
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Modèles objets avancés
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

Classes & C++ : compléments

4

COURS 6

A) Du modèle objet au C++
B) Types valeur / types entité
C) Copiabilité en C++
D) Composition en C++
E) Associations à sens unique
F) Associations à double sens

5

COURS 6

A) Du modèle objet au C++
B) Types valeur / types entité
C) Copiabilité en C++
D) Composition en C++
E) Associations à sens unique
F) Associations à double sens

6

Du modèle objet au C++

c++

7

Du modèle objet au C++

● Le modèle objet exprimé en UML est une
abstraction indépendante d’un langage
de programmation spécifique

● Différents langages de programmation orienté
objet ont différentes syntaxes pour exprimer
les mêmes concepts mais aussi des
mécanismes différents

● Le C++ est un « langage système » qui permet
d’implémenter un modèle objet au plus près des
ressources matérielles (close to metal)

● Les performances optimales réalisables se
payent au prix d’une plus grande complexité...

https://www.quora.com/What-does-it-mean-for-a-programming-language-to-be-closer-to-the-metal

8

Du modèle objet au C++
● Classes  classes Méthodes  méthodes(val. / adr. / ref.)

● Instances  objets alloués à certaines adresses RAM

● Attributs  attributs « types valeurs »

● Compositions  attributs « types valeurs » (souvent)
● Compositions facultatives ou lourdes

 attributs pointeurs sur ressources exclusives
 attributs vecteurs de ressources exclusives
 (vecteur = valeur qui cache un pointeur → zone allouée)

● Associations sens unique  attributs pointeurs

● Associations double sens  pointeurs réciproques

● Multiplicité 0..N  vecteurs de valeurs ou de pointeurs

!

9

Du modèle objet au C++
● Classes  classes Méthodes  méthodes(val. / adr. / ref.)

● Instances  objets alloués à certaines adresses RAM

● Attributs  attributs « types valeurs »

● Compositions  attributs « types valeurs » (souvent)

● Compositions facultatives ou lourdes
 attributs pointeurs sur ressources exclusives
 attributs vecteurs de ressources exclusives
 (vecteur = valeur qui cache un pointeur → zone allouée)

● Associations sens unique  attributs pointeurs

● Associations double sens  pointeurs réciproques

● Multiplicité 0..N  vecteurs de valeurs ou de pointeurs

!

10

Du modèle objet au C++

● Dans un modèle UML il y a beaucoup de flèches
● Dans un code C++ il y a beaucoup de pointeurs

et d’histoires d’adresses mémoire

Cadre

- couleur : String

Coords

- x : Real
- y : Real

 1 position 1 taille

O 1 32 4 x

y

1

2

3

5

4

position

taille

class Cadre
{
 private :
 Coords m_position;
 Coords m_taille;
 std::string m_couleur;

 public :
 ...
};

class Coords
{
 private :
 double m_x;
 double m_y;

 public :
 ...
};

Ces flèches de navigation UML... Ne correspondent
à aucun pointeur ici !

11

Du modèle objet au C++

● Dans un modèle UML il y a beaucoup de flèches
● Dans un code C++ il y a beaucoup de pointeurs

et d’histoires d’adresses mémoire

Musee

- nom : String
- adresse : String

Oeuvre

- titre : String
- auteur : String
- année : Integer

 1..*patrimoine 1..* exposition

 0..1 exposant 0..1proprietaire

Double navigation UML
pas de flèche...

Plein de pointeurs !class Oeuvre
{
 private :
 /// Attributs valeurs simples
 std::string m_titre;
 std::string m_auteur;
 int m_annee;

 /// Attribut références à des entités
 Musee* m_proprietaire;
 Musee* m_exposant;

 public :
 Oeuvre(std::string titre,std::string auteur);

 void setProprietaire(Musee* m);
 Musee* getProprietaire() const;

 void setExposant(Musee* m);
 Musee* getExposant() const;

};

12

Du modèle objet au C++

● Dans un modèle UML il y a beaucoup de flèches
● Dans un code C++ il y a beaucoup de pointeurs

et d’histoires d’adresses mémoire

 Flèche UML ≠ pointeur

13

Du modèle objet au C++

● De même attention à la polysémie (sens multiple)

Une référence au sens conception objet est
quelque chose qui permet de désigner un objet
Ça peut s’implémenter de différentes façons :

● Référence au sens mécanisme C++ : Type&
● Pointeur au sens mécanisme C++ : Type*
● Index entier sur un élément dans vecteur
● Nom textuel permettant de retrouver l’élément
● Clé dans une base de donnée

 Référence POO ≠ Référence C++

14

Du modèle objet au C++

● Les références au sens technique C++ Type&
sont en fait des « pointeurs cachés »

● Qu’on utilise des pointeurs ou des références :

Un objet sait qui il pointe mais il ne sait pas
qui le pointe...

Problème : si un objet pointé est détruit
il ne peut pas facilement avertir les pointants

?!

Dangling pointers  plantages

!

15

Du modèle objet au C++

● Les vecteurs sont comme des tableaux qui
grossissent magiquement mais en fait il y a
ré-allocation...

...

A
abc

vector<A>

Objet avec
attribut vecteur
d’objets de type A

A
def

A
ghi

...

...
vector<A>

...

A
abc

A
def

A
ghi

A
abc

A
def

A
ghi

A
jkl

Copie dans un nouvel
espace de stockage

push_back

16

Du modèle objet au C++

● Les vecteurs sont comme des tableaux qui
grossissent magiquement mais en fait il y a
ré-allocation : les adresses des éléments
stockés ne sont pas stables !

...

A
abc

vector<A>

Objet avec
attribut vecteur
d’objets de type A

A
def

A
ghi

...

…
...

Objet avec pointeur
sur un élément
du vecteur

...
vector<A>

...

…
...

Objet avec pointeur
sur un élément
du vecteur

A
abc

A
def

A
ghi

A
abc

A
def

A
ghi

A
jkl

Les anciennes adresses
sont invalidées !

Copie dans un nouvel
espace de stockage

push_back

plantages

!

17

Du modèle objet au C++

● Ce léger inconvénient n’existe pas avec d’autres
conteneurs (list, map... Cours 7)

● Sinon stocker des pointeurs sur des objets...

...

A
abc

vector<A*>

A
def

A
ghi

...

…
...

Objet avec pointeur
sur un élément
pointé par le vecteur

Objet avec attribut
vecteur de pointeurs
sur objets de type A

18

Du modèle objet au C++

● Ce léger inconvénient n’existe pas avec d’autres
conteneurs (list, map... Cours 7)

● Sinon stocker des pointeurs sur des objets...

...
vector<A*>

Objet avec attribut
vecteur de pointeurs
sur objets de type A

...

…
...

Objet avec pointeur
sur un élément
pointé par le vecteur

A
abc

A
def

A
ghi

A
jklLes adresses des

objets restent stables

19

Du modèle objet au C++

● Stocker des pointeurs sur objets plutôt que des
objets implique d’utiliser l’allocation dynamique
→ on préfère éviter (Cf cours 5, cycle de vie)
→ pas trop le choix pour certains objets dynamiques

...
vector<A*>

Objet avec attribut
vecteur de pointeurs
sur objets de type A

...

…
...

Objet avec pointeur
sur un élément
pointé par le vecteur

A
abc

A
def

A
ghi

A
jklLes adresses des

objets restent stables

20

Du modèle objet au C++

● Dans le passage du modèle à l’implémentation
on a parfois des soucis pour interpréter les
contraintes de structure / topologie :
le modèle UML ne dit pas tout...

● Cycles ou pas : pas les mêmes algos !

Node
...

0..2

Node

NodeNode

NodeNode

Node

NodeNode

Node

Objets : Cycles ?Classes UML Objets : Pas cycles ?

21

Du modèle objet au C++

● Dans le passage du modèle à l’implémentation
on a parfois des soucis pour interpréter les
contraintes de structure / topologie :
le modèle UML ne dit pas tout...

● Groupes séparables ou pas ?

Musee
...

1..*

M

Objets : groupés ?Classes UML

Oeuvre
...

Collection
...

1..*

M

O O O O O O O

C C C

Objets : pas groupés ?

M M

O O O O O O O

C C C

22

Du modèle objet au C++

● En fait c’est le diagramme de classes UML
spécifiquement qui ne dit pas tout, en principe
un bon modèle précise par écrit ces aspects

Musee
...

1..*

Classes UML

Oeuvre
...

Collection
...

1..*

Objets : pas groupés !

M M

O O O O O O O

C C C

Bla bla bla bla bla bla
bla bla bla bla bla bla
bla bla une collection
pourra regrouper des
œuvres qui se trouvent
dans différents musées
bla bla bla bla bla bla
bla bla bla bla bla bla

23

Du modèle objet au C++

● En général il faudra bien distinguer 2 façons de
grouper les instances :

● Regroupement par type : classes
C’est un regroupement abstrait
Exemple « les œuvres d’art »
Toutes dans le même sac !

● Regroupement en collections : conteneurs
vecteur, tableau, liste, map … (Cours 7)
C’est un regroupement concret et plus fin
Exemples :
« les œuvres de la collection Christina H. Kang »
« les œuvres de la collection François Pinault »
...

24

Du modèle objet au C++

● En général il faudra bien distinguer 2 façons de
grouper les instances :

● Regroupement par type : classes
● Regroupement en collections : conteneurs

● La confusion risque de se produire quand on a
qu’une seule collection pour toutes les instances
d’une classe

● Exemple :
au TD/TP 5 toutes les instances de Astre sont
dans un seul et même vecteur...

25

Du modèle objet au C++

● Une application orientée objet c’est

– Des allocations mémoire d’objets
– Des initialisations de données d’objets
– Des délétions/libération mémoire d’objets
– Des copies de données d’objets

● Des pointeurs entre des zones mémoires,
certaines adresses stables, d’autres instables

● Trop de pointeurs, un « tissu » de pointeurs
● Quand on tire sur un pointeur, tout vient !

26

Du modèle objet au C++

● Pour que la transformation du modèle UML
en implémentation C++ ne soit pas un fiasco :

➔ Il faut définir des règles du jeu sur le terrain
qui a le ballon (le pointeur sur un objet) ?

➔ Il faut avoir des règles claires dans les vestiaires
à qui est cette paire de crampons (ces 8 octets) ?

➔ En résumé : quel objet aura, à quel moment,
la responsabilité des données et de leur espace
de stockage ? C’est la problématique de
la propriété : ownership ...

27

COURS 6

A) Du modèle objet au C++
B) Types valeur / types entité
C) Copiabilité en C++
D) Composition en C++
E) Associations à sens unique
F) Associations à double sens

28

Types valeur / types entité

 {25, HUN} is a composite value The Black Pearl is an entity

29

Types valeur / types entité

● Dans un diagramme de classes UML un symbole de
composition indique un lien fort de propriété...

Patient

- nom : String
- sexe : H / F
- … etc …

DossierMedical

- observations : String[*]
- prescriptions : String[*]
- opérations : String[*]

 1 dossierMedic

 1 patient

Un objet patient est propriétaire
d’un objet DossierMedical

Un dossier médical est intimement
lié à la personne qu’il représente,
il ne peut pas devenir le dossier
médical de quelqu’un d’autre !

Si on détruit (l’objet informatique local) Patient
alors on libère (l’objet informatique local) Dossier

30

Types valeur / types entité

● Non partageable en tant que composant,
n’empêche pas d’autres objets d’être en
association avec un composant ...

Patient

- nom : String
- sexe : H / F
- … etc …

DossierMedical

- observations : String[*]
- prescriptions : String[*]
- opérations : String[*]

 1 dossierMedic

 1 patient

Docteur

- nom : String
- spécialité : String * *

Le DossierMedical d’un Patient
ne peut pas être un composant
de Docteur mais un Docteur peut
avoir des références (pointeurs)
vers des instances de DossierMedical

 dossiersCourants

na

vi
ga

bi
lit

é
bi

di
re

ct
io

nn
el

le

31

Types valeur / types entité

● Certains types composants n’ont pas vocation à être
référencés (pointés) par d’autres objets...

Patient

- nom : String
- sexe : H / F
- … etc …

Date

- jour : Integer
- mois : Integer
- année : Integer

 1 dateNaissance

na

vi
ga

bi
lit

é
un

id
ire

ct
io

nn
el

le

Pas d’accès par des attributs
pointeurs d’autres objets

!

32

Types valeur / types entité

● Le composite est alors le seul à « donner accès »

● Données identiques  même objet composant !

Patient

- nom : String
- sexe : H / F
- … etc …

Date

- jour : Integer
- mois : Integer
- année : Integer

 1 dateNaissance

na

vi
ga

bi
lit

é
un

id
ire

ct
io

nn
el

le

Patient

nom = "Martin"
dateNaissance =

Date

jour = 15
mois = 1
année = 1978

Patient

nom = "Evrard"
dateNaissance =

Date

jour = 3
mois = 9
année = 1943

Patient

nom = "Dupont"
dateNaissance =

Date

jour = 15
mois = 1
année = 1978

Diagramme d’objetsDiagramme de classes

33

Types valeur / types entité

● Le composite est alors le seul à « donner accès »

● Données identiques  même objet composant !

Patient

- nom : String
- sexe : H / F
- … etc …

Date

- jour : Integer
- mois : Integer
- année : Integer

 1 dateNaissance

na

vi
ga

bi
lit

é
un

id
ire

ct
io

nn
el

le

Patient

nom = "Martin"
dateNaissance =

Date

jour = 15
mois = 1
année = 1978

Patient

nom = "Evrard"
dateNaissance =

Date

jour = 3
mois = 9
année = 1943

Patient

nom = "Dupont"
dateNaissance =

Diagramme d’objetsDiagramme de classes

Mauvaise implémentation :
Chaque patient devrait avoir
sa dateNaissance à lui !

34

Types valeur / types entité

● En C++ on préfère alors déclarer l’attribut "par valeur"

● Attribut Date m_dateNaissance; et non pas Date* ...

Patient

- nom : String
- sexe : H / F
- … etc …

Date

- jour : Integer
- mois : Integer
- année : Integer

 1 dateNaissance

na

vi
ga

bi
lit

é
un

id
ire

ct
io

nn
el

le

Patient

nom = "Martin"
dateNaissance =

Date

jour = 15
mois = 1
année = 1978

Patient

nom = "Evrard"
dateNaissance =

Date

jour = 3
mois = 9
année = 1943

Patient

nom = "Dupont"
dateNaissance =

Date

jour = 15
mois = 1
année = 1978

Diagramme d’objetsDiagramme de classes

!

35

Types valeur / types entité

● Ça n’interdit pas aux méthodes d’autres objets
d’obtenir une copie (ou une référence temporaire) aux données :
mais toujours en passant par l’objet propriétaire

Patient

- nom : String
- sexe : H / F
- … etc …

Date

- jour : Integer
- mois : Integer
- année : Integer

 1 dateNaissance

na

vi
ga

bi
lit

é
un

id
ire

ct
io

nn
el

le

Hôpital

- nom : String
- … etc … *

 patients

 0..1

 hôpital
+ getDateNaissance()

+compterGeriatrie(…)

Date Patient::getDateNaissance() const
{
 return m_dateNaissance;
}

int Hopital::compterGeriatrie(int anneeLimite) const
{
 int cpt = 0;
 for (size_t i=0; i<m_patients.size(); ++i)
 {
 Date naissance = m_patients[i]->getDateNaissance();
 if (naissance.getAnnee() <= anneeLimite)
 ++cpt;
 }
 return cpt;
}

36

Types valeur / types entité

● Ça n’interdit pas aux méthodes d’autres objets
d’obtenir une copie (ou une référence temporaire) aux données :
mais toujours en passant par l’objet propriétaire

Patient

- nom : String
- sexe : H / F
- … etc …

Date

- jour : Integer
- mois : Integer
- année : Integer

 1 dateNaissance

na

vi
ga

bi
lit

é
un

id
ire

ct
io

nn
el

le

Hôpital

- nom : String
- … etc … *

 patients

 0..1

 hôpital
+ getDateNaissance()

+compterGeriatrie(…)

int Hopital::compterGeriatrie(int anneeLimite) const
{

 ...

 Date naissance = m_patients[i]->getDateNaissance();

 ...

}

copie

37

Types valeur / types entité

● Les objets de ce genre de types se comportent
comme des valeurs
On dira de ces types que ce sont des types valeur

Patient

- nom : String
- sexe : H / F
- … etc …

Date

- jour : Integer
- mois : Integer
- année : Integer

 1 dateNaissance

na

vi
ga

bi
lit

é
un

id
ire

ct
io

nn
el

le

Pas d’accès par des attributs
pointeurs d’autres objets

!

38

Types valeur / types entité

● On voudra « se débarrasser » de ces types dans
les diagrammes de classes en les considérant
directement comme des attributs

Patient

- nom : String
- sexe : H / F
- dateNaissance : Date

Date

- jour : Integer
- mois : Integer
- année : Integer

!

Classes des types valeur : décrits séparément

Diagramme de classes

39

Types valeur / types entité

● Un type composé de types valeurs, sans pointeurs
extérieurs sur lui, est lui même un type valeur

Patient

- nom : String
- sexe : H / F
- dateNaissance : Date

!

Adresse

 1 adresse
Residence

- numéro : Integer
- voie : String

Commune

- codePostal : Integer
- nom : String

Date

- jour : Integer
- mois : Integer
- année : Integer

Pas d’accès par des attributs
pointeurs d’autres objets

40

Types valeur / types entité

● Un type composé de types valeurs, sans pointeurs
extérieurs sur lui, est lui même un type valeur

Patient

- nom : String
- sexe : H / F
- dateNaissance : Date
- dateAdmission : Date
- adresse : Adresse

!

Adresse

- residence : Residence

- commune : Commune

Residence

- numéro : Integer
- voie : String

Commune

- codePostal : Integer
- nom : String

Date

- jour : Integer
- mois : Integer
- année : Integer

Classes des types valeur : décrits séparément

Diagramme de classes

Hôpital

- nom : String
- adresseUrgences : Adresse
- adresseConsultations : Adresse
- adresseAdministratif : Adresse
- dateControleSanitaire : Date

 *

 patients

 0..1

 hôpital

41

Types valeur / types entité

● Les classes qui ne sont pas des types valeur
sont des types entité : les objets en inter-relations.
Ils n’apparaissent jamais directement en attributs

Patient

- nom : String
- sexe : H / F
- dateNaissance : Date
- dateAdmission : Date
- adresse : Adresse

!

Adresse

- residence : Residence

- commune : Commune

Residence

- numéro : Integer
- voie : String

Commune

- codePostal : Integer
- nom : String

Date

- jour : Integer
- mois : Integer
- année : Integer

Classes des types valeur : décrits séparément

Diagramme de classes des types entité

Hôpital

- nom : String
- adresseUrgences : Adresse
- adresseConsultations : Adresse
- adresseAdministratif : Adresse
- dateControleSanitaire : Date

 *

 patients

 0..1

 hôpital

42

Types valeur / types entité

Les objets de « type valeur » n’ont pas d’identité
● Sont naturellement faciles à copier/détruire car :

- ils ne sont pas multiplement référencés
 ils ne sont pas la cible de nombreux pointeurs
- ce sont essentiellement des types composés de types
 valeurs élémentaires (int, float... pas de pointeurs)
 ou d’autres types valeurs (hiérarchies de composition)

● N’existent pas «indépendamment»
- soit ils ont une vie brève en tant que
 variable auto. / paramètre / objet anonyme temporaire
- soit ils ont une vie longue mais en tant que valeur
 d’attribut d’un type entité, pas isolément

!

43

Types valeur / types entité

Les objets de « type entité » ont une identité
● N’ont pas vocation à être copiés (unicité)

- ce sont essentiellement des types associés (UML)
 à d’autres types entités
- ils peuvent être multiplement référencés
 ils sont la cible de nombreux pointeurs d’autres entités
- ils ont souvent des références sortantes
 ils ciblent d’autres entités par pointeurs

● Existent avec une adresse stable
- ce sont des objets persistants : généralement alloués
 dynamiquement avec new et libérés avec delete
- on peut les mettre en correspondance directe avec
 des entités concrètes du modèle, 1 instance = 1 entité

!

44

Types valeur / types entité

Distinguer les types valeur des types entité
● Cette démarche tient une place importante dans

une des méthodologies de conception
orienté objet : Domain Driven Design
Compléments d’explications (Java/DB centrique)

● Attention aux raccourcis, une classe "légère et simple"
n’est pas automatiquement un type valeur :
pour un gestionnaire de réseau (fibre optique…)
le type Adresse est peut être un type entité !

● A l’inverse un type "lourd ou complexe" comme
Image (matrice de pixels) peut se comporter en valeur
si les objets images sont des composants qui ne
participent pas à la navigation dans le modèle objet

https://enterprisecraftsmanship.com/2016/01/11/entity-vs-value-object-the-ultimate-list-of-differences/

45

Types valeur / types entité

● Ceci impactera les diagrammes de classes
en les débarrassant de nombreuses classes
utilitaires qui se retrouvent alors comme types
d’attributs, les associations graphiques sont
donc réservées aux « vraies » classes d’entités

Date
- Jour
- Mois
- Annee

date 1

BilletTrain
- destination : String

dateDepart1

RecordSportif
- athlete : String

Date
- Jour
- Mois
- Annee

BilletTrain

- destination : String
- dateDepart : Date

RecordSportif

- athlete : String
- date : Date

Diagramme de classes
niveau bibliothèque :
utilitaires / types valeur

Diagramme de classes
niveau entités de l’application

Quelle est la relation ?? Aucune relation !

Pas terrible : Athlete et destination sont
traités comme des valeurs et Date en entité !

46

Types valeur / types entité

● Ceci impactera les diagrammes de classes
en les débarrassant de nombreuses classes
utilitaires qui se retrouvent alors comme types
d’attributs, les associations graphiques sont
donc réservées aux « vraies » classes d’entités

BilletTrain

- dateDepart : Date
- qrCode : Image

RecordSportif

- date : Date

Athlete
- nom : String
- naissance : Date
- photo : Image

Lieu

- nom : String

destination 1

Competition
- nom : String
- dateDebut : Date
- dateFin : Date

site 1

beneficiaire

records *

 titulaire 1

competitions

 * inscrits 1..*

* billets

Mieux : on voit bien le rôle
réciproque des entités et
Date n’encombre pas avec
des liaisons graphiques !

1

Un organisateur de compétitions
veut savoir à quels athlètes
proposer des billets gratuits
en fonction de leurs records...

47

Types valeur / types entité

● Ceci impactera notre façon de concevoir le code
● C++ a une mécanique efficace de composition

avec attributs membres par valeur
● Les types valeurs seront codés pour être

copiable facilement, efficacement, sûrement
● Dès qu’ils sont lourds on pourra quand même

les passer par référence & en paramètres
● Les types entités seront si possible

déclarés non copiables !
● Les types entités seront manipulés par pointeurs

!

48

COURS 6

A) Du modèle objet au C++
B) Types valeur / types entité
C) Copiabilité en C++
D) Composition en C++
E) Associations à sens unique
F) Associations à double sens

49

Copiabilité en C++

copie copie

50

Copiabilité en C++

● Le compilateur C++ fait des choses implicites
● Dès qu’on déclare une classe il existe une

famille de méthodes spéciales qui sont traitées
de façons spécifiques par le compilateur :
en l’absence de leur déclaration explicite
elle sont générées implicitement

https://en.wikipedia.org/wiki/Special_member_functions

51

Copiabilité en C++

● Les méthodes spéciales implicites sont
neutralisées quand on les déclare

● Dans certains cas on ne veut pas de ces
méthodes implicite, sans pour autant les définir
On l’indiquera avec =delete;
derrière le prototype de la méthode

52

Copiabilité en C++

● Dans certains cas on veut au contraire
confirmer explicitement au compilateur
qu’on veut ces méthodes implicites
On l’indiquera avec =default;
derrière le prototype de la méthode
(Vous me suivez ? Les règles sont complexes...)

53

Copiabilité en C++

● Le constructeur par défaut implicite est en
général insatisfaisant (Cours 5)

● Le destructeur implicite est en général
satisfaisant si l’objet n’a pas acquis de
ressources à gestion manuelle (pas fait new)
et qu’on a rien d’intéressant à y faire

54

Copiabilité en C++

● Les méthodes de déplacement (move semantics)
sont une innovation du C++ 11
Indispensable sur du code C++ « up to date »

● On utilise quelques aspects C++ 11 mais on
ne pourra pas tout couvrir… hors programme

https://en.wikipedia.org/wiki/C%2B%2B11#Rvalue_references_and_move_constructors

55

Copiabilité en C++

● Les méthodes de copie sont celles qui vont
nous intéresser en particulier pour les
types valeurs qui doivent être copiables !

● On verra comment les définir en cas de besoin
mais surtout comment ne pas avoir ce besoin !

56

Copiabilité en C++

● Les méthodes de copie sont utilisées quand...
● Un nouvel objet est créé à partir d’un autre

=> Constructeur par copie
● Un objet existant prend la valeur d’un autre

=> Opérateur d’affectation = (par copie)

57

Copiabilité en C++

● Les méthodes de copie sont utilisées quand...
● Un nouvel objet est créé à partir d’un autre

=> Constructeur par copie
● Un objet existant prend la valeur d’un autre

=> Opérateur d’affectation = (par copie)

 Oeuvre inestimable{"La Joconde", "Léonard de Vinci", 1519};

 /// Appel au constructeur par copie
 Oeuvre vulgaireCopie1{inestimable};
 Oeuvre vulgaireCopie2 = inestimable;

 /// Déclaration puis appel à l’opérateur d'affectation
 Oeuvre vulgaireCopie3{"", "", 0};
 vulgaireCopie3 = inestimable;

58

Copiabilité en C++

● Les méthodes de copie sont utilisées quand...
● Un passage de paramètre par valeur est présent

=> Constructeur par copie
void fonctionA(Oeuvre oeuvre)
{ ... }
void fonctionB(Oeuvre& oeuvre)
{ ... }
void fonctionC(Oeuvre* poeuvre)
{ ... }
void Oeuvre::uneMethode()
{ ... }

 Oeuvre inestimable{"La Joconde", "Léonard de Vinci", 1519};

 /// Appel au constructeur par copie
 fonctionA(inestimable);

 /// Aucune copie
 fonctionB(inestimable);
 fonctionC(&inestimable);
 inestimable.uneMethode()

59

Copiabilité en C++

● Les méthodes de copie sont utilisées quand...
● Un passage de paramètre par valeur est présent

=> Constructeur par copie
● Il ne faut donc pas passer par valeur des objets

de classes non copiables !
● C’est le cas de Svgfile (TD/TP 4 et 5)
● Type entité : privilégier passage par référence !

void fonction(Oeuvre oeuvre)
{ ... }

void fonction(Oeuvre& oeuvre)
{ ... }

Nécessite Oeuvre copiable

Aucune contrainte

60

Copiabilité en C++

● Le constructeur par copie et l’opérateur
d’affectation implicite réalisent une copie
membre à membre (memberwise)
en appelant si nécessaire les méthodes
de copie des attributs de types copiables
(std::string std::vector et tous nos types valeur)

● Ceci est le comportement souhaitable pour
les types valeurs et composites de types valeurs

● Ceci n’est pas le comportement souhaitable
pour les types qui gèrent des ressources

● Ceci n’est souvent pas souhaitable pour les
types entités qu’il vaut mieux ne pas copier

!

61

Copiabilité en C++

● La règle de 3 rule of three
● Concerne les classes gestionnaires de

ressource (ce qu’on évitera de faire !)
● Elle dit que si UNE des 3 méthodes spéciales

- destructeur
- constructeur par copie
- opérateur d’affectation

ne convient pas dans sa version implicite et
doit être codée, alors les 3 doivent être codées

i

https://en.cppreference.com/w/cpp/language/rule_of_three

62

Copiabilité en C++

● La règle de 3 rule of three
● Essayons de comprendre pourquoi, supposons

une classe Triangle qui compose 3 Coords
et qui les gère comme une ressource
(3 appels à new Coords dans le constructeur de Triangle)

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

T

C

2
3

C

5
1

C

4
4

Composition

Propriété exclusive
Pas de pointeur entrant

Obtenus
avec new

i

https://en.cppreference.com/w/cpp/language/rule_of_three

63

Copiabilité en C++

● La règle de 3 rule of three
● Au moment de la destruction du Triangle le

destructeur implicite libère bien l’espace
mémoire des 3 pointeurs mais pas des
3 Coords pointés !

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

C

2
3

C

5
1

C

4
4

Composition

Propriété exclusive
de plus personne !

Fuite
mémoire !

T

i

https://en.cppreference.com/w/cpp/language/rule_of_three

64

Copiabilité en C++

● La règle de 3 rule of three
● Il faut donc un destructeur explicite qui libère

avec delete ce qui a été alloué avec new

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

C

2
3

C

5
1

C

4
4

Composition

Tous les
octets libérés

Plus de fuite
mémoire !

T

i

https://en.cppreference.com/w/cpp/language/rule_of_three

65

Copiabilité en C++

● La règle de 3 rule of three
● Mais dans ce cas la copie membre à membre

implicite va copier des pointeurs et non les
ressources pointées : copie superficielle

● Ça ne convient pas pour une ressource !

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

T

C

2
3

C

5
1

C

4
4

Composition

Propriété plus trop exclusive
Plein de pointeurs entrants !

T

i

https://en.cppreference.com/w/cpp/language/rule_of_three

66

Copiabilité en C++

● La règle de 3 rule of three
● Non seulement des données exclusives sont

partagées par 2 objet mais la destruction de
l’un entraîne l’invalidation des pointeurs de
l’autre (un chaos !)

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

T

C

2
3

C

5
1

C

4
4

Composition

Propriété plus trop exclusive
Plein de pointeurs entrants !

T

i

https://en.cppreference.com/w/cpp/language/rule_of_three

67

Copiabilité en C++

● La règle de 3 rule of three
● Donc la règle de 3 est nécessaire, il faut coder

les 2 méthodes de copie pour obtenir une
copie profonde (on ne voit pas ça en cours)

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

Composition

T

Copie profonde

C

2
3

C

5
1

C

4
4

T

C

2
3

C

5
1

C

4
4

i

https://en.cppreference.com/w/cpp/language/rule_of_three

68

Copiabilité en C++

● Et pour une classe de type entité ?
● La copie membre à membre implicite fait une

copie superficielle...
● Souvent ça ne convient pas pour une entité !

Triangle
...

3
Sommet

- x : Real
- y : Real

Classes UML

T

S

2
3

S

5
1

S

4
4

Association

Ça sert à quoi de copier T ?

T

i

69

Copiabilité en C++

● Au niveau entité tous les objets sont reliés
dans un graphe connexe de relations

Copier M. Fercoq ?

Entreprise

nom = "ECE"

employés[...] =

Personne

nom = "Segado"
employeurs[...] =

Personne

nom = "Fercoq"
employeurs[...] =

Personne

nom = "Diedler"
employeurs[...] =

Entreprise

nom = "Lights SA"

employés[...] =

i

70

Copiabilité en C++

● Au niveau entité tous les objets sont reliés
dans un graphe connexe de relations

● La copie superficielle ne veut rien dire et
la copie profonde est « impossible » :
il faudrait copier tout le système !

● On préféra donc souvent bloquer toute
tentative de copie en neutralisant les méthodes
de copie implicites et en évitant d’essayer de les
implémenter (sauf si le CDC nous y oblige)

 /// Pas de constructeur par copie implicite
 Oeuvre(const Oeuvre& original) = delete;

 /// Pas d'opérateur d'affectation implicite
 Oeuvre& operator=(const Oeuvre& original) = delete;

i

71

Copiabilité en C++

● En résumé :
● Classes de types valeur :

les méthodes de copie implicites conviennent
● Classes gestionnaire de ressource :

à éviter autant que possible
la régle de 3 s’applique
coder destructeur et 2 méthodes de copie

● Classes de types entité
coder le destructeur si nécessaire
 => mise à jour pointeurs réciproques
si possible mettre en =delete les méthodes
de copie, la classe est non copiable

!

72

COURS 6

A) Du modèle objet au C++
B) Types valeur / types entité
C) Copiabilité en C++
D) Composition en C++
E) Associations à sens unique
F) Associations à double sens

73

Composition en C++

74

Composition en C++

● Dans les slides suivants on considère qu’un
triangle est composé de 3 couples de Coords

● Attention ce n’est pas le modèle maillage (TPs)
où les Sommets sont partagés : association

Triangle
...

3
Coords

- x : Real
- y : Real

Composition

Triangle
...

3
Sommet

- x : Real
- y : Real

Association ou agrégation

facultatif

75

Composition en C++

● Avec des pointeurs pour référencer des objets
composants on a par défaut des copies
de pointeurs sans copie des pointés

Triangle
...

3

T

 Copie superficielle
 Ne convient pas du tout...

Coords

- x : Real
- y : Real

C

2
3

Classes UML

C

5
1

C

4
4

T

Composition

76

Composition en C++

● Avec des pointeurs pour référencer des objets
composants on peut coder pour obtenir
une copie profonde avec copie des pointés

● On peut mais on évite si possible (règle de 3...)

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

T

Copie profonde

C

2
3

C

5
1

C

4
4

T

C

2
3

C

5
1

C

4
4

Composition

77

Composition en C++

● Avec la sémantique par valeur (attributs valeurs)
les données des classes composantes sont
directement dans le même bloc mémoire que
les autres attributs de la classe composite

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

Copie profonde
automatique :

plus de pointeurs !

T

C

2
3

C

5
1

C

4
4

T

C

2
3

C

5
1

C

4
4

Composition

78

Composition en C++

● Cette distinction copie profonde/superficielle
existe dans tous les langages orientés objet
Seuls C++ et C# (pas Java) proposent une vraie
sémantique par valeur (attributs valeurs)

Triangle
...

3
Coords

- x : Real
- y : Real

Classes UML

Copie profonde
automatique :

plus de pointeurs !

T

C

2
3

C

5
1

C

4
4

T

C

2
3

C

5
1

C

4
4

Composition

79

Composition en C++

● C++ excelle dans les compositions par valeur
● Et le hardware adore un bloc d’octets contigus
● En C++ la composition par valeur est donc

le choix qui s’impose quand c’est possible

aspect =

cg =

AspectSphere

rayon = 20
couleur = "green"

Astre

MassePonctuelle

position =

masse = 18

Coords

x = 150
y = 30

aspect =

cg =

AspectSphere

rayon = 20
couleur = "green"

Astre MassePonctuelle

position =

masse = 18

Coords

x = 150
y = 30

16 octets
16 octets

16 octets

32 octets

Total 56 octetsTotal 80 octets

Mémoire : fragmentée Mémoire : 1 seul bloc contigu

x y m r c

!

80

Composition en C++

● Une classe composite se comporte comme le
propriétaire (owner) de ses composants

● Avec attributs par valeur sa responsabilité de
terminer la vie de ses composants est triviale :
la destruction du composite entraîne
automatiquement la destruction des
composants :

!

aspect =

cg =

AspectSphere

rayon = 20
couleur = "green"

Astre

MassePonctuelle

position =

masse = 18

Coords

x = 150
y = 30

Appels en cascade
des destructeurs
implicites des
composants

81

Composition en C++

● Une classe composite se comporte comme le
propriétaire (owner) de ses composants

● Avec attributs par valeur sa responsabilité de
dupliquer ses composants est triviale :
constructeur par copie implicite OK
opérateur d’affectation implicite OK

!

aspect =

cg =

AspectSphere

rayon = 20
couleur = "green"

Astre

MassePonctuelle

position =

masse = 18

Coords

x = 150
y = 30

aspect =

cg =

AspectSphere

rayon = 20
couleur = "green"

Astre

MassePonctuelle

position =

masse = 18

Coords

x = 150
y = 30

copie

82

Composition en C++

● Une classe composite se comporte comme le
propriétaire (owner) de ses composants

● Avec attributs par adresse sa responsabilité de
terminer la vie de ses composants est
compliquée et risquée : règle de 3
la destruction du composite n’entraîne la
destruction des composants que si on le
code bien :

!

Destructeurs
explicites à coder
pour libérer les
composants

aspect =

cg =

AspectSphere

rayon = 20
couleur = "green"

Astre MassePonctuelle

position =

masse = 18

Coords

x = 150
y = 30

83

Composition en C++

● Une classe composite se comporte comme le
propriétaire (owner) de ses composants

● Avec attributs par adresse sa responsabilité de
dupliquer ses composants est complexe :
constructeur par copie implicite NON
opérateur d’affectation implicite NON

!

Règle de 3 :
coder les 3 méthodes
- Destructeur
- Constructeur par copie
- Opérateur d’affectation copie

84

Composition en C++

● En C++ on essayera toujours d’avoir une
composition par valeur

● Mais il y a d’autres contraintes qui peuvent
amener à choisir une composition par adresse

adresse

!

85

Composition en C++

● On envisagera ou on sera obligés de composer
par adresse pour des attributs

– de types entités (objets partagés, non copiables)

– qui existent ou pas (nullptr dans ce cas)

– qui existeront plus tard (idem précédent)

– qui sont de tailles variables (réallocation)

– lourds et/ou immuables (éviter des copies)

– polymorphes (cours 8)

● Approche moderne smart pointers (hors programme)

https://www.internalpointers.com/post/beginner-s-look-smart-pointers-modern-c

86

Composition en C++

● Exemple typique de composition par adresse
● Une classe Application ou Document compose

tous les objets entités alloués dynamiquement,
leurs adresses doivent rester stable

!

Entreprise

- nom : String
- adresse : String

Personne

- nom : String

employeurs *

1..*

Application

*

*

employés

toutesEntreprises

toutesPersonnes

Voir slides 15 à 19class Application
{
 private :
 std::vector<Entreprise*> m_toutesEntreprises;
 std::vector<Personne *> m_toutesPersonnes;
 ...
};

87

COURS 6

A) Du modèle objet au C++
B) Types valeur / types entité
C) Copiabilité en C++
D) Composition en C++
E) Associations à sens unique
F) Associations à double sens

88

Associations à sens unique

89

Associations à sens unique

● Association sens unique, multiplicité 1 ou 0..1
● stocker un pointeur sur une entité
● attribut pointeur sur

!

B*

B
def

...

Objet avec attribut
pointeur sur objet
 de type B

...

A

...

...

A

...
B

1
Ou
0..1 class A {

 ...
 B* objetB;
 ...
};

90

Associations à sens unique

● Association sens unique, multiplicité 0..1
● Bricolage possible : utiliser nullptr pour

indiquer qu’il n’y a pas d’objet B référencé
pour l’instant. À tester systématiquement !

B*

...

Objet avec attribut
pointeur sur objet
 de type B

...

A

...

...

A

...
B

0..1

nullptr

class A {
 ...
 B* objetB;
 ...
};

91

Associations à sens unique

● Association sens unique, multiplicité 1 ou 0..1
● Ne pas « libérer » l’objet pointé dans le

destructeur de A si l’objet B n’est pas une
ressource de A ou si B est encore référencé !

!

B*

B
def

...

…
...

Autre objet avec pointeur
sur le même élément
pointé par l’objet A

Objet avec attribut
pointeur sur objet
 de type B

...

A

...

...

A

...
B

1
Ou
0..1

92

Associations à sens unique

● Association sens unique, multiplicité 1 ou 0..1
● Si B est une ressource de A : voir composition

Si B est partagé, compter les références
ou autre approche algorithmique...

!

B*

B
def

...

…
...

Autre objet avec pointeur
sur le même élément
pointé par l’objet A

Objet avec attribut
pointeur sur objet
 de type B

...

A

...

...

A

...
B

1
Ou
0..1

Reste 0 pointeurs
=> delete objetB

93

Associations à sens unique

● Association sens unique, multiplicité *
● stocker des pointeurs sur des entités
● attribut vecteur de pointeur sur

!

Objet avec attribut
vecteur de pointeurs
sur objet de type B

A

...

...

A

...
B

*

vector<B*>
B

def

B
ghi

...

B
abc

class A {
 ...
 std::vector<B*> objetsB;
 ...
};

94

Associations à sens unique

● Association sens unique, multiplicité *
● En général enlever un élément référencé
≠ détruire l’élément enlevé ...

!

…
...

Autre objet avec pointeur
sur un même élément
pointé par l’objet A

Objet avec attribut
vecteur de pointeurs
sur objet de type B

A

...

...

A

...
B

*

vector<B*>
B

def

B
ghi

...

B
abc

erase

95

Associations à sens unique

● Association sens unique, multiplicité *
● Si B est une ressource de A : voir composition

Si B est partagé, compter les références
ou autre approche algorithmique...

!

Autre objet avec pointeur
sur un même élément
pointé par l’objet A

Objet avec attribut
vecteur de pointeurs
sur objet de type B

A

...

...

A

...
B

*

vector<B*>
B

def

B
ghi

...

B
abc

erase

…
...

Reste 0 pointeurs
=> delete objetsB[i]

96

COURS 6

A) Du modèle objet au C++
B) Types valeur / types entité
C) Copiabilité en C++
D) Composition en C++
E) Associations à sens unique
F) Associations à double sens

97

Associations à double sens

98

Associations à double sens

● Les associations à double sens entre entités
s’implémentent avec des pointeurs réciproques

● En général la double navigation implique une
redondance des données (il y a plusieurs façon
d’obtenir la même indication) et donc un risque
accru sur la cohérence des données
(non réciprocité d’un pointeur réciproque !)

!

99

Associations à double sens

● Les associations à double sens entre entités
s’implémentent avec des pointeurs réciproques

!

Entreprise

nom = "ECE"

employés[...] =

Personne

nom = "Segado"
employeurs[...] =

Personne

nom = "Fercoq"
employeurs[...] =

Personne

nom = "Diedler"
employeurs[...] =

Entreprise

nom = "Lights SA"

employés[...] =

Attributs vecteurs de pointeurs

100

Associations à double sens

● Vu le coût ressource et maintenance de la
double navigation on envisage le sens unique

Entreprise

- nom : String
- adresse : String

Personne

- nom : String

employeurs1..*

1..*

Application

*

*

Souvent on a un ensemble
de collections d’entités avec
toutes les entités. On peut
mettre ça dans une classe
Application

toutesEntreprises

toutesPersonnes

101

Associations à double sens

● Vu le coût ressource et maintenance de la
double navigation on envisage le sens unique

Entreprise

nom = "ECE"
...
...
...
...

Personne

nom = "Segado"
employeurs =

Personne

nom = "Fercoq"
employeurs =

Personne

nom = "Diedler"
employeurs =

Entreprise

nom = "Lights SA"
...
...
...
...

toutesPers

? ?
?
?

Avec les collections de toutes les entités on peut retrouver des association
à contre sens : ici on va savoir qui travaille chez Lights SA même si il
n’y a pas de navigation directe de Entreprise vers Personne

Il suffit de chercher systématiquement !

102

Associations à double sens

● Selon le nombre d’entités et la fréquence du
besoin en navigation inverse c’est envisageable

Entreprise

nom = "ECE"
...
...
...
...

Personne

nom = "Segado"
employeurs =

Personne

nom = "Fercoq"
employeurs =

Personne

nom = "Diedler"
employeurs =

Entreprise

nom = "Lights SA"
...
...
...
...

toutesPers

? ?
?
?

Avec les collections de toutes les entités on peut retrouver des association
à contre sens : ici on va savoir qui travaille chez Lights SA même si il
n’y a pas de navigation directe de Entreprise vers Personne

Il suffit de chercher systématiquement !

103

Associations à double sens

● Si la double navigation s’impose, utiliser
systématiquement des accesseurs/mutateurs

!

Entreprise

nom = "ECE"

employés[...] =

Personne

nom = "Segado"
employeurs[...] =

Personne

nom = "Fercoq"
employeurs[...] =

Personne

nom = "Diedler"
employeurs[...] =

Entreprise

nom = "Lights SA"

employés[...] =

Les mutateurs doivent
garantir la cohérence
de la réciprocité

1. la méthode
 removeEmploye
 de Entreprise est
 appelée pour M. Fercoq

2. ceci doit appeler removeEmployeur
 de l’objet Personne 1

2

3. il faut éventuellement delete M. Fercoq
 si il ne reste plus aucun pointeur vers lui, idem pour l’objet ECE !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103

