Robin FERCOQ

|-|!| ECE PARIS NS e 019

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

r POO -

C++
I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des donneées
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++: compléments 6. UML et C++, associations
/. Conteneurs & C++ : la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Modeles objets avances 9. Modele composite et graphismes

10.Exceptions, flots, fichiers ..
11.Templates cote developpeur
12.Gestion méemoire / smarts ptrs

10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

r Classes & C++ : complements

COURS 6

A) Du modele objet au C++
B) Types valeur / types entite
C) Copiabilite en C++

D) Compeosition en C++

E) Associations a sens unique
F) Associations a double sens

COURS 6

A) Du modele objet au C++
B) Types valeur / types entite
C) Copiabilite en C++

D) Compeosition en C++

E) Associations a sens unique
F) Associations a double sens

Du modele objet au C++

Mast —.

Spreader —__
-

Jib (Sail)

Jib Stay —.

Shroud —__

Sy

Boom Vang —__

Bow —.

Hull —__ {%

Keel | Centerboard —

T —

——

~ Main Halyard

= Main (Sail)
—Jib Sheet

- -~ Fairead

= Qut Haul
-~ = |/ —Boom
%,
<
4 = Main Sheet
. T
Po e “—Stern
’f‘g"‘o
| g
“—Rudder

—Tiller

Du modele objet au C++

Le modele objet exprimé en UML est une
abstraction independante d’un langage
de programmation spéecifique

Differents langages de programmation orienté
objet ont différentes syntaxes pour exprimer
les mémes concepts mais aussi des
mecanismes differents

Le C++ est un « langage systeme » qui permet
d’'implementer un modele objet au plus pres des
ressources materielles (close to metal)

Les performances optimales realisables se
payent au prix d’une plus grande complexite...

https://www.quora.com/What-does-it-mean-for-a-programming-language-to-be-closer-to-the-metal

Du modele objet au C++ a

Classes — classes Meéthodes — méthodes val. / adr. / ref.)
Instances — objets alloues a certaines adresses RAM
Attributs — attributs « types valeurs »

Compositions — attributs « types valeurs » (souvent)

Compositions facultatives ou lourdes
— attributs pointeurs sur ressources exclusives

— attributs vecteurs de ressources exclusives
(vecteur = valeur qui cache un pointeur — zone allouée)

Associations sens unique — attributs pointeurs
Associations double sens — pointeurs réciproques

Multiplicité 0..N — vecteurs de valeurs ou de pointeurs

IE

Du modele objet au C++ a

Classes — classes Meéthodes — méthodes val. / adr. / ref)
Instances — objets alloués a certaines adresses RAM
Attributs — attributs « types valeurs »

Compositions — attributs « types valeurs » (souvent)

Compositions facultatives ou lourdes
— attributs pointeurs sur ressources exclusives

— attributs vecteurs de ressources exclusives
(vecteur = valeur qui cache un pointeur — zone allouée)

Associations sens unique — attributs pointeurs
Associations double sens — pointeurs réciproques

Multiplicité 0..N — vecteurs de valeurs ou de pointeurs

Du modele objet au C++

* Dans un modele UML il y a beaucoup de fleches

* Dans un code C++ |l y a beaucoup de pointeurs
et d’histoires d’adresses memoire

position

Ces fleches de navigation UML...

Cadre

- couleur : String

taille

L 2 ¢

1\/ position 1\/ taille

Coords

- X : Real
-y : Real

class Cadre Ne correspondent
{ . a aucun pointeur ici !
private :
Coords m_position;
Coords m_taille;
std::string m_couleur;

public :
¥
class Coords
{
private :
double m x;
double m_y;

public :
¥

Du modele objet au C++

* Dans un modele UML il y a beaucoup de fleches

* Dans un code C++ |l y a beaucoup de pointeurs
et d’histoires d’adresses memoire

Double navigation UML
pas de fléche...

- auteur : String
- année : Integer

Musee
- hom : String
- adresse : String
proprietaire |0..1 0..1| exposant
patrimoine |1..* 1..* | exposition
Oeuvre
- titre : String

class Oeuvre

{

private :

std::string m_titre;
std: :string m_auteur;
int m_annee;

Plein de pointeurs !

Musde* Yn_proprietaire;
Mus@e* /m_exposant;

public :

Oeuvre(std::string titre,std::string auteur);

void setProprietaire(Musee* m);
Musee* getProprietaire() const;

void setExposant(Musee* m);
Musee* getExposant() const;

s

Du modele objet au C++

I * Dans un modele UML il y a beaucoup de fleches

* Dans un code C++ |l y a beaucoup de pointeurs
I et d’histoires d’adresses memoire

Fleche UML # pointeur

Du modele objet au C++

* De méme attention a la polysemie (sens multiple)

Une référence au sens conception objet est
quelque chose qui permet de désigner un objet
Ca peut s'implémenter de differentes facons :

* Référence au sens mécanisme C++ : Type&

* Pointeur au sens mecanisme C++ : Type*

* Index entier sur un élement dans vecteur

* Nom textuel permettant de retrouver I'élément
* Clé dans une base de donnee

Référence POO # Référence C++

Du modéle objetauc++ @)

» [es references au sens technique C++ Type&
sont en fait des « pointeurs caches »

* Qu’on utilise des pointeurs ou des références :

Un objet sait qui il pointe mais Il ne sait pas
qui le pointe...

Probleme : si un objet pointé est detruit
Il ne peut pas facilement avertir les pointants

Dangling pointers — plantages

.//\ /\ .//\\

o’ ?1

N N

Du modele objet au C++

I * Les vecteurs sont comme des tableaux qui

grossissent magiquement mais en fait il y a
I ré-allocation...

Obiet avec Copie dans un nouvel
attrjibut vecteur espace de stockage
d’objets de type A
A
vector<A> vector<A> abc
o push_back - A
T ™\ 1] def
A A A
abc abc ghi
A A A
def def jkl
A A
ghi ghi

Du modele objet au C++ G

* Les vecteurs sont comme des tableaux qui
grossissent magiquement mais en fait il y a
ré-allocation : les adresses des elements
stockeés ne sont pas stables !

Objet avec
attribut vecteur
d’objets de type A

vector<A>

TN
A

Objet avec pointeur

sur un élément
du vecteur

o]

Copie dans un nouvel
espace de stockage

.. A
vector<A> abc
push_back e A
il def
A

A A
_ _ abc ghi
Objet avec pointeur
sur un élément A =
du vecteur g def jKl
© A
29 a
p\a(\" ghi
Ll Les anciennes adresses
sont invalidées !

Du modele objet au C++

I * Ce léger inconvénient n'existe pas avec d’autres
conteneurs (list, map... Cours 7)

I * Sinon stocker des pointeurs sur des objets...

Objet avec attribut
vecteur de pointeurs
sur objets de type A

vector<A*>

.///\ //: dAef

Objet avec pointeur
sur un élément
pointé par le vecteur 9

A

\
y

Du modele objet au C++

I * Ce léger inconvénient n'existe pas avec d’autres
conteneurs (list, map... Cours 7)

I * Sinon stocker des pointeurs sur des objets...

Objet avec attribut
vecteur de pointeurs -
sur objets de type A 'Y A
N abc
vector<A*> [§
. Y
o/ A
def

Objet avec pointeur A
sur un élément hi
pointé par le vecteur ghi

Les adresses des
objets restent stables

Du modele objet au C++

I » Stocker des pointeurs sur objets plutot que des
objets implique d'’utiliser I'allocation dynamique
I — on préfere eviter (Cf cours 5, cycle de vie)

— pas trop le choix pour certains objets dynamiques
Objet avec attribut

vecteur de pointeurs -
sur objets de type A 'Y A
N abc
vector<A*> [§
4
o/ A
def

Objet avec pointeur A
sur un élément hi
pointé par le vecteur ghi

Les adresses des
objets restent stables

Du modele objet au C++

I * Dans le passage du modele a 'implémentation
on a parfois des soucis pour interpréter les
contraintes de structure / topologie :
I le modele UML ne dit pas tout...

* Cycles ou pas : pas les mémes algos !

Node Node
® 'R\\‘ ® 'R\\‘
Node

0..2
Node | | Node Node
Node I N I .\\
Node Node | | Node

Classes UML Objets : Cycles ? Objets : Pas cycles ?

P

Du modele objet au C++

* Dans le passage du modele a 'implémentation
on a parfois des soucis pour interpréter les
contraintes de structure / topologie :
le modele UML ne dit pas tout...

» Groupes séparables ou pas ?

Musee M M M

LN N

(;/ \C e C
4 3 \:\K

Collection G| (\c]
Classes UML Objets : groupés ? Objets : pas groupés ?

Lo
LO®

-

o
®
c
<
@
O
o
o
@
@
@

\

Du modele objet au C++

I * En fait c’est le diagramme de classes UML
specifiguement qui ne dit pas tout, en principe

I un bon modele précise par ecrit ces aspects
Musee M M
Bla bla bla bla bla bla AL
¢ * bla bla bla bla bla bla / / \
1.. bla bla une collection
Oeuvre pourra regrouper des O|10]|10]|O] [9||9O|O
oceuvres qui se trouvent
/YL* dans différents musées
bla bla bla bla bla bla
Collection bla bla bla bla bla bla \C| 2] C/
N .(14 :
Classes UML Objets : pas groupeés !

Du modele objet au C++

I * En genéral il faudra bien distinguer 2 facons de
grouper les instances :

I * Regroupement par type : classes
C’est un regroupement abstrait
Exemple « les ceuvres d’art »
Toutes dans le méme sac !

* Regroupement en collections : conteneurs
vecteur, tableau, liste, map ... (Cours 7)
C’est un regroupement concret et plus fin

Exemples :
« les ceuvres de la collection Christina H. Kang »
« les ceuvres de la collection Francois Pinault »

Du modele objet au C++

I * En genéral il faudra bien distinguer 2 facons de
grouper les instances :

I * Regroupement par type : classes
* Regroupement en collections : conteneurs

* L a confusion risque de se produire quand on a
qu’une seule collection pour toutes les instances
d’une classe

* Exemple :
au TD/TP 5 toutes les instances de Astre sont
dans un seul et méme vecteur...

Du modele objet au C++

I * Une application orientée objet c’est

- Des allocations mémoire d’objets

— Des Initialisations de données d’objets

— Des délétions/libération mémoire d’objets
- Des copies de données d’objets

Des pointeurs entre des zones memoaires,
certaines adresses stables, d’autres instables

Trop de pointeurs, un « tissu » de pointeurs
Quand on tire sur un pointeur, tout vient !

Du modele objet au C++

I * Pour que la transformation du modele UML
en iImplementation C++ ne soit pas un fiasco :

I > || faut définir des regles du jeu sur le terrain
qui a le ballon (le pointeur sur un objet) ?

> |l faut avoir des regles claires dans les vestiaires
a qui est cette paire de crampons (ces 8 octets) ?

> En réesumeé : quel objet aura, a quel moment,
la responsabilite des donnees et de leur espace
de stockage ? C’est la problématique de
la propriéeté : ownership ...

27

S

COURS 6

A) Du modele objet au C++
B) Types valeur / types entite
C) Copiabilite en C++

D) Compeosition en C++

E) Associations a sens unique
F) Associations a double sens

Types valeur | types entite

e e~ A

{25, HUN} is a composite value The Black Pearl is an entity

Types valeur | types entite

I * Dans un diagramme de classes UML un symbole de
composition indique un lien fort de propriete...

I Patient

- hom : String
-sexe:H/F
-...etc...

1 patient

1 dossierMedic

DossierMedical
- observations : String[*]
- prescriptions : String[*]
- opérations : String[*]

Un objet patient est propriétaire
d'un objet DossierMedical

Un dossier médical est intimement

lié a la personne qu'il représente,

il ne peut pas devenir le dossier
meédical de quelqu’un d’autre !

Si on detruit (I'objet informatique local) Patient

alors on libere (I'objet informatique local) Dossier

Types valeur | types entite

* Non partageable en tant que composant,
n'’empéche pas d’autres objets d’étre en
association avec un composant ...

navigabilité
bidirectionnelle

Patient

- hom : String
-sexe:H/F
-...etc...

1 patient

1 dossierMedic

DossierMedical

- observations : String[*]
- prescriptions : String[*]
- opérations : String[*]

*

~

Le DossierMedical d’'un Patient

ne peut pas étre un composant

de Docteur mais un Docteur peut
avoir des références (pointeurs)

vers des instances de DossierMedical

Docteur

- nom : String
* | - spécialité : String

N

dossiersCourants

Types valeur | types entité G

* Certains types composants n’ont pas vocation a étre
références (pointés) par d’autres objets...

navigabilité

unidirectionnelle

Patient

- hom : String
-sexe:H/F
-...etc...

¢

/dateNal ance

T\
Date

- jour : Integer

- mois : Integer
- année : Integer

Pas d’acces par des attributs
® _pointeurs d’autres objets

N

Types valeur | types entite

I * Le composite est alors le seul a « donner acces »

I * Donneées identiques # méme objet composant !

Patient Patient Patient Patient
- nom : String nom = Dupont nom = "Evrard" nom = "Martin"
-sexe:H/F dateNaissance = dateNaissance = r dateNaissance -r
...etc ...
Q@
o 2
= C
o © Date Date Date
g*é'
s 9 jour =15 jour=3 jour =15
© T : is =1 mois = 9 mois = 1
= 1\ |/ dateNaissance mois
. % année = 1978 année = 1943 année = 1978
Date

- jour : Integer
- mois : Integer
- année : Integer

Diagramme de classes Diagramme d’objets

Types valeur | types entite

* Le composite est alors le seul a « donner acces »

* Donneées identiques # méme objet composant !

navigabilité
unidirectionnelle

Patient

- hom : String
-sexe:H/F
-...etc...

1 dateNaissance

Date

- jour : Integer
- mois : Integer
- année : Integer

Diagramme de classes

Patient Patient Patient
nom = "Dupont” nom = "Evrard" nom = "Martin"
dateNaissance =0\ dateNaissance =? dateNaissance =r
Date Date
jour =3 jour =15
mois = 9 mois = 1
année = 1943 année = 1978

Mauvaise implémentation :
Chaque patient devrait avoir
sa dateNaissance a lui !

Diagramme d’objets

 En C++ on préfere alors declarer l'attribut "par valeur

Types valeur | types entité G

[}

* Attribut Date m_dateNaissance; etnon pas Date* ...

navigabilité

unidirectionnelle

Patient

- hom : String
-sexe:H/F
-...etc...

1 dateNaissance

Date

- jour : Integer
- mois : Integer
- année : Integer

Diagramme de classes

Patient Patient Patient
nom = "Dupont" nom = "Evrard" nom = "Martin"
dateNaissance = dateNaissance = dateNaissance =

Date Date Date
jour =15 jour =3 jour =15
mois = 1 mois =9 mois = 1
année = 1978 année = 1943 année = 1978

Diagramme d’objets

Types valeur | types entite

* Ca n’interdit pas aux meéthodes d’autres objets
d’obtenir une copie (ou une référence temporaire) AUX donneées :
mais toujours en passant par l'objet propriétaire

navigabilité

Patient Hopital

- hom : String - hom : String

-sexe :H/F * 0.1 |--.-etc...

-...etc... , .

patients hopital .
_ +compterGeriatrie(...)

o + getDateNaissance()
2
g Date Patient::getDateNaissance() const
5 {
3 return m_dateNaissance;
= }
2 1\|/ dateNaissance
S int Hopital::compterGeriatrie(int anneelLimite) const

Date

- jour : Integer
- mois : Integer
- année : Integer

{
int cpt = 9;
for (size_t i=0; i<m patients.size(); ++i)
{
Date naissance = m_patients[i]->getDateNaissance();
if (naissance.getAnnee() <= anneelLimite)
++cpt;
}

return cpt;

Types valeur | types entite

* Ca n’interdit pas aux meéthodes d’autres objets
d’obtenir une copie (ou une référence temporaire) AUX donneées :
mais toujours en passant par l'objet propriétaire

navigabilité

Hopital
- hom : String
01 |-...efc...

patients

Patient
- nom : String
-sexe:H/F *
-...etc...
o + getDateNaissance()
[
c
C
ie;
©
o
S .
= @ 1 dateNaissance
>

Date
- jour : Integer
- mois : Integer
- année : Integer

hopital +compterGeriatrie(...)

int Hopital::compterGeriatrie(int anneelLimite) const

{ @copie

' N7 A\
Date naissance = m_patients[i]->getDateNaissance();

Types valeur | types entité G

* Les objets de ce genre de types se comportent
comme des valeurs
On dira de ces types que ce sont des types valeur

navigabilité

unidirectionnelle

Patient

- hom : String
-sexe:H/F
-...etc...

¢

1 \/ dateNaissance
Date

- jour : Integer
- mois : Integer
- année : Integer

Pas d’acces par des attributs
® _pointeurs d’autres objets

N

Types valeur | types entité G

I * On voudra « se debarrasser » de ces types dans
les diagrammes de classes en les considérant

I directement comme des attributs

Patient

- hom : String
-sexe:H/F
- dateNaissance : Date

Diagramme de classes

Date

- jour : Integer
- mois : Integer
- année : Integer

Classes des types valeur : décrits séparement

Types valeur | types entite

I * Un type composé de types valeurs, sans pointeurs
exterieurs sur lui, est lui méme un type valeur

I Patient

- hom : String
-sexe:H/F

- dateNaissance : Date

Date

- jour : Integer
- mois : Integer
- année : Integer

S

pointeurs d’autres objets

O

J/Pas d’acces par des attributs

-

1 Q/ d .
adresse Residence

Adresse

‘ > - numero : Integer

- voie : String

H Commune

- codePostal : Integer
- nom : String

1/

Types valeur | types entité a

* Un type composé de types valeurs, sans pointeurs
exterieurs sur lui, est lui méme un type valeur

- dateAdmission : Date
- adresse : Adresse

Diagramme de classes

Patient Hopital
- hom : String - hom : String
-sexe:H/F * 0.1 |-adresseUrgences : Adresse
- dateNaissance : Date , . - adresseConsultations : Adresse
patients hopital

- adresseAdministratif : Adresse
- dateControleSanitaire : Date

Date

- jour : Integer
- mois : Integer
- année : Integer

Adresse

- residence : Residence

- commune : Commune

Classes des types valeur : décrits séparément

Residence

- numero : Integer
- voie : String

Commune

- codePostal : Integer
- nom : String

Types valeur | types entité a

I * Les classes qui ne sont pas des types valeur
sont des types entiteé : les objets en inter-relations.

lls n’apparaissent jamais directement en attributs
Patient Hopital
- hom : String - hom : String
-sexe:H/F * 0.1 |-adresseUrgences : Adresse
- dateNaissance : Date atients hobital | - adresseConsultations : Adresse
- dateAdmission : Date P P - adresseAdministratif : Adresse
- adresse : Adresse - dateControleSanitaire : Date

Diagramme de classes des types entité

Residence
_ Date Adresse - numero : Integer
- jour : Integer - residence : Residence - voie : String

- mois : Integer
- année : Integer

- commune : Commune
Commune

- codePostal : Integer
Classes des types valeur : décrits séparement - nom : String

Types valeur | types entité G

I Les objets de « type valeur » n'ont pas d’identité

* Sont naturellement faciles a copier/détruire car :
- ils ne sont pas multiplement réferenceés
IIs ne sont pas la cible de nombreux pointeurs

- ce sont essentiellement des types composés de types
valeurs elementaires (int, float... pas de pointeurs)
ou d’autres types valeurs (hierarchies de composition)

* N’existent pas «indépendamment»
- Soit ils ont une vie breve en tant que
variable auto. / parametre / objet anonyme temporaire
- soit ils ont une vie longue mais en tant que valeur
d’attribut d’un type entite, pas isoléement

Types valeur | types entité 0

I Les objets de « type entité » ont une identitée

* N'ont pas vocation a étre copiés (unicite)
- ce sont essentiellement des types associes (UML)
a d’autres types entites
- IIs peuvent étre multiplement reférences
IIs sont la cible de nombreux pointeurs d’autres entités
- iIs ont souvent des références sortantes
IIs ciblent d’autres entites par pointeurs

* EXxistent avec une adresse stable
- ce sont des objets persistants : genéralement alloués
dynamiquement avec new et libérés avec delete
- on peut les mettre en correspondance directe avec
des entités concretes du modele, 1 instance = 1 entité

Types valeur | types entité

I Distinguer les types valeur des types entite

» Cette démarche tient une place importante dans
I une des méethodologies de conception
orienté objet : Domain Driven Design
Complements d’explications (Java/DB centrique)

* Attention aux raccourcis, une classe "légere et simple"
n’est pas automatiquement un type valeur :
pour un gestionnaire de réseau (fibre optique...)
le type Adresse est peut étre un type entité !

* A l'inverse un type "lourd ou complexe" comme
Image (matrice de pixels) peut se comporter en valeur
Si les objets images sont des composants qui ne
participent pas a la navigation dans le modele objet

https://enterprisecraftsmanship.com/2016/01/11/entity-vs-value-object-the-ultimate-list-of-differences/

Types valeur | types entité

* Cecl Impactera les diagrammes de classes
en les débarrassant de nombreuses classes
utilitaires qui se retrouvent alors comme types
d’attributs, les associations graphiques sont
donc réservées aux « vraies » classes d’entités

Quelle est la relation ??

RecordSportif BilletTrain
- athlete : String - destination : String

date\Z1

Date

1 dateDepart

- Jour
- Mois
- Annee

Pas terrible : Athlete et destination sont
traités comme des valeurs et Date en entité !

Aucune relation !

RecordSportif

- athlete : String
- date : Date

BilletTrain

- destination : String
- dateDepart : Date

Diagramme de classes
niveau entités de I'application

Date

- Jour
- Mois
- Annee

Diagramme de classes
niveau bibliotheque :
utilitaires / types valeur

Types valeur | types entite

* Cecl Impactera les diagrammes de classes
en les débarrassant de nombreuses classes
utilitaires qui se retrouvent alors comme types
d’attributs, les associations graphiques sont
donc réservées aux « vraies » classes d’entités

Un organisateur de compétitions
veut savoir a quels athlétes
proposer des billets gratuits

en fonction de leurs records...

Mieux : on voit bien le rdle
réciproque des entites et
Date n’encombre pas avec
des liaisons graphiques !

competitions Competition
x| - hom : String
inscrits| 1..*

Athlete

- dateFin : Date

- dateDebut : Date

w

- nom : String

- naissance : Date

- photo : Image

beneficiaire

titulaire(1

records *

Lieu

- nom : String

* \billets

RecordSportif

BilletTrain

destination/S

- date : Date

- dateDepart : Date
- grCode : Image

Types valeur | types entité 0

I » Cecl Impactera notre facon de concevoir le code

* C++ a une mecanique efficace de composition
I avec attributs membres par valeur

* Les types valeurs seront codes pour étre
copiable facilement, efficacement, stirement

* Des qu'’ils sont lourds on pourra quand méme
les passer par référence & en parametres

* Les types entités seront si possible
déclarés non copiables !

* Les types entités seront manipulés par pointeurs

48

R

COURS 6

A) Du modele objet au C++
B) Types valeur / types entite
C) Copiabilite en C++

D) Compeosition en C++

E) Associations a sens unique
F) Associations a double sens

49

Copiabilite en C++

r Copiabilite en C++

* Le compilateur C++ fait des choses implicites

* Des qu’on déclare une classe il existe une
I famille de méthodes spéciales qui sont traitées
de facons specifiques par le compilateur :
en I'absence de leur declaration explicite
elle sont générées implicitement

Function syntax for class MyClass
Default constructor MyClass () ;
Copy constructor MyClass (const MyClass& other);
Move constructor MyClass (MyClass&& other) noexcept;

Copy assignment operator | MyClass& operator=(const MyClass& other);
Move assighment operator | MyClass& operator=(MyClassé&& other) noexcept;

Destructor ~MyClass () noexcept;

https://en.wikipedia.org/wiki/Special_member_functions

Copiabilite en C++

I * Les methodes spéciales implicites sont
neutralisées quand on les declare

I * Dans certains cas on ne veut pas de ces
meéthodes implicite, sans pour autant les definir
On l'indiquera avec =delete;
derriere le prototype de la méethode

Function syntax for class MyClass
Default constructor MyClass () ;
Copy constructor MyClass (const MyClass& other);
Move constructor MyClass (MyClass&& other) noexcept;

Copy assignment operator | MyClass& operator=(const MyClass& other);
Move assighment operator | MyClass& operator=(MyClassé&& other) noexcept;

Destructor ~MyClass () noexcept;

r Copiabilite en C++

I * Dans certains cas on veut au contraire
confirmer explicitement au compilateur
qu’on veut ces méthodes implicites

I On l'indiquera avec =default;

derriere le prototype de la methode
(Vous me suivez ? Les regles sont complexes...)

Function syntax for class MyClass
Default constructor MyClass () ;
Copy constructor MyClass (const MyClass& other);
Move constructor MyClass (MyClass&& other) noexcept;

Copy assignment operator | MyClass& operator=(const MyClass& other);
Move assighment operator | MyClass& operator=(MyClassé&& other) noexcept;

Destructor ~MyClass () noexcept;

r Copiabilite en C++

* Le constructeur par defaut implicite est en
genéral insatisfaisant (Cours 5)

* L e destructeur implicite est en général
satisfaisant si 'objet n’a pas acquis de
ressources a gestion manuelle (pas fait new)
et qu’on a rien d’interessant a y faire

Function syntax for class MyClass

Default constructor > MyClass () ;

Copy constructor MyClass (const MyClass& other);
Move constructor MyClass (MyClass&& other) noexcept;
Copy assignment operator | MyClass& operator=(const MyClass& other);

Move assighment operator | MyClass& operator=(MyClassé&& other) noexcept;

@structor > ~MyClass () noexcept;

r Copiabilite en C++

* [es methodes de deplacement (move semantics)
sont une innovation du C++ 11
Indispensable sur du code C++ « up to date »

* On utilise quelques aspects C++ 11 mais on
ne pourra pas tout couvrir... hors programme

Function syntax for class MyClass
Default constructor MyClass () ;
Copy constructor MyClass (const MyClass& other);

@VE constructor > MyClass (MyClass&& other) noexcept;

Copy assignment operator | MyClass& operator=(const MyClass& other);

@ve assignment operatop) MyClass& operator=(MyClassé&& other) noexcept;

Destructor ~MyClass () noexcept;

https://en.wikipedia.org/wiki/C%2B%2B11#Rvalue_references_and_move_constructors

r Copiabilite en C++

* Les méthodes de copie sont celles qui vont
nous interesser en particulier pour les
types valeurs qui doivent étre copiables !

* On verra comment les définir en cas de besoin
mais surtout comment ne pas avoir ce besoin !

Function syntax for class MyClass
Default constructor MyClass () ;
@py constructor > MyClass (const MyClassé& other);
Move constructor MyClass (MyClass&& other) noexcept;

@py assignment operator) MyClass& operator=(const MyClassé& other);

Move assighment operator | MyClass& operator=(MyClassé&& other) noexcept;

Destructor ~MyClass () noexcept;

r Copiabilite en C++

I * Les methodes de copie sont utilisées quand...

* Un nouvel objet est créé a partir d’'un autre
I => Constructeur par copie

Un objet existant prend la valeur d’'un autre
=> Operateur d’affectation = (par copie)

Function syntax for class MyClass
Default constructor MyClass () ;
@py constructor > MyClass (const MyClassé& other);
Move constructor MyClass (MyClass&& other) noexcept;

@py assignment operator) MyClass& operator=(const MyClassé& other);

Move assighment operator | MyClass& operator=(MyClassé&& other) noexcept;

Destructor ~MyClass () noexcept;

Copiabilite en C++

I * Les methodes de copie sont utilisées quand...

Un nouvel objet est créé a partir d’'un autre
=> Constructeur par copie

Un objet existant prend la valeur d’'un autre
=> Operateur d’affectation = (par copie)

Oeuvre inestimable{"La Joconde", "Léonard de Vinci", 1519};

Oeuvre vulgaireCopiel{inestimable};
Oeuvre vulgaireCopie2 = inestimable;

Oeuvre vulgaireCopie3{"", "", 0};
vulgaireCopie3 = inestimable;

r Copiabilite en C++

I * Les méthodes de copie sont utilisées quand...
* Un passage de parametre par valeur est présent

I => Constructeur par copie

void fonctionA(Oeuvre oeuvre)

{ ...

void fonctionB(Oeuvre& oeuvre)
{ ...

void fonctionC(Oeuvre* poeuvre)
{ ...}

void Oeuvre: :uneMethode()

{ ...}

Oeuvre inestimable{"La Joconde", "Léonard de Vinci", 1519};

<:::£;£;tionA(inestimable); :::::::>

fonctionB(inestimable);
fonctionC(&inestimable);
inestimable.uneMethode()

r Copiabilité en C++

I * Les methodes de copie sont utilisées quand...

* Un passage de parametre par valeur est present
I => Constructeur par copie

* |l ne faut donc pas passer par valeur des objets
de classes non copiables !

* C’est le cas de Svgfile (TD/TP 4 et 5)
* Type entité : privilegier passage par référence !

void fonction(Oeuvre oeuvre) .] _
{ ...} Nécessite Oeuvre copiable

void fonction(Oeuvre& oeuvre) Aucune contrainte
{ ...}

60 |
r Copiabilité en C++ 0

I * Le constructeur par copie et 'operateur
d’affectation implicite realisent une copie
I membre a membre (memberwise)

en appelant si nécessaire les methodes
de copie des attributs de types copiables
(std::string std::vector et tous nos types valeur)

* Cecl est le comportement souhaitable pour
les types valeurs et composites de types valeurs

e Cecl n'est pas le comportement souhaitable
pour les types qui gerent des ressources

* Cecl n’est souvent pas souhaitable pour les
types entités qu’il vaut mieux ne pas copier

r Copiabilité en C++ i

* La regle de 3 rule of three

* Concerne les classes gestionnaires de
I ressource (ce qu’on évitera de faire !)

Elle dit que si UNE des 3 méthodes spéciales
- destructeur

- constructeur par copie

- opérateur d’affectation

ne convient pas dans sa version implicite et
doit étre codée, alors les 3 doivent étre codées

https://en.cppreference.com/w/cpp/language/rule_of_three

r Copiabilité en C++ O

* La regle de 3 rule of three

* Essayons de comprendre pourquol, supposons
I une classe Triangle qui compose 3 Coords

et qui les gere comme une ressource
(3 appels a new Coords dans le constructeur de Triangle)

Triangle T
7\ 2
Y
Composition
cllens Obtenus
4 ‘ \/ 3 g ? j avec new
V‘ Coords
; 4 - X Real
-y - Real Propriété exclusive

Pas de pointeur entrant

Classes UML

https://en.cppreference.com/w/cpp/language/rule_of_three

Copiabilité en C++ O

I * La regle de 3 rule of three

* AU moment de la destruction du Triangle le
I destructeur implicite libere bien I'espace
mémoire des 3 pointeurs mais pas des
3 Coords pointés !

Triangle NT /
PN 4
S, 7
Composition
Clleis Fuite
\/ 3 g ? j mémoire !
Coords
- X : Real
Y Real Propriété exclusive
|
Classes UML de plus personne !

https://en.cppreference.com/w/cpp/language/rule_of_three

r Copiabilité en C++ O

I * La regle de 3 rule of three

e |l faut donc un destructeur explicite qui libere

I avec delete ce qui a eteé alloue avec new
Triangle NT /
7N\ / 9 S
S/
Composition
5 ;/)4@ Plus de fuite
\V 3 AN mémoire !
Coords A4
- X : Real
1y Rea Tous Ieg N
Classes UML octets libéres

https://en.cppreference.com/w/cpp/language/rule_of_three

r Copiabilité en C++ i

* La regle de 3 rule of three

* Mais dans ce cas la copie membre a membre
I Implicite va copier des pointeurs et non les
ressources pointees : copie superficielle

* Ca ne convient pas pour une ressource !

Triangle T T
o) i 2
¥ iz
Composition
CcllC|C
\V 3 § ; j
Coords
- X : Real
Y- Real Propriété plus trop exclusive
Classes UML Plein de pointeurs entrants !

https://en.cppreference.com/w/cpp/language/rule_of_three

Copiabilité en C++ O

I * La regle de 3 rule of three

* Non seulement des donnees exclusives sont
I partagées par 2 objet mais la destruction de
I'un entraine I'invalidation des pointeurs de
l'autre (un chaos !)

Triangle NT / T
—~ S on
@ 77
Composition . 9
C|| &
2 1N 4
\/ 3 }/}f\ "
Coords p L
- X : Real
¥ < Real Propriété plus trop exclusive
: _ '
Classes UML Plein de pointeurs entrants !

https://en.cppreference.com/w/cpp/language/rule_of_three

r Copiabilité en C++ i

* La regle de 3 rule of three

* Donc la regle de 3 est nécessaire, il faut coder
I les 2 méthodes de copie pour obtenir une
copie profonde (on ne voit pas ¢a en cours)

Triangle T I
N\ i i
IS
Composition
CllC||C CllC|C
2|54 2|54
V'3 31|1]]4 3|1]|4
Coords
- X : Real
-y : Real

Classes UML Copie profonde

https://en.cppreference.com/w/cpp/language/rule_of_three

68 |
r Copiabilité en C++ O

* Et pour une classe de type entité ?

* La copie membre a membre implicite fait une

I copie superficielle...
e Souvent ¢ca ne convient pas pour une entite !

Triangle T I

e el

Association M/
S||S||S

V3 31|74
Sommet

- X : Real

-y« Real Ca sert a quoi de copier T ?

Classes UML

69 |
r Copiabilité en C++ 0

I * Au niveau entité tous les objets sont reliés
dans un graphe connexe de relations

I Copier M. Fercoq ?

Entreprise
nom = "ECE"

Entreprise
nom = "Lights SA"

5
—

employés|...] = {._ employés|...] =

*
7

nom = "Segado” nom = "Fercoq" nom = "Diedler"
employeurs]...] = Eﬁ\\ employeurs|...] = [’\\ employeurs]...] =

Personne Personne Personne ’7
b
\ o

\

r Copiabilité en C++ 0

* Au niveau entité tous les objets sont reliés
dans un graphe connexe de relations

* La copie superficielle ne veut rien dire et
la copie profonde est « Impossible » :
Il faudrait copier tout le systeme !

* On preféra donc souvent bloquer toute
tentative de copie en neutralisant les methodes
de copie implicites et en évitant d’essayer de les
Implémenter (sauf si le CDC nous y oblige)

Oeuvre(const Oeuvre& original) = delete;

Oeuvre& operator=(const Oeuvre& original) = delete;

r Copiabilité en C++ (1

e Enréesumeé :

» Classes de types valeur :
I les méthodes de copie implicites conviennent

» Classes gestionnaire de ressource :
a eviter autant que possible
la regle de 3 s’applique
coder destructeur et 2 méthodes de copie

» Classes de types entité
coder le destructeur si nécessaire
=> mise a Jour pointeurs réciproques
SI possible mettre en =delete les méthodes
de copie, la classe est non copiable

72

R

COURS 6

A) Du modele objet au C++
B) Types valeur / types entite
C) Copiabilite en C++

D) Composition en C++

E) Associations a sens unique
F) Associations a double sens

Composition en C++

1% 13" SIDEBEAM— 5 DIA.
| BETAR N LAMINATE FROM %" FIR i
SR NSPECTION
BLOCK % THK

M=
N

I Eﬂ:ﬁ|l§gz ¥ I : ..."".: § q;"i ?n‘:." II!"'F J't"lu ?!1. Iq ﬂ_‘]q1_ r‘1. r!l. T
! & b & & l
BOLTS . =3 B b b B b I

o SECTION CC sAL

SECTION BB - 35% —REAR BEAM

e 345 —FRONT BEAM TRACK W PLY.(2)
CANVAS—
”‘_‘_’———-‘_’__'=-7 =4 DUCK We =12 BRZ. % PLY.(1)
S g -~ BOAT NAILS 4" PLY. (1)
! SEE DETAIL A SIDEBEAM 4" APAR g
» s, % g
___._._.—-—-—-—'—'_'__f 1* SQUARES

e o =l — |~ — |_.|...|

""--.._____ L S L

r=—"=1] | _'- -'ﬂ-" TRA

DECKING I8 W 80, MBI RIB A BATTEN %50 1 50 AT
N 50, 1B 2 BATTEN : .
DECK DECK = SPACER SPACER DECK , RUDDE
o BEAM BEAM BLOCK BLOCK BEAM / TAPER TO
SHEER ' 50.
NN SrElw”
BATTEN BATTEN
Nl 316" PLY.
KEEL ALL PLANKING

USE 3° GLASS TAPE & FIBERGLASS
E:EL saﬂ? Tm EDGES, GU
L CROSSBEAM HOUSING SEAMS 1°9" CHAIN PLATES—%" PLY, SPACER & PINTLES

Composition en C++

I * Dans les slides suivants on considere qu’un
triangle est composé de 3 couples de Coords

I * Attention ce n’est pas le modele maillage (TPS)
ou les Sommets sont partagés : association

Composition Association ou agrégation
Triangle Triangle
/\ “as
L’) O facultatif
V3 V3
‘ Coords L Sommet
V‘ - X : Real - X : Real
; -y : Real -y : Real

Composition en C++

I * Avec des pointeurs pour référencer des objets
composants on a par défaut des copies

I de pointeurs sans copie des pointes
Composition
Triangle T I
7~ 2 220
¢ /
ClIC|IC
< V3 3| 7] 4
4 Coords
V4‘ ;SZZ:
‘ nd Classes UML Copie superficielle
Ne convient pas du tout...

Composition en C++

I * Avec des pointeurs pour référencer des objets
composants on peut coder pour obtenir
I une coplie profonde avec copie des pointés

* On peut mais on évite si possible (regle de 3...)

Composition

Triangle T T
7\ P P
N /v /)
CllC||C CllC|C
2115(/4 21|5(4
V 3 30|1]]4 3|11 4
‘ Coords
4 V ‘ - X : Real
=4 -y : Real
‘ : Classes UML Copie profonde

Composition en C++

I * Avec la semantique par valeur (attributs valeurs)
les données des classes composantes sont

directement dans le méme bloc memoire que
I les autres attributs de la classe composite

Composition
Triangle
A\ T T
¢ _ _
cl|C]||IC CcllC]||C
2115 4 21154
31|11 4 311114
V3
‘ Coords
V ‘ - x : Real
; -y i Real Copie profonde
e 4 automatique :
Classes UML plus de pointeurs !

Composition en C++

I * Cette distinction copie profonde/superficielle
existe dans tous les langages orientés objet

Seuls C++ et C# (pas Java) proposent une vraie
I sémantique par valeur (attributs valeurs)

Composition
Triangle
A\ T T
¢ _ _
cl|C]||IC CcllC]||C
2115 4 21154
31|11 4 311114
V3
‘ Coords
V ‘ - x : Real
; -y i Real Copie profonde
e 4 automatique :
Classes UML plus de pointeurs !

Composition en C++

I * C++ excelle dans les compositions par valeur
* Et le hardware adore un bloc d’octets contigus

I * En C++ la composition par valeur est donc
le choix qui s’mpose quand c’est possible

MassePonctuelle Astre
position = Coords MassePonctuelle
= T x = 150
= 30 cg Coords
masse = 18 4 position = [~ 1eq
16 octets y = 30
16 octets
masse = 18
AspectSphere
rayon = 20 AspectSphere
couleur = "green" aspect = | rayon = 20
couleur = "green"
\ 32 octets /
Total 80 octets Total 56 octets
“‘-~7ﬂ X y m r c
Mémoire : fragmentée Meémoire : 1 seul bloc contigu

I

Composition en C++ 0

* Une classe composite se comporte comme le
proprietaire (owner) de ses composants

* Avec attributs par valeur sa responsabilité de
terminer la vie de ses composants est triviale :
la destruction du composite entraine
automatiquement la destruction des

composants :

|

_2

A%e
7 NN 7
Mass%n ‘e e‘

e = 7T cxfas

P g

position = [7. %g

y = 30

masse ., = ,18
N Z ;

-

Aspecﬁphere

aspect = | payon 7 = 20
couleur = "green"

-

Appels en cascade
des destructeurs
implicites des

composants

Composition en C++ 0

* Une classe composite se comporte comme le
proprietaire (owner) de ses composants

* Avec attributs par valeur sa responsabilité de
dupliquer ses composants est triviale :
constructeur par copie implicite OK
operateur d’affectation implicite OK

Astre Astre
MassePonctuelle MassePonctuelle
cg = Coords cg = Coords
position = [" _""{5g copie position = [" " _""qcp
y = 3@ y = 3@
masse = 18 masse = 18
AspectSphere AspectSphere
aspect = | payon = 20 aspect = | rayon = 20
couleur = "green" couleur = "green"

Composition en C++ 0

I * Une classe composite se comporte comme le
proprietaire (owner) de ses composants

I * Avec attributs par adresse sa responsabilité de
terminer la vie de ses composants est
compliguée et risquée : regle de 3
la destruction du composite n’entraine la
destruction des composants que si on le

code bien :
X(\W\\ y

VAN

" Cobeds
osition = &— x 2 15%
mass = 18 y = 30
Destructeurs

explicites a coder \\ Yy
pour libérer les AspefSphere

rayo(=20
composants couleur = "green"

Composition en C++

* Une classe composite se comporte comme le

proprietaire (owner) de ses composants

* Avec attributs par adresse sa responsabilité de

dupliquer ses composants est complexe :
constructeur par copie implicite NON
operateur d’affectation implicite NON

Regle de 3 :

coder les 3 méthodes

- Destructeur

- Constructeur par copie
- Opérateur d’affectation

copie :>

sssssssss

eeeeee

position =

oooooo

rayon = 20
couleur = "green"

sssssssss

eeeeee

position =

oooooo

rayon = 20
couleur = "green"

Composition en C++ 0

I * En C++ on essayera toujours d’avoir une
composition par valeur

I * Mais Il y a d’autres contraintes qui peuvent
amener a choisir une composition par adresse

Diagramme de classes Diagramme d’objets Code C++
Composition Par valeur
A class A {
attribut =]'3' .tt L but
_— a riouc,
A jo—r1s > [
\ };
Association \\ Par adresse
‘ A class A {
attribut = o//\‘ e
A B B B* attribut;
ou B —

Composition en C++

I * On envisagera ou on sera obligées de composer
par adresse pour des attributs

I — de types entites (objets partagés, non copiables)
— qui existent ou pas (nullptr dans ce cas)
— qui existeront plus tard (idem précédent)
— qui sont de tallles variables (réallocation)
— lourds et/ou Immuables (éviter des copies)
— polymorphes (cours 8)

* Approche moderne smart pointers (hors programme)

https://www.internalpointers.com/post/beginner-s-look-smart-pointers-modern-c

I

Composition en C++ 0

* Exemple typique de composition par adresse

* Une classe Application ou Document compose
tous les objets entités alloues dynamiquement,
leurs adresses doivent rester stable

glass Application /I_ Voir slides 15 & 19
private : \ /

std: :vector<Entreprisg m_toutesEntreprises;

std: :vector<Personne m_toutesPersonnes; Entreprise
¥ «ege~7| -nom: String

e * | - adresse : String
52
oo

employeurs

o 1..*| employés
Q
SperSO * Personne
i :
€=\ - nom : String

Application

87

e

COURS 6

A) Du modele objet au C++
B) Types valeur / types entite
C) Copiabilite en C++

D) Compeosition en C++

E) Associations a sens unique
F) Associations a double sens

Associations a sens unique

Associations a sens unique 0

* Association sens unique, multiplicité 1 ou 0..1
* stocker un pointeur sur une entite
I * attribut pointeur sur

Objet avec attribut
A pointeur sur objet A
de type B
. B o \
B
def
1
Ou
0.1 class A {
B e o o
- B* objetB;
}s

Associations a sens unique

* Association sens unique, multiplicite 0..1

* Bricolage possible : utiliser nullptr pour

I indiquer qu’il n’y a pas d'objet B reference
pour l'instant. A tester systématiquement !

A

B

Objet avec attribut
pointeur sur objet
de type B

A

B*

o—

class A {

}s

B* objetB;

T

nullptr

Associations a sens unique 0

I * Association sens unique, multiplicité 1 ou 0..1

* Ne pas « libérer » I'objet pointé dans le
I destructeur de A si I'objet B n’est pas une
ressource de A ou si B est encore réféerence !

Objet avec attribut

A pointeur sur objet A
de type B
B* \
/ B
def
1
OOu1 Autre objet avec pointeur
- sur le méme élément

B pointé par I'objet A

Associations a sens unique 0

I * Association sens unique, multiplicité 1 ou 0..1

* SI B est une ressource de A : voir composition
I Si B est partage, compter les références
ou autre approche algorithmique...

Objet avec attribut
A pointeur sur objet A
de type B

Reste 0 pointeurs

B => delete objetB
1
00_91 Autre objet avec pointeur

sur le méme élément
B pointé par I'objet A

Associations a sens unique 0

* Association sens unique, multiplicité *
* stocker des pointeurs sur des entites
I * attribut vecteur de pointeur sur

Objet avec attribut B
A vecteur de pointeurs A abc
sur objet de type B
vector<B*> S
def
o
o—]
= —a[B
* ghi
B class A {
std: :vector<B*> objetsB;
}s;

Associations a sens unique 0

I * Association sens unique, multiplicité *

* En géneral enlever un élément référence
I # detruire I'élement enleve ...

Objet avec attribut B

A vecteur de pointeurs A abc
sur objet de type B
. B
vector<B*> def
]
W terase
*

Autre objet avec pointeur
sur un méme élément
B pointé par I'objet A

Associations a sens unique 0

I * Association sens unique, multiplicité *

* SI B est une ressource de A : voir composition
I Si B est partage, compter les références
ou autre approche algorithmique...

Objet avec attribut B

A vecteur de pointeurs A abc
sur objet de type B
vector<B*>
'] Reste 0 pointeurs
%’ erase => delete objetsB]i]
td .) B
*

g_hi

Autre objet avec pointeur
sur un méme élément
B pointé par I'objet A

COURS 6

A) Du modele objet au C++
B) Types valeur / types entite
C) Copiabilite en C++

D) Compeosition en C++

E) Associations a sens unique
F) Associations a double sens

Associlations a double sens

e
P
-

ﬂq-_,._

My

g,

g i

[S

s : g

Sy
1. e T n .-L%.
—

bt T

Liaadr

p/ie

B e =
I‘ -

Al

Brip
&

S
17T

£ E E % %

e Bl

e P ——
: :‘ % g W'm?ﬂ*.:"f#
s e e

Associations a double sens G

I * | es associations a double sens entre entités
s’implementent avec des pointeurs réciproques

I * En genéral la double navigation implique une
redondance des données (il y a plusieurs facon
d’obtenir la méme indication) et donc un risque
accru sur la cohérence des données
(non réciprocité d’un pointeur réciproque !)

Associations a double sens 0

* | es associations a double sens entre entités
s’implementent avec des pointeurs réciproques

Entreprise

- nom : String
- adresse : String

1..* | employeurs

1..*| employés

Attributs vecteurs de pointeurs

Entreprise
nom = "ECE"

employés|...] = {’_

=
7

Entreprise
nom = "Lights SA"

5
—

employeés|...] =

Personne
- nom : String
Personne Personne Personne

nom = "Segado”

employeurs|...] = EO\

I~

nom = "Fercoq" nom = "Diedler"
employeurs|...] = [’\\ employeurs]...] =

\

/

\

Associlations a double sens

I * VU le colt ressource et maintenance de la
double navigation on envisage le sens unique

Souvent on a un ensemble
de collections d’entités avec
toutes les entités. On peut
mettr_e ¢a dans une classe Entreprise
Application s - nom : String
s ="+ " | - adresse : String
’\0\)’\66 * /\
Application 1.. employeurs
1.*
IOU[‘
espefs * Personne
0/7,76

S— - nom : String

Associlations a double sens

* VU le colt ressource et maintenance de la
double navigation on envisage le sens unique

Avec les collections de toutes les entités on peut retrouver des association
a contre sens : ici on va savoir qui travaille chez Lights SA méme si il
n’y a pas de navigation directe de Entreprise vers Personne

Entreprise
nom = "ECE"

Entreprise
nom = "Lights SA"

Il suffit de chercher systematiquement !

toutesPers —

Personne Personne Personne

nom = "Segado” | nom = "Fercoq" nom = "Diedler"
employeurs :[0\ employeurs :[0\ employeurs :[.

P~ 7 :
\

BN

Associlations a double sens

* Selon le nombre d’entités et la fréequence du
besoin en navigation inverse c’est envisageable

Avec les collections de toutes les entités on peut retrouver des association
a contre sens : ici on va savoir qui travaille chez Lights SA méme si il
n’y a pas de navigation directe de Entreprise vers Personne

Entreprise
nom = "ECE"

Entreprise
nom = "Lights SA"

Il suffit de chercher systematiquement !

toutesPers —

Personne Personne Personne

nom = "Segado” | nom = "Fercoq" nom = "Diedler"
employeurs :[0\ employeurs :[0\ employeurs :[.

2T~ ? _
\

BN

Associations a double sens 0

* Si la double navigation s’impose, utiliser
systematiquement des accesseurs/mutateurs

Les mutateurs doivent
garantir la cohérence
de la reciprocite

Entreprise Entreprise
1. la méthode nom = "ECE" nom = "Lights SA"
removeEmploye , o ,
de Entreprise est employés|...] = {,_ employes|...] = {
appelée pour M. Fercoq -)
2. ceci doit appeler removeEmp/oyeur) /
de l'objet Personne

Personne Personne Personne ’7

nom = "Segado” nom = "Fercoq" nom = "Diedler"
ORI e I e -

\

3. il faut éventuellement delete M. Fercoq

Si il ne reste plus aucun pointeur vers lui, idem pour I'objet ECE !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103

