit a casser le code appelant

Ccompte.iS\
class Compte
{ INTERFACE AU SENS C++

technique : fichier a inclure

private : -
pour utiliser la classe

public : ~

INTERFACE AU SENS OBJET
mode d’emploi a respecter pour
utiliser la classe




I La classe en C++ G

Le fichier .cpp donne I''mplémentation (définitions)
des methodes déclarées dans le fichier.h

#include "compte.h" Ccompte.cpp>
#include <iostream> IMPLEMENTATION
#include <string>
#include <stdexcept> CH+

ef onsd

Compte: :Compte(std::string titulaire, float solde init)

{ ...
Compte: :~Compte()

{ ...

void Compte::afficher() const

{ ... }

void Compte::crediter(float credit)
{ ... }

void Compte: :debiter(float debit)

{ ... }

std: :string Compte::getTitulaire() const
{ ...}



I La classe en C++

I Le fichier .cpp donne I''mplémentation (définitions)
des methodes déclarées dans le fichier.h

I CCompte.cpp>

IMPLEMENTATION
C++

Code d’'implémentation,

void Compte::crediter(float credit) f}ﬁﬁiepfigzitopsjgra_rtie de
{ oo } on peut changer des choses ici

sans casser le code client
a condition que la méthode
continue de jouer le méme réle




COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes



L’encapsulation

SOOTT LOHDGH AT OTT LOHIH AR O PT) LOHDOH



L’encapsulation

L ‘'encapsulation est la « protection des donnees »
mails aussi leur dissimulation derriere l'interface

void Compte::crediter(float credit)

{
m_solde += credit; 2020
} S T

void Compte::crediter(float credit)
{ 2021

sql::Driver* driver = get_driver_instance();
sql::Connection* con =
driver->connect("tcp://myBank:3306", "root", "1234");

con->setSchema("ClientAccounts");

compte.cpp

Implémentation d’une 1% version
du logiciel : utilisation d’un attribut
pour stocker le solde du client

Implémentation d’une 2°™ version
du logiciel : utilisation d'une base
de donnée pour stocker le solde
du client.

L'attribut m_solde disparait de la
classe, il est remplacé par une
clé de table de base de donnée

G




L’encapsulation

L ‘'encapsulation est la « protection des donnees »
mails aussi leur dissimulation derriere l'interface

f{:laSS Compte compte_h
private : 2020
std::string m titulaire; Implémentation d’une 1 version
float(m_so1dg; <— - du logiciel : utilisation d’un attribut
. instable pour stocker le solde du client
public :
<void crediter(float credit); >
1 T stable
J
2021 P . ’ eme H
class Compte Implémentation d’'une 2°™ version
{ P du logiciel : utilisation d’'une base
. de donnée pour stocker le solde
private : du client
std::string m_ti aire; | client.
std::uinté4_t 5 L'attribut m_solde disparait de la
public : instable classe, il est remplacé par une
— . : |é de tabl :
<void crediter(float credit); > cle de table de base de donnee
Tt stable

}s



L’encapsulation

Le code client n’est pas exposé aux changements
de représentation interne des entités

client.cpp

. client(...)

std: :vector<Compte*> cpts;

éb%s[i]—>crediter(x);
ébfs[recipient]—>crediter(y);
éb%s[rollback]—>crediter(z);

~ 200000 lignes de code

\/

class Compte 2020
{

compte.h

private :
std: :string m _titulaire;
float m_solde;

public :
void crediter(float credit);
¥
Elass Compte 2021 compte.h

private :
std: :string m _titulaire;
std: :uint64_t m_dbKey;

public :
void crediter(float credit);

}s



L’encapsulation

Le code client n’est pas exposeé aux changements
de representation interne des entités

client.cpp

. client(...)

std: :vector<Compte*> cpts;

éﬁfs[i]—>crediter(x);

class Compte 2020

{

compte.h

private :
std: :string m_titulaire;
float m_solde;

public :
» Vvoid crediter(float credit);

e ~
cpts[recipient]->crediter(y);

/

éﬁfs[rollback]—>crediter(z);

~ 200000 lignes de code

\/

\

gkfj;;; -

/
/{lass Compte 2021 compte.h

private :
std: :string m_titulaire;
std: :uint64_t m_dbKey;

public :
void crediter(float credit);

¥



L’encapsulation

Le code client n’est pas exposeé aux changements
de representation interne des entités

client.cpp

. client(...)

std: :vector<Compte*> cpts;

éﬁfs[i]—>crediter(x);
ébfs[recipient]—>crediter(y);
‘e AN
ébfs[rollback]—>crediter(z);\\\

~ 200000 lignes de code

\/

f{:lass Compte 2020 compte.h
private :
std: :string m_titulaire;
float m_solde;
public :
void crediter(float credit);
}s5
N <{:1ass Compte 2021 compte.h
AN private :

std: :string m_titulaire;
std: :uint64_t m_dbKey;
~
\NA .

voia crediter(float credit);

¥




L’encapsulation

Supposons un non-respect de I'encapsulation

des données membres ...

-

client.cpp

. client(...)

std: :vector<Compte*> cpts;

éﬁfs[i]—>m_solde += X;
éﬁfs[recipient]—>m_solde += y;

éﬁ%s[rollback]—>m_solde += Z;

~ 200000 lignes de code
\/

f{:lass Compte 2020 compte.h
public :
std: :string m_titulaire;
float m_solde;
public :
}s5
<{:1ass Compte 2021 compte.h
public :

std: :string m_titulaire;
std: :uint64_t m_dbKey;

public :

¥



L’encapsulation

Supposons un non-respect de I'encapsulation

des données membres .

client.cpp

. client(...)

std: :vector<Compte*> cpts;

/

/

éﬁfs[recipient]—>m_solde += Y

éﬁfs[i]—>m_solde += X;

éﬁfs[rollback]—>m_solde += Z;

~ 200000 lignes de code

\/

class Compte 2020

{

compte.h

public :
std: :string m_titulaire;

///////,rfloat m_solde;

public :
<{:1ass Compte 2021 compte.h
public :

std: :string m_titulaire;
std: :uint64_t m_dbKey;

public :

¥




L’encapsulation

Supposons un non-respect de I'encapsulation

des données membres .

client.cpp

. client(...)

std: :vector<Compte*> cpts;

~ 200000 lignes de code

\/

/[ /

class Compte 2020 compte.h
{
public :
std: :string m _titulaire;
float m_solde;
public :
}s5
class Compte 2021 compte.h
\i\“public :
~~a ) std: :string m_titulaire;
— == std::uint64_t m_dbKey;
public :

¥




I

L’encapsulation

Le risque n’est pas que ca passe inapercu !
Le risque est de passer beaucoup plus de temps...

|

client.cpp

client(...)

std: :vector<Compte*> cpts;

~ 200000 lignes de code
Y ~ 477 occurrences de m_solde

/[ /

en =en +=en -= en == efc...

class Compte 2020 compte.h
{
public :
std: :string m_titulaire;
float m_solde;
public :
}s5

class Compte

\i\“public :

N ~Hy std::string m_titulaire;
—» == std::uint64_t m_dbKey;

2021 compte.h

public :

¥




r L’encapsulation

I » Resultat du non respect du principe
d’encapsulation des données membres

— Ou on va renoncer a faire un changement
necessaire de la représentation interne

— Ou on va perdre beaucoup de temps
avec un risque considerable d’introduire
des erreurs, courir apres les incohérences...

— Dans les 2 cas on perd sur la concurrence
* [’encapsulation n’est pas une commodite

» C’est la viabilite a moyen et long terme
d’un systeme logiciel complexe en évolution



r L’encapsulation a

I * Dans tous les cas on ne doit proposer au client
(cad mettre en public) que les membres qui ont
I vocation a rester stables a long terme (+20 ans)

* [ 'expérience montre que c’est possible pour des
meéthodes bien concues, pas pour les attributs

membre

>
méthode attribut
: Oul NON
. Letale C'est 'interface OBJET Mauvaise pratique
acces
Y Traitements auxiliaires | Données "encapsulées”




L’encapsulation

* Selon le contexte, I'entreprise, 'expérience, la
case attribut publique est plus ou moins taboue

* En C++ une struct est une classe en acces
publique par défaut : pourquoi garder la struct ?

acces

\J

membre

>
méthode attribut
. Oul struct !
public C’est I'interface OBJET Mauvaise pratique ?
private POSSIBLE OUl
Traitements auxiliaires | Données "encapsulées”




L’encapsulation

I * compatibilite avec C => struct en C++

* Elle peut étre utilisee apres mdre reflexion :
I pour grouper des données dont on pense
qu’elle seront stables sur le long terme...

* Pour des petits objets « techniques »

acces

\J

méthode attribut
. Oul peut-étre (struct)
public C’est I'interface OBJET Avec circonspection
private POSSIBLE OUl
Traitements auxiliaires | Données "encapsulées”




r L’encapsulation a

I * Malis attention il n’y a pas qu’un probleme de
stabilitée des attributs: il y a aussi un probleme de
I cohérence des données

L ‘'usage systematique d’une interface composee
de méthode publique peut la garantir...

* Pour trouver la date du lendemain vous préférez
bidouiller directement les attributs jour/mois/année

d’un objet struct Date ? Les mois a 30 a 31 jours ?
Le mois de fevrier ? Les année bissextiles ? L’internationalisation ?

* Ou passer par la methode nextDay de class Date
Date demain = aujourdhui.nextDay( );



L’encapsulation

Il est possible (frequent) d’avoir des méthodes
privees : traitements auxiliaires internes ...

class Compte compte.h
{
En 2021 cette méthode est utile
private : aux autres méthodes de la classe.
std::string m_titulaire; Peut-étre qu’en 2024 elle disparaitra.
std: :uint64 t m dbKey; Et elle ne correspond pas a un

service direct qu’'un objet Compte

sgl: :Connection* m_sqglConnex; . . .
joue logiquement pour le code client.
’/ Elle ne fait donc pas partie de
. I'interface OBJET, elle est privée !
private :

void ouvrirConnexionDB();

public :
Compte(std::string titulaire, float solde init=0);
~Compte();
void afficher() const;
void crediter(float credit);
void debiter(float debit);

s



r L’encapsulation

I En dehors des cas particuliers :

Les fonctions membres (méthodes) sont publiques
I — en tout cas les methodes qui intéressent le client

Les données membres (attributs) sont privées

méthode attribut
) Oul
public C’est I'interface
OBJET
0]8]

private POSSIBLE Données
Traitements auxiliaires " o
encapsulées




r L’encapsulation

I L’ordre de deéclaration des sections private/public
n’a pas d’importance techniquement...

on utilise le méme ordre

I Notation « naturelle » Ccompte.hD
que la notation UML

class Compte

{
Compte .
- attribut1 >»pr‘1vate :
- attribut2
+ methode1( ... ) public :
+ methode2( ... ) >
+ methode3( ... )
¥

Pour faciliter le passage du modele UML au C++
pour l'instant c’est 'ordre de declaration qui sera utilisé




r L’encapsulation

I L’ordre de deéclaration des sections private/public
n’a pas d’importance technigquement mais...

Notation recommandée a terme Ccompte.h >
'interface OBJET en 1°¢"!
class Compte
{
Compte .
- attribut1 public : j

— | - attribut2
+ methode1( ... ) private :
+ methode2( ... )

+ methode3( ... )

N
}s
Quand on fait le modele objet Quand on fait #include pour
il est frequent de commencer utiliser la classe on s’intéresse
d‘abord par avant tout au « mode d’emploi »
La classe UML presente les donc au met l'interface OBJET en 1¢

données au dessus des methodes et on "enterre” les


https://google.github.io/styleguide/cppguide.html#Declaration_Order

37

S

COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes






Les meéthodes, this, const

Les méthodes sont comme des sous-programmes
avec un parametre implicite : I'objet cible de I'appel

compte.h
class Compte

{

private :
std::string m_titulaire;
float m _solde;

public :
Compte(std::string titulaire, float solde init=90);
~Compte();
void afficher() const;
void crediter(float credit);
void debiter(float debit);

}s



Les méthodes, this, const

Les méthodes sont comme des sous-programmes
avec un parametre implicite : I'objet cible de I'appel

compte.h
class Compte

{ Données membres préfixées parm_
convention utile pour éviter les confusions

private :
std::string m_titulaire;
float m _solde;

Valeur par défaut d'un paramétre

Parameétres, préfixés par _
public : y  ounon préfixés (plus léger)

Constructeur— Compte(std: :string titulaire, float solde_init=0);

Destructeur— ~Compte() ; ;/x
void afficher() const; L'objet de type Compte, cible de I'appel,

void crediter(float credit); n'est pas mentionné explicitement :
void debiter (-F]_oat dEbit) ; il est transmis implicitement a la méthode

}; v Ici pas de préfixe
Compte::



Les méthodes, this, const

L’ implémentation d’'une meéthode dans le cpp

compte.cpp

void c rediter(float credit) | |
1\ J<—_ L'objet de type Compte, cible de I'appel,

{ . ‘~ompte, cit
_ P n'est pas mentionné explicitement :
t= credit; : ., il est transmis implicitement a la méthode
} ‘\_ Les attributs privés
inaccessible pour le
Compte:: code client de la classe
Opérateur de résolution sont accessible aux

de portée methodes de la classe




Les méthodes, this, const

I L’ implémentation d’une methode dans le cpp :
on traite un objet Compte a la fois ! Lequel ?

compte.cpp

{
¥

void Compte::crediter(float credit)
Bon sang

mais qui est
credité ?!

m_solde += credit;




Les meéthodes, this, const G

I On traite un objet Compte a la fois :
celui qui sert de cible a I’'appel de methode

3 compte.c
I void Compte::crediter(float credit) Code appele pte.cpp
{
m_solde += credit;
}
void client() Code appelant client.cpp
{

Compte a{"zZig", 0};
Compte b{"Zag", 0};

a.crediter(20);
b.crediter(30);




Les meéthodes, this, const G

I On traite un objet Compte a la fois :
celui qui sert de cible a I’'appel de methode

{
¥

3 compte.c
I void Compte::crediter(float credit) Code appele pte.cpp

m_solde += credit;

this object

AN

void client() > Code appelant client.cpp
{

Compte a{"zig", 0};
Compte b{"zZag", 0};

(a)crediter(20);




Les meéthodes, this, const G

I On traite un objet Compte a la fois :
celui qui sert de cible a I’'appel de methode

3 compte.c
I void Compte::crediter(float credit) Code appele pte.cpp
{
m_solde += credit;
¥
this object
AN

void client() Code appelant client.cpp

Compte a{"zig", 0};
Compte b{"zZag", 0};

Cb)crediter(30);




Les meéthodes, this, const G

I On traite un objet Compte a la fois :
celui qui sert de cible a I’'appel de methode

3 compte.c
I void Compte::crediter(float credit) Code appele pte.cpp
{
m_solde += credit;
}

1°" appel, on modifie

2°™ appel, on modifie
le solde du compte a

le solde du compte b

AN

void client() > Code appelant client.cpp
{

Compte a{"zig", 0};
Compte b{"zZag", 0};

r*editer*(Z@);
(b)crediter(30);




Les meéthodes, this, const

I Ca fonctionne comme si I'appelant envoyait
par adresse une struct a modifier

void Compte: :crediter void crediter(Compte* this,
( float credit) float credit)
{ {
m_solde += credit; this->m_solde += credit;
} }
C++
void client() void client()
{
Compte a{"zZig", 0}; Compte a={"zig", 0};
Compte b{"Zag", 0}; Compte b={"Zag", 0};
a.crediter(20); crediter(&a, 20);
b.crediter(30); crediter(&b, 30);
C++



Les meéthodes, this, const

L’'objet de cible de I'appel est donc bien passé a
I'appelant : c’est le « parametre » this implicite

void Compte: :crediter
(Ufloat credit)
{

@m_solde += credit;
} Objet cible implicite
Méthode C++ : this objet cible

du traitement est
implicite =~ C++

void crediter(Compte* this,]
float credit)
{

m_solde += credit;

} Désignation explicite objet cible

Fonction C : this objet cible

du traitement est
explicite c

void client()

{
Compte a{"ZzZig", 0};
Compte b{"Zag", 0};
crediter(20);
crediter(30);
Cibler un objet C++

void client()

Compte a={"zZig", 0};
Compte b={"Zag", 0};

crediter(&al, 20);
crediter (&b, 30);

Passage par adresse explicite €



Les meéthodes, this, const

Si ce « parametre » this est implicite comment
le qualifier, par exemple le rendre const ?

void Compte::afficher() const

{

std: :cout << m_solde;

void afficher(const|Compte* this))
{

printf("%f", this->m_solde);
}

}
C++
void client()
{
Compte a{"ZzZig", 0};
Compte b{"Zag", 0};
a.afficher();
b.afficher();
C++

void client()

Compte a={"zZig", 0};
Compte b={"Zag", 0};

afficher(&a);
afficher(&b);



Les meéthodes, this, const

En qualifiant la methode de const : la qualification
est indiquée apres le prototype (.h et .cpp)

void Compte::afficher()Cconst>

{
std: :cout << m_solde;
Pas de param.
} a qualifier !
L’objet cible est
constant ! C ++
void client()
{
Compte a{"ZzZig", 0};
Compte b{"Zag", 0};
a.afficher();
b.afficher();
C++

void afficher(const|Compte* this))
{

printf("%f",/this->m_solde);

L’objet cible est
constant ! C

void client()

Compte a={"zZig", 0};
Compte b={"Zag", 0};

afficher(&a);
afficher(&b);



Les méthodes, this, const 0

I En qualifiant la methode de const on interdit toute
modification des données de l'objet cible

I void Compte::afficher()Cconst>

{

std::cout << m_solde;
if ( m_solde=0 ) std::cout << "Vide!";

error: assignment of member
'Compte::m solde'
in read-only object

void client()

Compte a{"ZzZig", 0};
Compte b{"zZag", 0};

a.afficher();
b.afficher();




Les meéthodes, this, const G

I Le pointeur this sur 'objet cible de I'appel
n’est pas une fiction : il est utilisable explicitement

void Compte::afficher() const compte.cpp
{ /ﬁUtilisation explicite, pas utile ici mais possible
std::cout << this->m_solde;
std: :cout << this;
}
void client() client.cpp

Compte a{"zig", 0};

Compte b{"Zag", 0};

A chaque appelle « le compilateur »
renseigne automatiquement le pointeur this

de la méthode avec I'adresse de 'objet cible
this est de type Classe™ ( Compte* sur cet exemple)

a.afficher();
b.afficher();




Les meéthodes, this, const G

I Fonctions : I'objet peut étre passeé par valeur (copie)
par réféerence (pas de copie) par adresse (pas de copie)

intermediaire.cpp
void testVal(Compte c) { c.afficher(); }

void testRef(Compte& refC) { refC.afficher(); }

void testPtr(Compte* ptrC) { ptrC->afficher(); }

void client()

client.cpp
{ Compte a{ " Zig" s @}; \ Attention aux notations

spécifiques pointeurs

Méthode pointée ->
testVal(a);

Adresse de l'objet &
testRef(a); “—”//////////////////_
testPtr(&a);




Les meéthodes, this, const G

I Passage d’objet en parametre de methode :
pas de regles particuliere, idem que fonctions

compte.cpp
void Compte::crediter(float credit, Compte& debiteur)
if ( debiteur.m _solde>=credit )
{
debiteur.m _solde -= credit;
m_solde += credit;
}
}
void client() client.cpp

Compte a{"ZzZig", 0};
Compte b{"Zag", 0};

a.crediter(30);
b.crediter(20, a);




Les meéthodes, this, const G

Comme pour les fonctions, les méethodes peuvent
étre surchargées (on ne se génera pas)

compte.cpp
void Compte::crediter(float credit, Compte& debiteur)
if ( debiteur.m _solde>=credit )
{
debiteur.m _solde -= credit;
m_solde += credit;
}
}
void client() client.cpp

Compte a{"ZzZig", 0};
Compte b{"Zag", 0};

a/LrediterX30);
b\crediterf20, a);



Les méthodes, this, const

I En C++ (idem Java, C#...) les restrictions d’acces
sont de niveau classe, pas de niveau objet (smalltalk)

compte.cpp

I void Compte::crediter(float credit, Compte& debiteur)

. - ] Zag peut non seulement lire
if (Cdebiteur. m_s@ﬁcr‘ed it )  mais aussi modifier directement

{ les attributs privés de Zig
@%ﬂ‘ .m_solde>-= credit;
m_soIdé += credit; L es difféerentes instances d’une
} méme classe sont intimes entre elles
} Chouette ! Est-ce une bonne idée ?
void client() client.cpp

Compte a{"ZzZig", 0};
Compte b{"Zag", 0};

a.crediter(30);
b.crediter(20, a);




Les meéthodes, this, const

Méme si une méthode a acces direct aux datas de
this et des objets de la méme classe, on refléchit !

void Compte::crediter(float credit, Compte& debiteur) compte.cpp

if ( debiteur.solvable(credit) )
{

debiteur.debiter(credit);
crediter(credit);

¥

Moins de promiscuité avec

les attributs privés de this

et de 'objet regu en parametre :
L’ambiance est plus saine

void client()

Compte a{"ZzZig", 0};
Compte b{"Zag", 0};

a.crediter(30);
b.crediter(20, a);

client.cpp



Les meéthodes, this, const

Eviter de manipuler directement les attributs prives
conduit a décrire de hombreux « comportements »

compte.cpp
bool Compte::solvable(float montant) g, programmation objet
{ _ on n’écrit pas une nouvelle
} return montant <= m_solde; méthode parce qu’il y a beaucoup

de choses a y faire. De nombreuses
meéthodes seront tres courtes mais
offrent un meilleur profil d’utilisation

pour le code client...

Et la classe elle méme est sa 1°° cliente !

void Compte::crediter(float credit, Compte& debiteur) compte.cpp

if ( debiteur.solvable(credit) )
{

debiteur.debiter(credit);
crediter(credit);




Les meéthodes, this, const

I Finalement quand on veut manipuler "symetriguement”
2 objets on n’utilisera pas une methode mais une fonction

void transferer(Compte& debiteur,
Compte& beneficiaire,
float montant)

{
if ( debiteur.solvable(montant) )
{
debiteur.debiter(montant);
beneficiaire.crediter(montant);
}
}

compte.cpp

void client() client.cpp

{

Compte a{"zZig", 0};
Compte b{"zZag", 0};

a.crediter(30);

transferer(a, b, 20);




Les méthodes, this, const

| ¢

class Thing -
malin.
q ain.cpp

private :
std::string m_stuff;
std: :vector<int> m_moreStuff;

public :
char doThat (OtherThing& z);
void doThere(int x, int y);

}s

char Thing::doThat (OtherThing& z)
{

}

void Thing::doThere(int x, int y)
{

}

int main()

Thing myThing{...};
myThing.doThere(6, 18);

possible
+
recommandé

Quick-and-dirty dev. of a class : all in main.cpp
Des que ca fait plus de 50 lignes on separe™y

glass Thing compte.h
private :
std::string m_stuff;

std::vector<int> m_moreStuff;

public :
char doThat (OtherThing& z);
void doThere(int x, int y);

}s

char Thing::doThat (OtherThing& z)
{

} e compte.cpp

void Thing::doThere(int x, int y)
{

}

int main() main.cpp

Thing myThing{...};
myThing.doThere(6, 18);




Les méthodes, this, const 0

Séparer interface / implémentation / code client

#include "OtherThing.h" combpte.h #include "compte.h"

X . . ‘ m .
#include <string> P #include <iostream> compte.cpp
#include <vector>
class Thing char Thing::doThat (OtherThing& z)

{ _ {
private :
std: :string m_stuff; }

std::vector<int> m_moreStuff;
void Thing::doThere(int x, int y)

public : {
char doThat (OtherThing& z); }
void doThere(int x, int y);
}s5
interface implémentation
#include "compte.h" client.cpp

##tinclude <iostream>

void client()

Thing myThing{...};
myThing.doThere(6, 18);

code client



62

Les meéthodes, this, const G

Format général appele / appelant

T ®

Code appele classe.cpp
TypeRetour Classe::methode(Typel paramil, .. )83";’:5
{
m_attributl .. paraml ..
m_attribut2 .. 1if else for while ..
return ..
}
Code appelant client.cpp

objetCible.methode(paraml, .. )



63

D

COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes



Cycles de vie des objets

Création Utilisation

Destruction




Cycles de vie des objets 0

Cycle de vie objet : creation-utilisation-destruction
Les objets automatiques a privilegier

void Client()
Compte a{...};

Compte b{...};

La destruction des objets automatiques

if (...) est automatique !
{ A la fin du scope l'objet est détruit
Compte e{...}; Fin scope = fermeture bloc { } ou return
} L’ordre de construction est toujours celui des déclarations

L’ordre de destruction est toujours l'ordre inverse
Dernier objet construit Premier détruit !
Principe de pile ( Last In First Out)

Le langage C++ est fortement structuré, tout bloc ouvert doit étre fermé :
) les variables automatiques offrent une garantie forte de ne pas fuir ...




Cycles de vie des objets 0

Cycle de vie objet : creation-utilisation-destruction
Les objets automatiques structurellement safe !

void Client() & déclaration directe
/{fCompte af{...}; )( } (automatique fin scope)
b/fCompte b{...};

La destruction des objets automatiques

if (...) est automatique !
{ A la fin du scope l'objet est détruit
e é Compte e{...}; Fin scope = fermeture bloc {} ou return
> 4 L’ordre de construction est toujours celui des déclarations

L’ordre de destruction est toujours l'ordre inverse

Dernier objet construit Premier détruit !
Principe de pile ( Last In First Out)

\ Le langage C++ est fortement structuré, tout bloc ouvert doit étre fermé :
\_§ les variables automatiques offrent une garantie forte de ne pas fuir ...



Cycles de vie des objets a

I Cycle de vie objet : creation-utilisation-destruction
Les objets dynamiques peuvent fuir facilement

void Client() Objets dynamiques sont persistants, ils survivent a la fin du scope
La construction d’un objet dynamique est manuelle avec new
La destruction d’un objet dynamique est manuelle avec delete
Oubli de delete et perte du pointeur => fuite mémoire
X
Compte* ¢ = new Compte{...}; %ompte allouer(...)
Compte* d = nullptr; Compte* r;
%f (eev) F.; new Compte{...};
return r;
d = allouer(...); }
}
delete c: ¥oid liberer(Compte *s)
if (...) if ( s!=nullptr )
liberer(d); delete s;
}
}




Cycles de vie des objets a

Cycle de vie objet : creation-utilisation-destruction

Les objets dynamiques peuvent fuir facilement

void Client() /cil'utilisation de I'allocation
dynamique préesente peu d’interét

f new

objet automatique serait préférable ici ! X delete (manuellement)

*C

Compte* ¢ = new Compte{...};f
Compte* d = nullptr;
if (...)
{
d = allouer(...);
}

delete c; . .
x Si on oublie le delete

if (...) l'espace memoire d’'un
liberer(d); objet Compte est perdu :
sizeof(Compte) octets

Compte *allouer(...)

{
Compte* r;
r = new Compte{...};
return r;

}

void liberer(Compte *s)

{

i%.( s!=nullptr )
delete s;



Cycles de vie des objets a

I Cycle de vie objet : creation-utilisation-destruction
Les objets dynamiques : entités persistantes

void Client() /cil'objet a un cycle de vie complexe | & new
Il doit survivre aux bloc fermants
Il est peut-étre créé, peut-étre pas X delete (manuellement)

On veut éviter de copier ses données

3
new Compte{...}; %ompte allouer(...)

nullptr;

Compte* ¢
Compte* d

* r Compte* r;

%f (ee0) f§r= new Compte{...};
i} tumn o
d = allouer(...); d ]

¥

14 13 .
delete c; *S void liberer(Compte *s)

if ( i%.( s!=nullptr )

ced)
liberer(d); XK delete s;




Cycles de vie des objets a

I Cycle de vie objet : creation-utilisation-destruction
Les objets dynamiques : entités persistantes

void Client() La création/destruction dynamique & new
se fait dans n’importe quel ordre...

X delete (manuellement)

*C
new Compte{...};
nullptr; )f

*
Compte* c Compte allouer(...)

Compte* d

Compte* r;

%f (evn) = new Compte{...};
*d return r;

d = allouer(...);

}

14 13 .
delete c; ¢ *S }/01d iberer(Compte *s)
o i%.( s!=nullptr )

ce.)
liberer(d);
Des chevauchements de temps de vies

) d’objets sont possibles : perte de lisibilité '}

X delete s;




Cycles de vie des objets a

I Cycle de vie objet : creation-utilisation-destruction
Les objets automatiques / dynamiques

void Client() & déclaration directe % new
a/{fCompte al...}; X } (automatique fin scope)| | X delete (manuellement)

e 3
fCompte b{...}; C .
/‘ Compte* € = new Compte{...};f Compte allouer(...)
Compte* d = nullptr; Compte* .
11: (o) = new Compte{...};
fCompte el.. ks *d return r
d = allouer(...);
X
{4 11 §
delete c; ¥¢ *S }/01d iberer(Compte *s)
if () if ( s!=nullptr
liberer(d); ¢ delete sI;) )

Sy |



Cycles de vie des objets 0

I Cycle de vie objet : creation-utilisation-destruction

* Les objets automatiques : simples, efficaces,
I locaux, sécures

* Les objets dynamiques : situations complexes,
persistants, risqués

* L es entités sont les objets persistants du modele
La nature imprévisible du cycle de vie des entités
conduit a utiliser I'allocation dynamique...

» C’est une énorme problématique : 2 approches

> Garbage collector : Java, C#... pas de delete !
> C++ objets spécialisés gestion de ressources...



73

R

COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes



Constructeur(s)




r Constructeur(s) 0

Un constructeur est une méthode speciale
Appelée a la création de 'objet pour l'initialiser

class Compte compte.h
{ private :

std::string m_titulaire;

float m_solde;

public :
Compte(std::string titulaire, float solde init=90);

}s

Compte: :Compte(std::string titulaire, float solde init) compte.cpp
{

m_titulaire = titulaire;
m_solde = solde_init;
}
void client() client.cpp

Compte a{"zig", 100};
Compte b{"Zag"};



r Constructeur(s) 0

Un constructeur a le méme nom que sa classe
Il n’a pas de type de retour, méme pas void !

class Compte compte.h
{ private :

std::string m_titulaire;

float m_solde;

public :

Xstd::str'ing titulaire, float solde_init=0);
. .

]>(Compte:std::str'ing titulaire, float solde init) compte.cpp
{

m_titulaire = titulaire;
m_solde = solde_init;
}
void client() client.cpp

Compte a{"zig", 100},
Compte b{"zZag"};



r Constructeur(s) 0

I Un constructeur ne réserve pas la mémoire
de I'objet créé : la zone memoire pointee par this
I existe déja au début de I'exécution du constructeur

Action générée implicitement par le compilateur
Allocation automatique de la mémoire objet

this = malloc(1*sizeof(Compte))

te::Compte(std::string titulaire, float solde_init) compte.cpp
\

m_titulaire = titulaire; Pas d’allocation dans un constructeur
m_solde = solde_init; On initialise les valeurs des attributs

}

void client() client.cpp

{
Wte a{"zig", 100};



r Constructeur(s) 0

I Le but du constructeur est de livrer un objet dans
un état utilisable par le code client, en genéral
I on souhaite que tous les attributs soient initialises

On peut également faire d’autres actions,
des calculs, des saisies, des ouvertures de fichier...

Compte: :Compte(std::string titulaire, float solde init) compte.cpp
{

std: :cout << "Creation du compte " << titulaire << std::endl;

if ( solde init < 0 )
solde init = 0;

titulaire;
solde init;

m_titulaire
m_solde

}



r Constructeur(s) 0

I Il est frequent que le constructeur commence par
copler directement les valeurs des parametres
dans les attributs : dans ce cas Il est preférable
I d'utiliser la syntaxe spécifique aux constructeurs
dite liste d’initialisation ( # std::initializer list)

Compte: :Compte(std::string titulaire, float solde init) compte.cpp
: m_titulaire{titulaire}, m_solde{solde _init}
{

std::cout << "Creation du compte " << titulaire << std::endl;

if ( m_solde < 0 )
m_solde = 0;




Souvent on n’a pas d’autres actions a faire que
d’initialiser les attributs : dans ce cas le corps
de la méthode reste vide !

80 |
r Constructeur(s) 0

Compte: :Compte(std::string titulaire, float solde init) compte.cpp
: m_titulaire{titulaire}, m_solde{solde _init}

{}

A

Le std::string m_titulaire est directement
créé avec sa valeur finale : plus efficace

Le corps d’un constructeur avec liste d’initialisation
reste souvent vide (il faut quand méme le mettre)




r Constructeur(s) 0

I Le constructeur par défaut est le constructeur
qui sait construire I'objet avec aucun parametre

{ private :

class Compte compte.h
std::string m_titulaire;

float m_solde;
public :
Compte(std::string titulaire, float solde init=90);
}s
Classe sans constructeur par defaut
void client() client.cpp
Compte a{"Zig", 100};
Compte b{"zZag"};
idem | Compte c{}; error: no matching function
Compte c; for call to 'Compte: :Compte()'’




r Constructeur(s) 0

On obtient un constructeur par defaut avec des
valeurs par défaut de parametres d’un constructeur

class Compte compte.h
{ private :
std::string m_titulaire;

float m_solde;
public :
Compte(std: :string titulaireC"™) float solde_initg);
}s
Classe avec constructeur par défaut
void client() client.cpp

Compte a{"zig", 100};
Compte b{"zZag"};

idem Compte C'.{ ¥ Ok c sera un objet initialisé par défaut
Compte c;



r Constructeur(s) 0

I On obtient un constructeur par défaut avec un
constructeur sans parametre

class Compte Surcharge de constructeur ! compte.h
{ private :
std::string m_titulaire;
float m_solde;
. /\ consftructeur avec parametres
public :
Compte(std::string titulaire, float solde init=90);
Compte();
}s A

\ constructeur par defaut

void client() client.cpp
Compte a{"Zig", 100};
Compte b{"Zag"};

idem Compte C'.{ ¥ Ok c sera un objet initialisé par le constructeur par défaut
Compte c;




184
r Constructeur(s) 0

Le constructeur par defaut peut se contenter de
mettre des valeurs « neutres »

class Compte compte.h
{ private :
std::string m_titulaire;

float m_solde;
public :
Compte(std::string titulaire, float solde init=90);
Compte();
}s
Compte: :Compte() compte.cpp
: m_titulaire{""}, m _solde{0}
{1}
void client() client.cpp

Compte Xx;

Ok x et y seront des objets initialisés par le constructeur par défaut
Compte vy;



r Constructeur(s) 0

Le constructeur par defaut peut si ca fait sens
mettre des valeurs spécifiques

class Compte compte.h
{ private :
std::string m_titulaire;

float m_solde;
public :
Compte(std::string titulaire, float solde init=90);
Compte();
}s
Compte: :Compte() compte.cpp
: m_titulaire{"AUCUN"}, m _solde{0}
{1}
void client() client.cpp

Compte Xx;

Ok x et y seront des objets initialisés par le constructeur par défaut
Compte vy;



Un constructeur peut deleguer le travail d’initialiser
a un autre constructeur...

86|
r Constructeur(s) 0

class Compte compte.h
{ private :
std: :string m_titulaire;
float m_solde;
public :
Compte(std::string titulaire, float solde init=90);
Compte();
}s
Compte: :Compte() compte.cpp
: Compte{"AUCUN"}
{1}
void client() client.cpp
Compte X;| ok x et y seront des objets initialisés par le constructeur par défaut
Compte vy;



r Constructeur(s) 0

I Un constructeur par défaut peut si ca fait sens
aller recuperer ailleurs les valeurs initiales

class Compte compte.h
{ private :
std::string m_titulaire;
float m_solde;
public :
Compte(std::string titulaire, float solde init=90);
Compte();
}s
Compte: :Compte() compte.cpp
{
std::cin >> m_titulaire;
std::cin >> m_solde;
}
void client() client.cpp
Compte X;|ok x et y seront des objets saisis par I'utilisateur !
Compte vy;



r Constructeur(s) a

I En 'absence de tout constructeur déclare le
compilateur en fournit un par defaut implicite...

class Compte compte.h
{ private : -
std: :string m_titulaire; MIeUX vaut ne pas se€
float m_solde; fier au constructeur
public : par defaut fourni implicitement
}s
compte.cpp
void client() Méfiance client.cpp
{ -
Compte a; // m_solde = PAS INITIALISE




On n’est pas obligé d’avoir un constr. par défaut
Il est quasi-obligatoire d’avoir au moins un constr.

89 |
r Constructeur(s) 0

{ private :

class Compte compte.h
std::string m_titulaire;

float m_solde;
public :
Compte(std::string titulaire);
}s
Compte: :Compte(std::string titulaire) compte.cpp
: m_titulaire{titulaire}, m_solde{0}
{1}
void client() client.cpp

Compte a{"zig"};
Compte b{"zZag"};

] Ok une seule fagcon de créer un objet Compte



Constructeur(s) G

Pour qu’un objet fonctionne « par valeur » (copies)
le compilateur génere des méthodes implicites...

class Compte compte.h
{ private :
std::string m_titulaire;

float m_solde;
public :
Compte(std::string titulaire);
}s
void client() Ces méthodes implicites copient un par un les
{ attributs de I'objet source vers I’'objet destination

Compte a{"zZig"}; On peut les coder explicitement (on verra plus tard)
Compte b{"zZag"};

Compte c{a}; . | Ok constructeur par copie implicite

Compte d = b; :

b: client.cpp
Compte("Zog");
Compte{"Zug"};
{ 111 Zyg 111 } ;

Ok opérateur d’affectation implicite
( 3 derniers : on passe par un objet temporaire )

QW TN



r Constructeur(s) a

I Beaucoup (trop) de facons de declarer un objet !
La forme parentheses est encore tres courante

{ private :

class Compte compte.h
std::string m_titulaire;

float m_solde;
public :
Compte(std::string titulaire="", float solde_init=0);
}s
void client() braced initialization ( C++11) client.cpp
{

Compte a{"zig"};
Compte b("Zag");
Y Unitialisation traditionnelle (comme un appel)

Compte c;

Compte d{}; ]Objet par défaut ok
Compte e();

Déclaration d’une fonction e retournant un objet Compte




r Constructeur(s) 0

I Beaucoup (trop) de facons de declarer un objet !

Ces variantes sont la pour des raisons techniques
I (compatibilité, cohérence) et pratiques (lisibilité)

Ne soyez pas surpris de voir des declarations
bizarroides dans les exemples sur les forums
y compris avec de simples types scalaires...

for (int i=0; i<10; ++i) { ... } // Classique et de bon goit
for (int i(©); i<10; ++i) { ... } // Tres tendance... en 2017
for (int i{0}; i<10; ++i) { ... } // Printemps-été 2020 ?

for (int i={0}; i<10; ++i) { ... } // Abusé ! (¢a marche)



93

R

COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes



Destructeur




Le destructeur est une methode spéciale
Appelée a la destruction de l'objet, pour quoi faire ?

r Destructeur a

class Compte compte.h
{ private :
std: :string m_titulaire;
float m_solde;
public :
Compte(std::string titulaire, float solde init=90);
~Compte();
}s
Compte: :~Compte() compte.cpp
{
}
void client() client.cpp
{
Compte a{"zig", 100};
}




96
r Destructeur G

I Le destructeur a le nom de sa classe préfixe par ~
Ni type de retour ni parametre, il est unique

class Compte compte.h
{ private :
std: :string m_titulaire;
float m_solde;
public :
Compte(std::string titulaire, float solde init=90);
~Compte();
}s
Compte: :~Compte() compte.cpp
{
}
void client() client.cpp
{
Compte a{"zig", 100};
}




Le destructeur ne libere pas la memoire
de l'objet détruit : la zone mémoire pointéee par
this existe jusqu’a la fin du code du destructeur

r Destructeur 0

L’objet est donc pleinement utilisable dans le
destructeur : par exemple on peut I'afficher ...

Pas de libération dans un destructeur  ,ctjon générée implicitement par le compilateur

Compte::~Compte() compte.cpp Libération automatique de la mémoire objet
{ Appel destructeur chaque attributs puis
free(this)
Y >
void client() client.cpp
{
\ Compte a{"Zig", 100};
L o




98|
r Destructeur 0

Le destructeur ne libere pas la memoire
de l'objet détruit : la zone mémoire pointéee par
this existe jusqu’a la fin du code du destructeur

L’objet est donc pleinement utilisable dans le
destructeur : par exemple on peut I'afficher ...

Pas de libération dans un destructeur

Compte: :~Compte() compte.cpp
{

std::cout << "Liberation du compte " << m_titulaire <<std::endl;

}

void client()

{
Compte a{"Zig", 100};

}



99 |
r Destructeur 0

Le but du destructeur est de libérer des ressources

(autres que lui méme) qui auralent eté acquises
a sa creéation ou durant son utilisation

Typiguement un attribut de I'objet pointe sur une
ressource dynamique (obtenue avec new) et
l'objet a la responsabilité de le libérer (faire delete)
C’est un sujet deélicat (plus tard...)

Compte: :~Compte() compte.cpp
{

}

// Rien pour 1’instant car pas de new dans le constructeur !

void client() client.cpp

{
Compte a{"Zig", 100};

}



Destructeur 0

En effet pour I'instant le destructeur ne nous sert
pas a grand chose a part eventuellement afficher
ou compter les destructions d’objet.

Si ces actions ne nous intéressent pas,
le destructeur implicite generé par le compilateur
convient parfaitement (contrairement au constr.)

class Compte compte.h
{
¥
compte.cpp
¥°1d client() OK l'objet a est bien deétruit client.cpp
Compte a{"zZig", 100}; Méme si on n’a pas écrit de
e destructeur explicitement
} -




COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes



Accesseurs et mutateurs




Accesseurs et mutateurs

I Un code client mecontent :
« Comment ? J’ai sous les yeux
un objet Compte que j’ai rempli
I moi meme a l’instant, et vous me
dite que je ne peux pas savoir
qui est son titulaire ?! »

error: 'std:: cxxll::string Compte::m titulaire' is private
error: within this context——-\\\

void client() client.cpp
{

Compte monCompte{"Durand”, 100};

std: :cout <<<@§E§ompte.m_titulaire << std::endl;




Accesseurs et mutateurs

I Au début on a I'inmpression que la POO n’est faite
que de restrictions ni tres dréles ni tres productives

I Bien sdr si connaitre le titulaire d’un compte est un
besoin légitime du code client alors le concepteur
de la classe a prevu un accesseur getTitulaire

mais pas de rendre publique l'attribut m__titulaire...

void client() client.cpp

{
Compte monCompte{"Durand”, 100};

std: :cout << monCompte.getTitulaire() << std::endl;
\ J

} OK, Compte offre un accesseur en lecture publique




Accesseurs et mutateurs

Le travail du concepteur de la classe consiste a
fournir une interface cohérente vis-a-vis

du réle que vont jouer les objets de la classe
et des comportements qu’on en attend

Avoir des points d’acces aux attributs prives est
souvent un comportement souhaite

Une méethode qui permet d’acceder en lecture
a une donnée privée est un accesseur
ou accesseur en lecture ou getter

Une méthode qui permet d’acceder en écriture
a une donnee privée est un mutateur
OU accesseur en écriture ou setter



Accesseurs et mutateurs 0

I * Par convention getters et setters sont prefixeés
par get ou set

I * Accesseur ou getter d’'un attribut m_solde :
float getSolde() const;  Noterquungetterest

en principe en lecture
ou seule donc il ne doit
pas modifier les données

float get solde() const; derobjet=>const

* Mutateur ou setter d’un attribut m_solde :

void setSolde(float nouveauSolde);

ou
void set_solde(float nouveauSolde);



Accesseurs et mutateurs

Une mauvaise compréhension de l'orienté objet :
tous les attributs en prive, mais pour tous un
accesseur et un mutateur publique

class Compte compte.h
{ private :
std: :string m_titulaire;
float m_solde;
public :

std: :string getTitulaire() const;
void setTitulaire(std::string nouveauTitulaire);

float getSolde() const;
void setSolde(float nouveauSolde);

¥




Accesseurs et mutateurs

Une mauvaise compréhension de l'orienté objet :
tous les attributs en prive, mais pour tous un

accesseur et un mutateur publique

class Compte Comme faire des trous
{ . dans un sous-marin !
private :

compte.h

std::string m_titulaire;
float m_solde;

public :

std: :string getTitulaire() const;
void setTitulaire(std::string nouveauTitulaire);

float getSolde() const;
void setSolde(float nouveauSolde);

¥




Accesseurs et mutateurs

Une mauvaise compréhension de l'orienté objet :
tous les attributs en prive, mais pour tous un
accesseur et un mutateur publique

?td: :string Compte::getTitulaire() const compte.cpp
return m_titulaire; ,’? fl‘{-
} _

void Compte::setTitulaire(std::string nouveauTitulaire)

{

m_titulaire = nouveauTitulaire;

}
)

float Compte::getSolde() const
{

return m_solde;
} Dans un setter on peut
void Compte::setSolde(float nouveauSolde) en profiter pour faire
{ du contréle des valeurs

if ( nouveauSolde>=0 )% o _
m_solde = nouveauSolde; Mais I'objet est-il en

< situation de décider
} ce qu’il convient de faire ?




Accesseurs et mutateurs

Une mauvaise compréhension de l'orienté objet :
pour chaque attribut accesseur / mutateur publique
au final on utilise la classe comme une struct !

void client() client.cpp

{
Compte monCompte{"Durand”, 100};

error: 'float Compte::m solde'

float aDebiter = 50; is private
monCompte.m_solde -= aDebiter; error: within this context
void client() client.cpp

{

Compte monCompte{"Durand”, 100};  Ayec les accesseurs ¢a passe...

Mais c’est un peu lourd non ?
float aDebiter = 50: C’est ¢ca la programmation objet ?
monCompte.setSolde( monCompte.getSolde() - aDebiter );




Accesseurs et mutateurs

Une mauvaise compréhension de l'orienté objet :
pour chaque attribut accesseur / mutateur publique
au final on utilise la classe comme une struct !

void client() client.cpp

{
Compte monCompte{"Durand”, 100};

float aDebiter = 50;

if ( aDebiter <= monCompte.getSolde() )

monCompte.setSolde( monCompte.getSolde() - aDebiter );
else

{

std::cout << "échec de débit " << aDebiter;

} Avec les accesseurs ¢a passe...

Mais c’est un peu lourd non ?
C’est ¢ca la programmation objet ?




Accesseurs et mutateurs G

Une bonne compréhension de l'orienté objet :
on a Juste les accesseurs / mutateurs necessaires
pour les comportements attendus de 'objet

void client() client.cpp

{
Compte monCompte{"Durand”, 100};

float aDebiter = 50;

if ( monCompte.solvable(aDebiter) )
monCompte.debiter(aDebiter);
else

{

std::cout << "échec de débit " << aDebiter;

} Avec les bons accesseurs ¢a passe...
Et ca s’utilise sans trop de lourdeur.




Accesseurs et mutateurs

Une bonne compréhension de l'orienté objet :
on a Juste les accesseurs / mutateurs necessaires
pour les€omportementsattendus de I'objet

void client() client.cpp
{
Compte monCompte{"Durand", 100};
float aDebiter = 50;
if ( monCompteisolvableyaDebiter) )
monCompte \debiter(gbhebiter);
else
{ , . .
std::cout << "échec de débit " << aDebiter;
} Avec les bons accesseurs ¢a passe...
Et ca s’utilise sans trop de lourdeur.




Accesseurs et mutateurs

I * On a envie (ca se discute) d’appeler les méthodes
solvable un accesseur et debiter un mutateur

I * Peu importe : on comprend qu’il faut eviter que
le code client gere lui méme des « details »

* Pas toujours si simple !

* Le code client doit déleguer les opérations
a l'objet mais l'objet a une vision locale de
ses donnees, seul le code client a une vision
plus large du contexte, ca demande de
I'experience mais la plupart du temps on peut
descendre les infos utiles en parametres...

* | es « cas a probleme » remontent a I'appelant



Accesseurs et mutateurs

Une facon de « remonter a I'appelant » les cas
a probleme (on verra une alternative : les exceptions)

bool Compte::debiter(float debit) compte.cpp

if ( !solvable(debit) )
return false;

m_solde -= debit;
return true;

¥

void client() client.cpp

{
Compte monCompte{"Durand”, 100};

float aDebiter = 50;

if ( !monCompte.debiter(aDebiter) );
{

std::cout << "échec de débit " << aDebiter;

}




Accesseurs et mutateurs G

En resumeé : choisir soigneusement les méethodes !

class Compte Ceci n’est pas un corrigé officiel : compte.h
{ tout dépend du CDC !
private :
/// Attributs privés
std::string m_titulaire;
float m _solde;

public :

/// Méthodes publiques (interface)
Compte(std::string titulaire, float solde_init=0);
~Compte(); Ici on a choisi de ne
std::string getTitulaire() const; pas avoir de mutateur

float getSolde() const; de m_titulaire :
on considere que cette

valeur doit étre invariante
dés la création de I'objet

bool solvable(float montant) const;
void crediter(float credit);

bool debiter(float debit); »
void afficher() const; Le solde est modifiable

}; mais pas directement ...
J

// Ceci n’est pas une méthode mais une fonction associée a la classe
void transferer(Compte& debiteur, Compte& beneficiaire, float montant);




COURS S

A) La classe en C++

B) L’encapsulation

C) Les methodes, this, const
D) Cycles de vie des objets
E) Constructeur(s)

F) Destructeur

G) Accesseurs et mutateurs
H) Composition entre classes



Composition entre classes
COMPOSITE

———
O ' >
E———
X j
- S e I f
o - Lol -
i L g i
~— -
Irry 1
T L

COMPOSANTS




Composition entre classes a

I * On a déja composeé une classe dans une classe
puisqu’on a utilisé un attribut std.::string titulaire
I dans la classe Compte et...

* std::string est une classe !

» C’est une classe bien concue : l'utiliser comme
type attribut ne pose aucun probleme

* On peut bien str composer avec nos propre
classes selon nos besoins

* Avec les « objets-valeurs » ca se passera bien :
objets qui he dépendent de personne, non
partages (sémantique par valeur) et copiables



Composition entre classes G

* On a déja parlé d’'une struct Coords, on peut
la transformer en classe et l'utiliser comme
composant d’un nouveau type Cadre :

position

Cadre

- couleur : String

taille

L 2

1 | position

L 2

1

taille

class Cadre cadre.h
{
private :
Coords m_position;
Coords m_taille;
std::string m_couleur;

Coords

- X : Real
-y : Real

public :
s
class Coords coords.h
{
private :
double m x;
double m_y;

public :
¥



Composition entre classes

I * Utiliser une classe comme composant implique
souvent de faire un peu de plomberie au niveau

I des constructeurs (il faut construire les attributs)

Cadre: :Cadre(double xpos, double ypos, cadre.cpp
double largeur, double hauteur,
std: :string couleur)
: m_position{xpos, ypos},
m_taille{largeur, hauteur},
m_couleur{couleur}

{1}

coords.cpp

Coords: :Coords(double x, double y)
pom_X{x}, m_y{y}
{1}




Composition entre classes

I * Si la classe composante propose des opérations
Interessantes le travaille de la classe composite

I est simplifié (ici : calcul vectoriel direct)
cadre.cpp
void Cadre::calerBasDroite(const Cadre& parent)
{
m_position = parent.m position + parent.m _taille - m taille;
}
Coords operator+(const Coords& a, const Coords& b) coords.cpp
{
return {a.m X + b.m_x, a.m.y + b.m_y };
}
Coords operator-(const Coords& a, const Coords& b)
{
return {a.m_x - b.m_ x, a.m_y - b.m_y };
}




Composition entre classes

I * Le client de la classe composite profite de
fonctionnalités avec un haut niveau d’abstraction

position=(4, 3)
taille=(1, 1)

) \

couleur=red

¥oid client() /// client.cpp
(Cadre grand(1, 2, 4, 2, "green");
 Cadre petit(2, 1, 1, 1, "red");
petit.calerBasDroite(grand);
| petit.afficher();
}
void Cadre::calerBasDroite(const Cadre& parent) cadre.cpp

{
}

m_position = parent.m position + parent.m _taille - m taille;




	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110
	Diapo 111
	Diapo 112
	Diapo 113
	Diapo 114
	Diapo 115
	Diapo 116
	Diapo 117
	Diapo 118
	Diapo 119
	Diapo 120
	Diapo 121
	Diapo 122
	Diapo 123

