
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Modèles objets avancés
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

Conteneurs & C++ : la STL

4

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

5

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

6

Structures de données & STL

7

Structures de données & STL

 La Standard Template Library fournit
● Des classes conteneurs génériques (templates)

générique/template = type paramétrable
les conteneurs pourront contenir n’importe quel type

● Des itérateurs pour désigner des emplacements
itérateur = pointeur amélioré spécialement conçu pour
parcourir/désigner les « cases » des conteneurs

● Des méthodes et algorithmes usuels pour
insertion / suppression / recherche / tri

● C’est un standard ISO, plusieurs implémentations existent
(GNU)libstdc++ / (LLVM)libc++ / Microsoft STL / Apache stdcxx ...

● Le succès du C++ comme langage industriel repose en
grande partie sur la STL: productivité, fiabilité, performance

!

https://fr.wikipedia.org/wiki/Standard_Template_Library

8

Structures de données & STL

● Qu’est-ce qu’une classe conteneur générique ?
(generic/template container class)

● La classe générique std::vector< T >

● La classe générique std::list< T >

T T T
0 1 2

T T
nullptr

nullptr

head

T tail

Type en paramètre

9

Structures de données & STL

● Qu’est-ce qu’une classe conteneur générique ?
(generic/template container class)

● La classe concrète std::vector<Ecureuil>

● La classe concrète std::list<Ecureuil>

0 1 2

nullptr

nullptr

head

tail

Type 16 octets

10

Structures de données & STL

● Qu’est-ce qu’une classe conteneur générique ?
(generic/template container class)

● La classe concrète std::vector<Elephant>

● La classe concrète std::list<Elephant>

0 1 2

nullptr

nullptr

head

tail

Type 4000000 octets

11

Structures de données & STL

● Qu’est-ce qu’une classe conteneur générique ?
(generic/template container class)

● C’est une classe « paramétrée en type »
Techniquement en C++ : classe template (cours 11)

● Elle contient une collection d’éléments
de type arbitraire ! Exemple : std::vector< T >

● Attention cependant, un même conteneur
générique ne contient qu’un seul type à la fois,
on ne mélange pas écureuils et éléphants !
(sauf polymorphisme, cours 8)

● Ça sert à quoi ? Ça répond à des besoins...

!

12

Structures de données & STL

● On a besoin de séparer les objets en groupes
● Appartenance aux classes : pas assez fin

!

Tous les objets de type Ecole Tous les objets de type Etudiant

Tous les objets de type Cursus

Génie civil
Génie logiciel
Généraliste

Et. politiques
Gouvernance
Sociologie

cursus
commerce

MBA
Droit fiscal
Marketing

cursus
ingénieur

sciences
sociales

Sophie Durand
Alex Martin

ESCE ECE

Groupe INSEEC

HEIP

Etudiants ECE
Etudiants ESCE

Etudiants HEIP

Universités

13

Structures de données & STL

● Ces groupes ou « collections » doivent être

– Accédés : 1 élément à la fois
– Parcourus : traitements collectifs
– Agrandis : ajout d’élément(s)
– Diminués : retraits d’élément(s)

● Ils doivent permettre des opérations

Savoir taille / Trier / Trouver ...
● Ils doivent pouvoir apporter des garanties

Unicité / Performance / Stabilité

!

14

Structures de données & STL

● Différentes façons d’organiser les données :

 Structures de données

!

vecteur liste simple chaînage

liste double chaînage

table de hachage
arbre binaire
de recherchefile à 2 entrées

15

Structures de données & STL

● Différentes façons d’accéder aux données :

Conteneurs Structure(s) utilisée(s)

vector vecteur

list liste double chaînage

forward_list liste simple chaînage

deque file à 2 entrées

stack file à 2 entrées ou liste à double chaînage ou vecteur

queue file à 2 entrées ou liste à double chaînage

set arbre binaire de recherche

unordered_set table de hachage

map arbre binaire de recherche avec éléments clé/valeur

unordered_map table de hachage avec éléments clé/valeur

!

16

Structures de données & STL

● En fonction des besoins d’accès et des
contraintes et avantages des différentes
structures on choisit un de ces conteneurs...

!

vector vecteur

list liste double chaînage

forward_list liste simple chaînage

deque file à 2 entrées

stack file à 2 entrées ou liste à double chaînage ou vecteur

queue file à 2 entrées ou liste à double chaînage

set arbre binaire de recherche

unordered_set table de hachage

map arbre binaire de recherche avec éléments clé/valeur

unordered_map table de hachage avec éléments clé/valeur

17

Structures de données & STL

● En fonction des besoins d’accès et des
contraintes et avantages des différentes
structures on choisit un de ces conteneurs...

!

vector vecteur

list liste double chaînage

forward_list liste simple chaînage

deque file à 2 entrées

stack file à 2 entrées ou liste à double chaînage ou vecteur

queue file à 2 entrées ou liste à double chaînage

set arbre binaire de recherche

unordered_set table de hachage

map arbre binaire de recherche avec éléments clé/valeur

unordered_map table de hachage avec éléments clé/valeur

 Accès efficace au rang i
 Insertion au milieu inefficace

 Accès inefficace au rang i
 Insertion au milieu efficace
 (à condition d’y être)

18

Structures de données & STL

● Le gros avantage des conteneurs génériques :
pas besoin de recoder pour chaque type T !

!

vector ✔ ✔ ✔ ✔ ✔ ✔ ✔

list ✔ ✔ ✔ ✔ ✔ ✔ ✔

forward_list ✔ ✔ ✔ ✔ ✔ ✔ ✔

deque ✔ ✔ ✔ ✔ ✔ ✔ ✔

stack ✔ ✔ ✔ ✔ ✔ ✔ ✔

queue ✔ ✔ ✔ ✔ ✔ ✔ ✔

set ✔ ✔ ✔ ✔ ✔ ✔ ✔

unordered_set ✔ ✔ ✔ ✔ ✔ ✔ ✔

map<Key,Value> ✔² ✔² ✔² ✔² ✔² ✔² ✔²

unordered_map<K,V> ✔² ✔² ✔² ✔² ✔² ✔² ✔²

int double string Ecureuil Elephant* list<string> ...

19

Structures de données & STL

● Les méthodes utilisables dépendent des conteneurs...

!

https://en.cppreference.com/w/cpp/container

20

Structures de données & STL

● Ces méthodes sont complétées par des
fonctions génériques (type T quelconque)
qui implémentent des algorithmes usuels :
trier, min, max, compter, trouver ...

● Les algorithmes utilisables dépendent des conteneurs
Par exemple l’algorithme de tri std::sort nécessite
un conteneur avec accès aléatoire : operator[]

● Les listes chaînée n’ont pas cet accès, mais elle ont
une méthode de tri (au final ça revient au même...)

● Ces fonctions sont dans #include <algorithm>
● Il y en a beaucoup ! Autant à ne pas re-coder...
● Gain en productivité, fiabilité, performance

!

21

Structures de données & STL

Les algorithmes de la STL

https://en.cppreference.com/w/cpp/algorithm

22

Structures de données & STL

● Utiliser une méthode ou un algorithme a un coût
● Ce coût processeur (temps d’exécution)

est précisé dans la documentation
au paragraphe complexité (complexity)

● Le temps d’exécution exact dépend de la
machine, des options d’optimisation, de la
fragmentation des mémoires caches...
La norme ne peut pas entrer dans ces détails

● L’indication de complexité temporelle est
donnée comme une proportionnalité entre
un nombre N d’éléments impliqués et le temps
d’exécution...

https://fr.wikipedia.org/wiki/Complexit%C3%A9_en_temps

23

Structures de données & STL

● Cette proportionnalité entre un nombre N
d’éléments impliqués et le temps d’exécution...
est exprimée en notation grand O :

– O(1) temps constant
– O(log N) temps logarithmique
– O(N) temps linéaire
– O(N log N) temps log-linéaire
– O(N²) temps quadratique

24

Structures de données & STL

Temps processeur

N éléments

O(1)

O(log N)

O(N)

O(N log N)O(N²)

25

Structures de données & STL

 Exemples de complexités
● L’insertion au milieu d’un vecteur implique de

décaler N/2 éléments : insert est de
complexité O(N) temps linéaire pour un vecteur

● L’insertion au milieu d’une liste juste après un
élément qu’on est en train de visiter implique
juste d’ajouter un maillon, ce temps ne dépend
pas du nombre N d’éléments : insert est de
complexité O(1) temps constant pour une liste

● Les tris que les débutants codent sont en O(N²)
● Les tris de la STL sont en moyenne O(N log N)

26

Structures de données & STL

● On n’aurait pas besoin de toutes ces
complications si une seule structure
de donnée était tout le temps « la meilleure » !

● Souvent la structure par cases contiguës en
mémoire avec ré-allocations est la meilleure :
ceci correspond au std::vector qu’on utilisera
 « par défaut » dans les situations usuelles
parce qu’à l’usage c’est un bon compromis

● Parfois on a beaucoup d’insertions/délétions
ou alors on va souvent chercher par valeur,
alors d’autres conteneurs sont préférables...

!

27

Structures de données & STL

● Rappel technique : n’oubliez pas les includes
● Chaque conteneur a le sien
● Les algorithmes sont dans algorithm

#include <iostream>
#include <string>
#include <vector>
#include <list>
#include <deque>
#include <set>
#include <unordered_set>
#include <map>
#include <algorithm>
...

28

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

29

Itérateurs, parcours, algos

30

Itérateurs, parcours, algos

● Pour faire fonctionner toute cette machinerie
générique (le même code trie des Écureuils ou des Éléphants)
on a besoin d’un mécanisme de désignation
des « cases » plus évolué et plus souple
que les indices ou que les pointeurs

● La nouvelle catégorie d’objets introduite
s’appelle les itérateurs

● 1 itérateur désigne une case
● 2 itérateurs désignent un intervalle
● En gros c’est comme une sorte de pointeur...

!

31

Itérateurs, parcours, algos

● Chaque classe conteneur concrète a ses
propres types d’itérateurs :

● La classe concrète std::vector<int>
a le type itérateur std::vector<int>::iterator

● La classe concrète std::set<Ecureuil>
a le type itérateur std::set<Ecureuil>::iterator

● Un itérateur est comme un pointeur sur un
élément, il peut modifier l’élément sauf si on
utilise la version const de l’itérateur :

● La classe concrète std::list<Elephant>
a le type itérateur constant (qui ne doit pas modifier)
std::list<Elephant>::const_iterator

!

32

Itérateurs, parcours, algos

● La méthode begin() retourne un itérateur sur le
1er élément

● La méthode end() retourne un itérateur sur un
élément fictif qui est après le dernier élément

!

 std::vector<int> nbr{5, 10, 15, 20};

 std::vector<int>::iterator it;
 std::vector<int>::iterator debut;
 std::vector<int>::iterator fin;

 debut = nbr.begin();

 fin = nbr.end();

 for (it = debut; it!=fin; ++it)
 std::cout << *it << " ";

5 10 15 20

33

Itérateurs, parcours, algos

● On peut faire avancer un itérateur (case suivante)
en utilisant l’opérateur ++

● On peut accéder à l’élément désigné par
l’itérateur en le déréférençant (préfixer avec *)

!

5 10 15 20

it
 std::vector<int> nbr{5, 10, 15, 20};

 std::vector<int>::iterator it;
 std::vector<int>::iterator debut;
 std::vector<int>::iterator fin;

 debut = nbr.begin();

 fin = nbr.end();

 for (it = debut; it!=fin; ++it)
 std::cout << *it << " ";

34

Itérateurs, parcours, algos

● On peut faire avancer un itérateur (case suivante)
en utilisant l’opérateur ++

● On peut accéder à l’élément désigné par
l’itérateur en le déréférençant (préfixer avec *)

!

5 10 15 20

it
 std::vector<int> nbr{5, 10, 15, 20};

 std::vector<int>::iterator it;
 std::vector<int>::iterator debut;
 std::vector<int>::iterator fin;

 debut = nbr.begin();

 fin = nbr.end();

 for (it = debut; it!=fin; ++it)
 std::cout << *it << " ";

35

Itérateurs, parcours, algos

● On peut faire avancer un itérateur (case suivante)
en utilisant l’opérateur ++

● On peut accéder à l’élément désigné par
l’itérateur en le déréférençant (préfixer avec *)

!

5 10 15 20

it
 std::vector<int> nbr{5, 10, 15, 20};

 std::vector<int>::iterator it;
 std::vector<int>::iterator debut;
 std::vector<int>::iterator fin;

 debut = nbr.begin();

 fin = nbr.end();

 for (it = debut; it!=fin; ++it)
 std::cout << *it << " ";

Etc... Jusqu’à ce que la condition
it!=fin soit fausse et on sort de la boucle

36

Itérateurs, parcours, algos

● On n’est pas obligé de décomposer comme ça
● Une syntaxe normale pour parcourir :

● *it autorise l’écriture (on peut modifier les éléments)

● Si on veut garantir que dans le corps de
boucle on ne modifiera pas accidentellement
les éléments on utilise la version const :

!

 std::vector<int> nbr{5, 10, 15, 20};

 for (std::vector<int>::iterator it = nbr.begin(); it!=nbr.end(); ++it)
 std::cout << *it << " ";

 std::vector<int> vec{5, 10, 15, 20};

 for (std::vector<int>::const_iterator it = nbr.begin(); it!=nbr.end(); ++it)
 std::cout << *it << " ";

37

Itérateurs, parcours, algos

● Pendant 15 ans les développeurs C++ ont
usé leur clavier sur ces horreurs...

● Heureusement en C++11 on a auto

● Mais ici on ne doit pas modifier les éléments...
const auto ne marche pas, auto& non plus
(on a déjà un « pointeur » avec l’itérateur)
Il faut alors utiliser cbegin et cend

!

 std::vector<int> nbr{5, 10, 15, 20};

 for (auto it = nbr.begin(); it!=nbr.end(); ++it)
 std::cout << *it << " ";

 std::vector<int> nbr{5, 10, 15, 20};

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

38

Itérateurs, parcours, algos

● Finalement voilà le C++ (presque) moderne

● Pour comparaison, l’approche par indice :

!

 std::vector<int> nbr{5, 10, 15, 20};

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

 for (auto it = nbr.begin(); it!=nbr.end(); ++it)
 *it *= 2;

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

 for (size_t i=0; i<nbr.size(); ++i)
 std::cout << nbr[i] << " ";

 for (size_t i=0; i<nbr.size(); ++i)
 nbr[i] *= 2;

 for (size_t i=0; i<nbr.size(); ++i)
 std::cout << nbr[i] << " ";

39

Itérateurs, parcours, algos

● Et si une liste était mieux qu’un vecteur ?

● Pour comparaison, l’approche par indice casse !

!

 std::list <int> nbr{5, 10, 15, 20};

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

 for (auto it = nbr.begin(); it!=nbr.end(); ++it)
 *it *= 2;

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

error:
no match for 'operator[]'

 for (size_t i=0; i<nbr.size(); ++i)
 std::cout << nbr[i] << " ";

 for (size_t i=0; i<nbr.size(); ++i)
 nbr[i] *= 2;

 for (size_t i=0; i<nbr.size(); ++i)
 std::cout << nbr[i] << " ";

40

Itérateurs, parcours, algos

● Les itérateurs permettent de substituer un
conteneur à un autre sans casser le code :
ils permettent une abstraction des algorithmes
par rapport aux structures de données concrètes

● C’est le Graal du software, le découplage ultime

!

 <int> nbr{5, 10, 15, 20};

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

 for (auto it = nbr.begin(); it!=nbr.end(); ++it)
 *it *= 2;

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

 std::vector
 std::list

Le même code

Au choix !

41

Itérateurs, parcours, algos

● Un tel résultat valait bien tous ces sacrifices...
● Désormais tous les algorithmes de la STL

peuvent être codés sur la base des itérateurs :
ils s’appliquent à plusieurs conteneurs à la fois
(avec quelques restrictions selon les aptitudes
 de l’itérateur et du conteneur visé)

● C’est la raison pour laquelle les algorithmes
et méthodes de la STL utilisent exclusivement
des itérateurs

42

Itérateurs, parcours, algos

● Exemple d’algorithme non trivial rendu
indépendant des structures de données

 <int> nbr{5, 10, 15, 20};

 for (auto it = nbr.begin(); it != nbr.end();)
 {
 if (*it % 2 == 0)
 it = nbr.erase(it);
 else
 ++it;
 }

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

Ce code supprime
les éléments pairs

std::unordered_set

std::set

std::list

std::vector

std::deque Au choix !

43

Itérateurs, parcours, algos

● Le même code utilisateur peut fonctionner
sur des « mécaniques » très différentes

std::vector std::list

std::deque std::set std::unordered_set

44

Itérateurs, parcours, algos

● En résumé les itérateurs fournissent un
mécanisme plus général que [i] pour

➔ être utilisables avec tous les conteneurs
➔ servir d’interface de parcours (boucles)
➔ servir d’interface avec certaines méthodes

(erase / insert / find)
➔ servir d’interface avec les algorithmes STL

 std::vector<int> nbr{10, 5, 20, 15};

 std::sort(nbr.begin(), nbr.end());

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

Trier !

!

45

Itérateurs, parcours, algos

● Et si je veux trier à l’envers ou parcourir
les éléments en sens inverse ?

➔ Utiliser les reverse iterators qui s’obtiennent
en préfixant par r :

➔ std::sort est en moyenne log-linéaire O(N log N)
trier 106 entiers lui prend environ 20ms à 1GHz
Le tri bulle que vous savez coder est O(N²)
il prendrait 1012 étapes, environ 15 minutes !

 std::vector<int> nbr{10, 5, 20, 15};

 std::sort(nbr.rbegin(), nbr.rend());

 for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
 std::cout << *it << " ";

Tri inverse !

46

Itérateurs, parcours, algos

● Et si je veux trier des éléphants ?
➔ Il faudra fournir à l’algorithme un moyen

de comparer 2 objets de type Elephant
➔ Soit en surchargeant operator<
➔ Soit en passant une fonction en paramètre
➔ Soit en passant un « foncteur » en paramètre

➔ Soit en utilisant une fonction lambda anonyme ...

➔ Voir lien ci dessus
➔ Dans tous les cas il faudra payer le prix de la

permutation mémoire d’objets lourds. Il est
préférable si possible de permuter des pointeurs

https://stackoverflow.com/questions/1380463/sorting-a-vector-of-custom-objects

47

Itérateurs, parcours, algos

● Et si je veux juste parcourir les éléments et que
je trouve la syntaxe des itérateurs trop lourde ?

➔ Utiliser la syntaxe « range-based for loop »

➔ C’est chic !

 std::vector<int> nbr{5, 10, 15, 20};

 for (auto elem : nbr)
 std::cout << elem << " ";

 for (auto& elem : nbr)
 elem *= 2;

 for (const auto& elem : nbr)
 std::cout << elem << " ";

elem est une copie
de chaque élément

elem est une référence
de chaque élément

elem est une référence
constante de chaque élément

!

48

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

49

Conteneurs séquentiels

50

Conteneurs séquentiels

● Les conteneurs « séquentiels » correspondent
aux structures de données linéaires (1D)

➔ Les conteneurs séquentiels vector et deque
sont organisés de façon contiguë en mémoire
directement (vector) ou avec indirection (deque)
=> ils disposent d’un accès "aléatoire" en [i]
 efficace en O(1)

vector deque = double-ended queue

!

51

Conteneurs séquentiels

● Les conteneurs « séquentiels » correspondent
aux structures de données linéaires (1D)

➔ Les conteneurs séquentiels list et forward_list
relient les éléments par chaînage (pointeurs)
Pour accéder à un élément il faut parcourir
=> ils ne disposent pas d’un accès "aléatoire"
 il n’y a pas d’accès en [i]

forward_list

list

!

52

Conteneurs séquentiels

● Les conteneurs séquentiels contiguës
vector et deque ne stockent pas les éléments
à des emplacements stables :
insert et erase peuvent bouger les éléments

● Les éléments ne doivent pas être pointés !

vector erase element

5 15 20begin end storage

5 10 15 20begin end storage

53

Conteneurs séquentiels

● Les conteneurs séquentiels contiguës
vector et deque ne stockent pas les éléments
à des emplacements stables :
insert et erase peuvent bouger les éléments

● Les éléments ne doivent pas être pointés !
vector add element

54

Conteneurs séquentiels

● Les conteneurs séquentiels contiguës
vector et deque ne stockent pas les éléments
à des emplacements stables :
insert et erase peuvent bouger les éléments

● Exception : deque avec ajout/retrait tête/queue
deque

push_front pop_front

push_back pop_back

Adresses stables

55

Conteneurs séquentiels

● Les conteneurs séquentiels non contiguës
list et forward_list stockent les éléments
à des emplacements stables :
insert et erase ne bougent pas les éléments

● Les éléments peuvent être pointés !

list erase element

Adresses stablesAdresses stables

…
...

Objet avec pointeur
sur un élément
du vecteur

56

Conteneurs séquentiels

● Le hardware (processeur/mémoire) préfère
les données contiguës : ça va plus vite

● Si il n’y a pas de contraintes fortes :
– Pas ou peu d’insertions/délétions
– Et/ou peu d’éléments (N petit)
– Pas de besoin de stabilité des adresses

alors le choix « par défaut » est le vector
● Les autres conteneurs séquentiels présentent

d’autres profils d’utilisation, forward_list stable,
léger mais parcours que dans un sens etc...

!

57

Conteneurs séquentiels

● Si on peut connaître à l’avance le nombre
d’éléments qui sera dans un vecteur alors
il est préférable de le déclarer à cette taille

 /// Réserver 10 cases. Attention (10) pas {10} !
 std::vector<int> impairs(10);

 /// Remplir directement dans les cases qui existent
 for (size_t i=0; i<impairs.size(); i++)
 impairs[i] = 2*i+1;

 for (const auto& elem : impairs)
 std::cout << elem << " ";

 /// Vecteur initial vide
 std::vector<int> impairs;

 /// Remplir avec des push_back
 for (int i=0; i<10; i++)
 impairs.push_back(2*i+1);

 for (const auto& elem : impairs)
 std::cout << elem << " ";

Pré-allouer, préférable si possible

push_back dans vecteur vide
Ça marche et c’est commode
mais ça impose des ré-allocations

!

58

Conteneurs séquentiels

● Si on peut connaître à l’avance le nombre
d’éléments qui sera dans un vecteur alors
il est préférable de le déclarer à cette taille

 /// Réserver 10 cases. Attention (10) pas {10} !
 std::vector<int> impairs(10);

 /// Remplir directement dans les cases qui existent
 for (size_t i=0; i<impairs.size(); i++)
 impairs[i] = 2*i+1;

 for (const auto& elem : impairs)
 std::cout << elem << " ";

 /// Vecteur initial vide
 std::vector<int> impairs;

 /// Remplir avec des push_back
 for (int i=0; i<10; i++)
 impairs.push_back(2*i+1);

 for (const auto& elem : impairs)
 std::cout << elem << " ";

CRASH : Attention à ne pas tout mélanger !

!

59

Conteneurs séquentiels

● Sinon on remplit avec push_back quand
on ne peut pas faire autrement

● La « complexité en temps amorti » est
O(1) par élément ajouté avec push_back

5 15

begin end storage

5 15 20

marge

push_back => ré-allocation

Mais il n’y a pas une ré-allocation à chaque push_back ! L’augmentation de la taille
du vecteur se fait de façon exponentielle, par exemple 2, 4, 8 …
Quand on arrive à 1024 élément stockés on a copié 2+4+8...+512=1023 éléments
Donc pour stocker N éléments avec push_back on a fait environ 2N opérations :
2N opérations pour N éléments → proportion de 2N/N = 2 = temps constant = O(1)

60

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

61

Piles et files

62

File = std::queue
FIFO First In First Out

Pile = std::stack
LIFO Last In First Out

Piles et files

● Les piles et files sont des conteneurs qui
imposent des protocoles stricts et restreints
sur l’ordre d’accès aux éléments stockés

● Pas d’itérateurs : pas de parcours !
Récupérer les données→les consommer

[...pile...]

!

[...file...]

63

File = std::queue
FIFO First In First Out

Pile = std::stack
LIFO Last In First Out

Piles et files

● Les piles et files sont des conteneurs qui
imposent des protocoles stricts et restreints
sur l’ordre d’accès aux éléments stockés

● Pas d’itérateurs : pas de parcours !
Récupérer les données→les consommer: pop !

[...pile...]

empiler = push

dépiler = pop

[...file...]

enfiler = push

défiler = popdépiler = pop

sommet = top tête = front

queue = back

!

64

Piles et files

●

pile

Source : cppreference

https://en.cppreference.com/w/cpp/container/stack/top

65

File = std::queue
FIFO First In First Out
Parcours en largeur d’abord

Situations de communication
entre processus producteur et
consommateur asynchrones
Exemple : gestionnaire d'événement

Accès à des ressources partagées
Exemple : file d’impression

Pile = std::stack
LIFO Last In First Out
Parcours en profondeur d’abord

Gestion de tâches, sous-tâches...
Exemple : appels de sous-programmes

Revenir en arrière - backtracking -
pour explorer des alternatives
Exemple : Undo/Redo

Piles et files

● Les piles et files sont des conteneurs qui
sont à la base de nombreux algorithmes
permettant de traiter les structures de données
non séquentielles, en particulier
les arbres et les graphes : second semestre =)

66

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

67

Conteneurs ensemblistes : set

68

Conteneurs ensemblistes : set

● Les conteneurs « ensemblistes »
set et unordered_set sont des conteneurs
utilisés quand on veut souvent savoir si une
valeur appartient à un ensemble de valeurs.

● Ils vont ajouter/enlever/(re)trouver des valeurs
efficacement

● Il vont pouvoir servir de dictionnaire...
● Méthode find pour set : O(log N)
● Méthode find pour unordered_set : O(1)
● Fonction find pour vector & séquentiels : O(N)

L’algo pour trouver est de tester 1 par 1 !

!

69

Conteneurs ensemblistes : set

● set utilise un arbre binaire de recherche
● unordered_set utilise une table de hachage
➔ Voir chapitres G et H
● Exemple d’utilisation en situation réelle :

dans la classe Svgfile utilisée en TP on veut
éviter d’ouvrir plusieurs fois le même fichier,
un attribut « static » (variable globale de classe
nous y reviendrons) contiendra l’ensemble
des noms de fichiers en cours d’utilisation...

ligne 44 svgfile.h

70

Conteneurs ensemblistes : set

● Exemple montrant l’utilisation de find
● Si la valeur demandée existe dans le conteneur
find retourne l’itérateur sur cet élément
sinon il retourne l’itérateur de fin

Source : cppreference

https://en.cppreference.com/w/cpp/container/set/find

71

Conteneurs ensemblistes : set

● Autre exemple montrant les méthodes
insert (ajout à l’ensemble) et erase (enlever)

void check(const std::set<int>& ensemble, int val)
{
 auto trouve = ensemble.find(val);
 if (trouve!=ensemble.end())
 std::cout << val << " est dans l'ensemble" << std::endl;
 else
 std::cout << val << " n'est pas dans l'ensemble" << std::endl;
}

int main()
{

 std::set<int> nbr;

 nbr.insert(5);
 check(nbr, 3);
 nbr.insert(3);
 check(nbr, 3);
 nbr.erase(3);
 check(nbr, 3);

72

Conteneurs ensemblistes : set

● set marche avec tous les types comparables
avec operator< ou foncteur less → chapitre G

● unordered_set marche avec tous les types
hachables (avec foncteur hash) → chapitre H

● Types basics int, double... pointeurs... string
sont utilisables par défaut

● Pour avoir std::set<Ecureuil> il faudra dire
au système comment les comparer
(idem que pour les algos de tri)

● Pour avoir std::unordered_set<Elephant>
il faudra dire au système
comment hacher un éléphant !

73

Conteneurs ensemblistes : set

● set et unordered_set garantissent l’unicité
des valeurs qui leur sont ajoutées :
on peut ajouter (insert) plusieurs
fois la même valeur sans créer de doublon !

● Utiliser les versions multiset et unordered_multiset
si vous voulez des doublons !

● set est naturellement toujours trié :
son parcours donnera les élément dans l’ordre
croissant (selon la méthode de comparaison...)
Le tri se fait directement à chaque insertion
(insertion à la bonne place)

● unordered_set n’est ni trié ni triable !

!

74

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

75

Conteneurs associatifs : map

76

Conteneurs associatifs : map

● map et unordered_map sont des conteneurs
qui contiennent des paires clé-valeur (key-value)

● Ils se déclarent avec 2 paramètres de type :
std::map<K, V>

– K est le type clé
même contraintes que set & unordered_set

– V est le type valeur
besoin constructeur par défaut pour accès [key]

● Un conteneur associatif permet de retrouver
très efficacement la valeur associée à une clé

O(log N) pour map, O(1) pour unordered_map

!

77

Conteneurs associatifs : map

● Exemple avec une map qui associe un entier(valeur)
à une chaîne(clé) : std::map<std::string, int>

● Les paires sont rangées dans une struct générique
std::pair avec attribut first (clé) et second (valeur)

!

 /// Déclaration avec initialisation
 std::map<std::string, int> asso
 {
 {"Zürich", 143},
 {"Basel", 114},
 {"Lausanne", 116},
 {"Bern", 24}
 };

 /// Parcours par itérateur
 for(auto it=asso.cbegin(); it!=asso.cend(); ++it)
 std::cout << it->first << " -> " << it->second << std::endl;

 /// Parcours par "range-based for loop" (même résultat)
 for(const auto& elem : asso)
 std::cout << elem.first << " -> " << elem.second << std::endl;

78

Conteneurs associatifs : map

● On peut appeler explicitement la méthode insert
ou utiliser la notation accès direct par [clé]

● Noter que le conteneur map fait une insertion triée
dans l’ordre des clés (et non dans l’ordre des insert)

!

 /// Déclaration avec remplissage ultérieur
 std::map<std::string, int> asso;

 /// Remplissage : noter la syntaxe make_pair
 asso.insert(std::make_pair("Zürich", 143));

 /// Remplissage : forme courte
 asso.insert({"Basel", 114});
 // Attention ceci ne passe pas
 // asso.insert("Basel", 114);

 /// Remplissage : forme directe
 asso["Lausanne"] = 116;
 asso["Bern"] = 24;

 /// Parcours par "range-based for loop"
 for(const auto& elem : asso)
 std::cout << elem.first << " -> " << elem.second << std::endl;

79

Conteneurs associatifs : map

● Attention avec la notation accès direct par [clé]
le seul fait de parler d’une clé créer une entrée !

● Ça ne plante pas, mais c’est rarement bon signe...

!

 /// Accès direct par clé en lecture et écriture
 std::cout << asso["Bern"] << std::endl;
 asso["Bern"] = 25;
 std::cout << asso["Bern"] << std::endl;
 ++asso["Bern"];
 std::cout << asso["Bern"] << std::endl;

 /// Si la clé n'existe pas on a une valeur par défaut.
 /// Surprise un accès en lecture a ajouté un élément !
 std::cout << asso["Mexico"] << std::endl;

 for(const auto& elem : asso)
 std::cout << elem.first << " -> " << elem.second << std::endl;

80

Conteneurs associatifs : map

● La fête est gâchée ! L’accès direct par [clé]
est une belle syntaxe mais il faut gérer les aléas...

● Donc en général on doit se rappeler qu’une
clé peut ne pas exister (et qu’il vaut mieux le savoir)

 /// l'accès avec [clé] est sympa mais dangereux ! Alternative...
 auto trouve = asso.find("Tokyo");
 if (trouve!=asso.end())
 std::cout << trouve->first << " -> " << trouve->second << std::endl;
 else
 std::cout << "Tokyo pas trouvé" << std::endl;

 trouve = asso.find("Lausanne");
 if (trouve!=asso.end())
 std::cout << trouve->first << " -> " << trouve->second << std::endl;
 else
 std::cout << "Lausanne pas trouvé" << std::endl;

81

Conteneurs associatifs : map

● Enlever des éléments ne pose pas de problème...
Vérifier de ne pas utiliser un itérateur qui vaut end() !

● L’objet valeur associé est détruit. Si la valeur est un
pointeur c’est le pointeur qui est détruit, pas le pointé.

 /// Effacer par itérateur
 trouve = asso.find("Bern");
 if (trouve!=asso.end())
 asso.erase(trouve);

 /// Effacer directement
 asso.erase("Mexico");

 /// Effacer directement
 /// une clé inexistante = aucune conséquence !
 asso.erase("Sidney");

 /// Après les effacements
 for(const auto& elem : asso)
 std::cout << elem.first << " -> " << elem.second << std::endl;

82

Conteneurs associatifs : map

● map et unordered_map s’utilisent pratiquement
de la même façon (même interface de base)

● unordered_map ne donne aucune garantie
d’ordre dans la séquence de parcours :
ce n’est ni l’ordre d’ajout des éléments
ni un ordre naturel

● unordered_map peut être plus rapide pour des
grosses maps mais ça dépend de nombreux
facteurs (voir implémentations chapitres G et H)
Il faut faire des tests pour vraiment savoir

O(log N) de map donne des bonnes performances
 log

2
 103 ≈ 10 log

2
 106 ≈ 20 log

2
 109 ≈ 30

83

Conteneurs associatifs : map

● Du moment qu’il est comparable (operator<) ou
hachable n’importe quel type clé est possible

● std::map<Ecureuil, Elephant>
À chaque écureuil on associe un éléphant
(indiquer au système operator< entre écureuils)

● std::unordered_map<Elephant, Ecureuil>
À chaque éléphant on associe un écureuil
(indiquer au système le hachage d’éléphant)

● Mais le plus souvent on utilise un type clé de
type-valeur (au sens value-type, voir cours 5)

std::map<Date, std::string> saints;

84

Conteneurs associatifs : map

● Autre exemple (atypique)

 std::map<double, std::string> quoi;

 quoi[3.1413] = "entre 3.141 et 3.142 ?";
 quoi[3.14] = "Moins que Pi";
 quoi[3.1411] = "Combien de choses ";
 quoi[3.15] = "Plus que Pi";
 quoi[3.141] = "Moins que Pi";
 quoi[3.1412] = "peut-on ranger ";
 quoi[3.142] = "Plus que Pi";

 /// Parcours par "range-based for loop"
 for(const auto& elem : quoi)
 std::cout << elem.first << " -> " << elem.second << std::endl;

85

Conteneurs associatifs : map

● Les conteneurs associatifs trouvent un nombre
considérable d’application en programmation

● Parmi les exemples d’usage : la sérialisation
● Sérialiser = transformer des données RAM

en séquence d’octets pour sauvegarde fichier
ou stockage base de données ou transfert réseau...

● Le problème : les objets des types-entités se
désignent réciproquement par pointeurs, et les
pointeurs ne se rechargent pas !

● Une solution possible: associer un int à chacun !
std::map<Elephant*, int>
et sauver ces indices réciproques

86

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

87

Arbre Binaire de Recherche

88

Arbre Binaire de Recherche

● set et map utilisent une structure de donnée
arbre binaire de recherche

● set y stocke juste une clé
● map y stocke une paire clé-valeur

89

Arbre Binaire de Recherche

● Caractéristiques des arbres binaires équilibrés :
on peut atteindre une feuille parmi n=2p en p étapes

0

1

2

3

R

M K

E A N Q

CFUJHPYZ n=2p feuilles

profondeur p

90

Arbre Binaire de Recherche

● Caractéristiques des arbres binaires équilibrés :
on peut atteindre une feuille parmi n=2p en p étapes

● Un accès à un élément parmi n est efficace p=log
2
 n

0

1

2

3

R

M K

E A N Q

CFUJHPYZ n=2p feuilles

91

Arbre Binaire de Recherche

● Arbre Binaire de Recherche : insertion triée efficace

chaque nœud porte une valeur unique : clé du tri...

92

Arbre Binaire de Recherche

● Arbre Binaire de Recherche : insertion triée efficace
● Propriété à vérifier : pour tout nœud

 max(sous arbre gauche) < valeur du nœud
 min(sous arbre droit) > valeur du nœud

93

Arbre Binaire de Recherche

● Pour insérer : parcours en log
2
 n → efficace

● On aiguille à chaque niveau à gauche ou à droite
selon la valeur rencontrée

9

ajouter 9

94

Arbre Binaire de Recherche

● Pour rechercher : parcours en log
2
 n → efficace

● On aiguille à chaque niveau à gauche ou à droite
selon la valeur rencontrée

9

5 ?

non

95

Arbre Binaire de Recherche

● On obtient tous les nœuds dans l'ordre trié en
utilisant un parcours en profondeur infixé

9

1 3 4 6 7 8 9 10 13 14

96

Arbre Binaire de Recherche

● L'insertion n'est efficace que si l'arbre binaire
de recherche est équilibré

● Un mécanisme de ré-équilibrage efficace doit être
utilisé au fur et à mesure des insertions …

Voir introduction de Wikipedia

https://fr.wikipedia.org/wiki/Arbre_binaire_de_recherche

97

COURS 7

A) Structures de données & STL
B) Itérateurs, parcours, algos
C) Conteneurs séquentiels
D) Piles et files
E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

98

Table de hachage

99

Table de hachage

● unordered_set et unordered_map utilisent une
structure de donnée table de hachage

● unordered_set y stocke juste une clé
● unordered_map y stocke une paire clé-valeur

Voir introduction de Wikipedia

https://fr.wikipedia.org/wiki/Table_de_hachage

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99

