Robin FERCOQ

|-|!| ECE PARIS NS e 019

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

r POO - C++

I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des donneées
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++ : complements 6. UML et C++, associations
7. Conteneurs & C++ : la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Modeles objets avances 9. Modele composite et graphismes
10.Exceptions, flots, fichiers .. 10.Persistance / fichiers / except.
11.Templates cote developpeur 11.Développement de templates

12.Gestion méemoire / smarts ptrs 12.Soutenance de projet ...

Conteneurs & C++ : la STL

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs séquentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs séquentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

F Structures de données & STL

Structures de données & STL G

I La Standard Template Library fournit

* Des classes conteneurs genériques (templates)
genérique/template = type paramétrable
les conteneurs pourront contenir n'importe quel type

* Des [terateurs pour designer des emplacements
[térateur = pointeur amelioré spéecialement concu pour
parcourir/désigner les « cases » des conteneurs

* Des methodes et algorithmes usuels pour
Insertion / suppression / recherche / tri

» C’est un standard ISO, plusieurs implementations existent
(GNU)libstdc++ / (LLVM)libc++ / Microsoft STL / Apache stdcxx ...

* Le succes du C++ comme langage industriel repose en
grande partie sur la STL: productiviteé, fiabilite, performance

https://fr.wikipedia.org/wiki/Standard_Template_Library

Structures de données & STL

* Qu’est-ce qu’une classe conteneur genérique ?
(generic/template container class)

* [aclasse genérique std: :vector< T >

T

T

T

(%)

1

2

» La classe générique

head

>

nullptr b———

T

——>

PUE—

T

/

Type en paramétre

\

std::list< T >

T

— nullptr

¢4—— tail

F Structures de données & STL

* Qu’est-ce qu’une classe conteneur genérique ?
(generic/template container class)

e | aclasse concrete std::vector<Ecureuil>

e | aclasse concrete

head

-

nullptrb—

/

Type 16 octets

std::list<Ecureuil>

; ‘,,"_; — nullptr
D |le— tail

Structures de données & STL

* Qu’est-ce qu’une classe conteneur genérique ?
(generic/template container class)

» [a classe concrete std::vector<Elephant>

) (- - - :. .j
7 1

e | aclasse concrete

head

=

nullptr —

il

/

Type 4000000 octets

std::list<Elephant>

49 g 1nullptr
. 1. @

M le—] tail

Structures de données & STL G

I * Qu’est-ce qu’une classe conteneur genérique ?
(generic/template container class)

» C’est une classe « parametrée en type »
Techniquement en C++ : classe template (cours 11)

* Elle contient une collection d’eélements
de type arbitraire | Exemple : std: :vector< T >

* Attention cependant, un méme conteneur

genérique ne contient qu’un seul type a la fois,

on he mélange pas ecureuils et élephants !
(sauf polymorphisme, cours 8)

* Casertaaquol ? Carépond a des besoins...

Structures de données & STL 0

* On a besoin de séparer les objets en groupes
* Appartenance aux classes : pas assez fin

Tous les objets de type Ecole Tous les objets de type Etudiant

Universités Etudiants ECE

Etudiants ESCE
Groupe INSEEC

® Sophie Durand
® Alex Martin

cursus Etudiants HEIP

ingénieur
® Génie civil
® Génie logiciel :
cursus ® Généraliste sciences
commerce sociales
® MBA ® Et. politiques

® Droit fiscal ® Gouvernance
® Marketing ® Sociologie

Tous les objets de type Cursus

Structures de données & STL 0

I * Ces groupes ou « collections » doivent étre
- Accedes : 1 élément a la fois
I — Parcourus : traitements collectifs
- Agrandis : ajout d’élement(s)
— Diminues : retraits d’élement(s)
* |Is doivent permettre des opérations
Savoir tallle / Trier / Trouver ...
* |Is doivent pouvoir apporter des garanties

Unicité / Performance / Stabilite

Structures de données & STL 0

I * Differentes facons d’organiser les données :
Structures de données

I vecteur liste simple chainage

first 3 | next] vt = 2 |MULL

v

liste double chainage

begin

= Immg‘i uninit | uninit juninit

.
\/ . first | NULL 3 next | 1 prev 4 neat | | prev 2 |NULL

arbre binaire

file a 2 entrées de recherche table de hachage
A s 70 =0l o -
1 —
™ / \ hik) =1 i . - '
2| ~— 31 93
- - hik)=2 i —
3 — | ! | (k) " 'e
4|~ L j—
"‘\\- 14 73 94 hik) =3 Pt
CH R
S~ v =4 " N !

23

Structures de données & STL 0

* Différentes facons d’accéder aux donnees :
Conteneurs Structure(s) utilisée(s)

I vector vecteur
list liste double chainage
forward list liste simple chainage
deque file & 2 entrées
stack file a 2 entrées ou liste a double chainage ou vecteur
queue file a 2 entrées ou liste a double chainage
set arbre binaire de recherche

unordered_set table de hachage

map arbre binaire de recherche avec élements clé/valeur
unordered_map table de hachage avec éléments clé/valeur

Structures de données & STL G

I * En fonction des besoins d’acces et des
contraintes et avantages des différentes

structures on choisit un de ces conteneurs...
I vector vecteur
list liste double chainage
forward list liste simple chainage
deque file & 2 entrées
stack file a 2 entrées ou liste a double chainage ou vecteur
queue file a 2 entrées ou liste a double chainage
set arbre binaire de recherche
unordered_set table de hachage
map arbre binaire de recherche avec élements clé/valeur

unordered_map table de hachage avec éléments clé/valeur

Structures de données & STL G

I * En fonction des besoins d’acces et des
contraintes et avantages des différentes

res on cho:s:t un de ces conteneurs...
VECtOP cteur Acces efficace au rang i

Insertion au milieu inefficace

list liste double chainage

'FOI"WE'I rd_list liste simple cha@—— Acces inefficace au rang i
deque file & 2 entrées '('ésféf@ﬂ,-iﬁ %’Z?’éfﬂcace
stack file a 2 entrées ou liste a double chainage ou vecteur
queue file a 2 entrées ou liste a double chainage

set arbre binaire de recherche

unordered_set table de hachage

map arbre binaire de recherche avec élements clé/valeur

unordered_map table de hachage avec éléments clé/valeur

Structures de données & STL a

I * Le gros avantage des conteneurs génériques :
pas besoin de recoder pour chaque type T !

int double string Ecureuil Elephant* list<string>
I vector v v v v v v v
list v v v v v v v
forward list + v v v v v v
deque v v v v v v v
stack v v v v v v v
queue v v v v v v v
set v v v v v v v
unordered set ~ v v v v v v
map<Key,Value> 2 2 v?2 v?2 v?2 v?2 v?

unordered_map<K,V> 2 2 V2 V2 V2 v?2 v?

r Structures de données & STL a

* Les meéthodes utilisables dependent des conteneurs...

Header
Container
(constructor)
(destructor)
operator=
assign
begin
chegin
end
cend
rbegin
crbegin
rend
crend
at
operator[]
data
front
back
empty
size
max_size
resize
capacity
reserve
shrink_to_fit
clear
insert
insert_or_assign
emplace
emplace_hint
try_emplace
erase
push_front
emplace_front
pop_front
push_back
emplace_back
pop_back
Swap
merge
extract
splice
remove
remove_if
reverse
unique
sort
count
find
contains
lower_bound
upper_bound
equal_range
key_comp
value_comp
hash_function
key_eq
get_allocator

Iterators

Element
access

Capacity

Meodifiers

List
operations

Lookup

Observers

Allocator

Sequence containers

<array= <vector= ‘ﬂqul.IED'
vector deque
vector deque
~vector ~deque
operator= operator=
assign =ssign
begin begin begin
cbegin cbegin chegin
end end end
cend cend cend
rbegin rbegin rbegin
crbegin crbegin crbegin
rend rend rend
crend crend crend
at at at
operator[]| operater[] operator[]
data data
front front front
back back back
empty empty empty
size size size
max_size max_size max_size
resize resize
capacity
reserve

shrink_to_fit|shrink_to fit

clear clear
insert insert
emplace emplace
erase erase
push_front
amplace_front
pop_front
push_back push_back
pop_back pop_back
swap swap

get_zallocator|/get_allocator

<forward_list=

forward_list
forward_l1

~forward_l1i.

operator=
assign
bagin
chegin
and
cend

front

empty

max_size
resize

clear
insert_after

emplace_after

erase_after
push_front
emplace_front
pop_front

Swap

marge

splice_after
remove
remove_if
reverse
unigque
sort

get_alloc

Associative containers

<list=> <map=
list set multiset map multimap
list set multiset map multimap
~list ~set ~multiset ~map ~multimap
operatar= operatar= operatar= operator= operator=
assign
begin begin begin begin begin
chegin chegin chegin cbegin cbegin
end end end end end
cend cend cend cend cend
rbegin rbegin rbegin rbegin rbegin
crbegin crbegin crbegin crbegin crbegin
rend rend rend rend rend
crend crend crend crend crend
at
operator[]
front
back
empty empty empty empty empty
size size size size size
max_size max_size max_size max_size max_size
resize
clear clear clear clear clear
insert insert insert insert insert
insert_or_assign
emplace emplace emplace emplace emplace
emplace_hint | emplace_hint emplace_hint emplace_hint
try_emplace
srase erase erase erase erase
push_front
emplace_front
pop_front
push_back
emplace_back
pop_back
swap swap swap swap swap
merge marge merge merge merge
extract extract extract extract
splice
remove
remove_if
reverse
unique
sort
count count count count
find find find find
contains contains contains contains

lower_bound
upper_bound
equal_range

lower_bound
upper_bound
egqual_range

lower_bound
upper_bound
equal_range
key_comp
value_comp

key_comp
value_comp

key_comp
walue_comp

get_allocator|get_allocator get_allocator

get_zllocator

lower_bound
upper_bound
eqgual_range

key_comp

value_comp

Unordered associative containers

<unordered_set=

unordered_set unordered_multiset

unordered_sat

~unordered_set| ~unordered_multiset

operator=

begin

chegin
and
cend

empty
size

max_size

bucket_count

ressrve

clear

insert

emplace
emplace_hint

srase

count
find

contains

egual_range

hash_function
key_eq

get_allocator| get_allocator

unordered_multiset

operator=

bucket_count

res

clear
insert

emplace
amplace_hint

count
find
contains

aqual_|

hash_function
key_eq
get_zllocator

<unordered_map>
unordered_map unordered_multimap

unordered_map
~unordered_map

operator=

at
operator[]

empty
zize

max_size

bucket_count

reserve

clear
insert
insert_or_assign
emplace
emplace_hint
try_emplace

erase

count
find
contains

_range

sh_function
key_eq
get_zallocator

Container adaptors

<stack: <queuer
stack quese priority quewe
unordered_multimap stack Queue pricrity_gueue
~unordered_multimsp | ~stack ~gueue |~pricrity_gqueue
operator=s operator= operator= operatar=
begin
cbegin
end
cend
front top
top back
empty empty empty empty
size size size size
max_size
bucket_count
reserve
clear
insert
emplace
emplace_hint
erase
pop Pop
push push push
emplace | emplace emplace
Fop
swap swap swap
merge
extract
count
find
contains

eqgual_rangs

_function
key_eq
get_zllocator

https://en.cppreference.com/w/cpp/container

Structures de données & STL G

Ces méthodes sont compléetées par des
fonctions generiques (type T quelconque)
qui Implementent des algorithmes usuels :
trier, min, max, compter, trouver ...

Les algorithmes utilisables dependent des conteneurs
Par exemple l'algorithme de tri std: : sort nécessite

un conteneur avec acces aléatoire : operatory]

Les listes chainee n’ont pas cet acces, mais elle ont
une méthode de tri (au final ca revient au méme...)

Ces fonctions sont dans #include <algorithm>
Il y en a beaucoup ! Autant a ne pas re-coder...
Gain en productivité, fiabilite, performance

r Structures de données & STL

Non-modifying sequence operations Modifying sequence operations Partitioning operations Heap operations Permutation operations Oper:t':nﬁ 0: uninitialized memory
. . Defined in header <algorith D ader « >
Defined in header <algorithm= Defined in header <algorithm= Defined in header <algarithm= Defined in header =algorithm= i snneeinne _Er<a forithe> _e r.‘e .m 1.e = EmEmary
11 of ¢ 11 co . ..) is_permutationc++11) uninitialized_copy
atb ol ice+1l) Py is_partitioned c++11) is_heapic++11)

copy_if(c++11)

any of i(c++

) uninitialized_copy_ni(c++11)
none_of(c++11)

next_permutation

copy_nic++11) partition is_heap_until (c++11) o)
for each . uninitialized_fill
= e . - prev_permutation
copy_backward partition_copy(c++11) make heap
for_each_nic++17) <table partition Numeric operations uninitialized_fill_n
mOVE [C++11} P push_heap Defined in header <numeric>
count : uninitialized_move (c++17)
. a . - e 1ota(c++11) -)
count_if move_backward (c++11) partition pointic++iy pop_heap initialized .
. +ch Sorting operations accumulate uninitialized_move_nic++17)
mismatc .
fill) i sort_heap . d s
Find Defined in header <algorithm= — inner_product uninitialized_default_construct
find_if fill_n is_sorted (c++11) Minimum/maximum operations adjacent_difference
find_if notic++11) . i Defined in header <slgarithm= . uninitialized_default_construct_n
transform is_sorted untilic++11) partial_sum
find_end max P
- + reduce (c++17) uninitialized_value_construct
S0T
find_first_of generate max_element -]
partial sort exclusive scanic++in uninitialized_value_construct_n
adjacent_find generate_n . min inclusi e d .
- partlal_sort_l:opy inclusive_scan(c++17) lestroy_atic++17)
remove min_element destroyicss17)
search remove_if stable_sort transform_reduce(c++17) Y -
search_n IE:E:E_E:E; if MINMAX (C++11) transform_exclusive_scan (c++17) destroy_n(c++17)
— - - nth_element .
— . . - . __ Clibrary
replace) minmax_element (c++11) transform_inclusive_scan (c++17) Defined in hesdar <cstdlibe
replace_if Binary search operations (on sortec) gsort
) : clamp ic++17)
replace copy Defined in header <algorithm= b h
- - Searc
replace_copy_if Lower_bound Comparison operations
Defined in header <algorithm=
Swap upper_bound
equal
swap_ranges binary_search
lexicographical compare
1ter_swap equal_range
. compare_3Jway (C++20)
reverse Other operations on sorted ranges
Defined in header <algarithm= 'Lexj_cog raphical_corlpa re_3way
reverse_copy merge
rotate .
inplace_merge
rotate_copy Set operations (on sorted ranges)
4 Defined in header <algorithm=
Sh}ft—]"?ﬁ (C++20) A
shift_right includes
random_shuffle (until c++17) .
shuffle (C4++11) set_difference
-
sample c++17) set_intersection Les algorithmes de la STL
-
unique set_symmetric_difference
set_union

unique copy

https://en.cppreference.com/w/cpp/algorithm

Structures de données & STL

Utiliser une méthode ou un algorithme a un cout

Ce colt processeur (temps d’exécution)
est precise dans la documentation
au paragraphe complexitée (complexity)

Le temps d’execution exact dépend de la
machine, des options d’optimisation, de la
fragmentation des mémoires caches...

La nhorme ne peut pas entrer dans ces detalils

L’indication de complexité temporelle est
donnée comme une proportionnalité entre
un nhombre N d’élements impliques et le temps
d’execution...

https://fr.wikipedia.org/wiki/Complexit%C3%A9_en_temps

Structures de données & STL

* Cette proportionnalité entre un nombre N
d’éléments impliques et le temps d’execution...
est exprimée en notation grand O :

- O(1)

- O(log N)

- O(N)

- O(N log N)
— O(NZ)

temps constant
temps logarithmique
temps linéaire
temps log-linéaire
temps quadratique

Structures de données & STL

A Temps processeur O(N2) O(N log N)

>

N éléements

Structures de données & STL

I Exemples de complexités

* L’Insertion au milieu d’un vecteur implique de
I décaler N/2 éléments : insert est de
complexite O(N) temps linéaire pour un vecteur

* L’insertion au milieu d’une liste juste apres un
elément qu’on est en train de visiter implique
juste d’ajouter un maillon, ce temps ne dépend
pas du nombre N d’éléments : insert est de
complexité O(1) temps constant pour une liste

* Les tris que les debutants codent sont en O(N?)
* Les tris de la STL sont en moyenne O(N log N)

Structures de données & STL 0

On n’aurait pas besoin de toutes ces
complications si une seule structure
de donnée était tout le temps « la meilleure » !

Souvent la structure par cases contigués en
mémoire avec ré-allocations est la meilleure :
cecl correspond au std: :vector qu’on utilisera
« par defaut » dans les situations usuelles
parce qu’a l'usage c’est un bon compromis

Parfois on a beaucoup d’insertions/déléetions
ou alors on va souvent chercher par valeur,
alors d’autres conteneurs sont préférables...

Structures de données & STL

I * Rappel technique : n‘'oubliez pas les includes
* Chaque conteneur a le sien
I * Les algorithmes sont dans algorithm

#include <iostream>
#include <string>
#include <vector>
#include <list>

#include <deque>
#include <set>

#include <unordered set>
#include <map>

#include <algorithm>

28

R

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs séquentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

Itérateurs, parcours, algos

Itérateurs, parcours, algos G

I * Pour faire fonctionner toute cette machinerie
génér ique (le méme code trie des Ecureuils ou des Eléphants)
on a besoin d’'un mecanisme de désignation
I des « cases » plus évolue et plus souple
que les indices ou que les pointeurs

* [a nouvelle catégorie d’objets introduite
s’appelle les itéerateurs

1 itérateur désigne une case
» 2 itérateurs désignent un intervalle
* En gros c’est comme une sorte de pointeur...

3

I

Itérateurs, parcours, algos G

Chaque classe conteneur concrete a ses
propres types d'itérateurs :

La classe concrete std: :vector<int>
a le type itérateur std: :vector<int>: :iterator

La classe concrete std: :set<Ecureuil>
a le type iterateur std: :set<Ecureuil>::iterator

Un iterateur est comme un pointeur sur un
element, il peut modifier I'eléement sauf si on
utilise la version const de l'itéerateur :

La classe concrete std: :1ist<Elephant>

a le type itérateur constant (qui ne doit pas modifier)
std::list<Elephant>::const_iterator

Itérateurs, parcours, algos 0

I * | a méthode begin() retourne un itérateur sur le
1°" élément
I * | a méthode end() retourne un itérateur sur un

elément fictif qui est apres le dernier élement
std: :vector<int> nbr{5, 10, 15, 20};

std: :vector<int>: :iterator it;
std::vector<int>::iterator debut;
std: :vector<int>: :iterator fin;

debut = nbr.beginzzz:D””’———' 5 [10[15]|20
fin = nbr.;;3z15)-____

for (it = debut; it!=fin; ++it)
std::cout << *it <<« " ";

Itérateurs, parcours, algos 0

On peut faire avancer un iterateur (case suivante)
en utilisant 'operateur ++

On peut accéder a I’element désigné par
'itérateur en le déeréferencant (prefixer avec *)

std: :vector<int> nbr{5, 10, 15, 20}; "
1

std: :vector<int>::iterator it; |
std::vector<int>::iterator debut; l

std: :vector<int>: :iterator fin;

debut = nbr.begin(); 5110115120

(5100520

fin = nbr.end();

for (it = debutD it!=fin; ++it)
std:cout << << "

Itérateurs, parcours, algos 0

I * On peut faire avancer un itérateur (case suivante)
en utilisant 'operateur ++

I * On peut accéder a I’élement désigné par
'itérateur en le déeréferencant (prefixer avec *)

std: :vector<int> nbr{5, 10, 15, 20}; "
1

std: :vector<int>::iterator it; |
std::vector<int>::iterator debut; \\\

std: :vector<int>: :iterator fin;

debut = nbr.begin(); 5110 ﬂ520|

fin = nbr.end();

for (it = debut; it!=Fin;G+iD)

std::cout << *it << "

Itérateurs, parcours, algos 0

On peut faire avancer un iterateur (case suivante)
en utilisant 'operateur ++

On peut accéder a I’element désigné par
'itérateur en le déeréferencant (prefixer avec *)
std: :vector<int> nbr{5, 10, 15, 20};

it
std: :vector<int>: :iterator it; \
std::vector<int>::iterator debut;
std: :vector<int>: :iterator fin;
debut = nbr.begin(); 5 [10]15120

fin = nbr.end();
O Etc... Jusqu’a ce que la condition

for (it = debut; ++it) it!=fin soit fausse et on sort de la boucle
std::cout << *it << " ";

Itérateurs, parcours, algos 0

I * On n’est pas obligée de decomposer comme ca
» Une syntaxe normale pour parcourir :

I std: :vector<int> nbr{5, 106, 15, 20};

for (std::vector<int>::iterator it = nbr.begin(); it!=nbr.end(); ++it)
std::cout << *it << " ";

* *jt autorise l'écriture (on peut modifier les éléments)

* Si on veut garantir que dans le corps de
boucle on ne modifiera pas accidentellement
les elements on utilise la version const :

std: :vector<int> vec{5, 10, 15, 20};

for (std::vector<int>::const _iterator it = nbr.begin(); it!=nbr.end(); ++it)
std: :cout << *it << " ";

Itérateurs, parcours, algos 0

I * Pendant 15 ans les développeurs C++ ont
usé leur clavier sur ces horreurs...

I * Heureusement en C++11 on a auto

std: :vector<int> nbr{5, 10, 15, 20};

for (auto it = nbr.begin(); it!=nbr.end(); ++it)
std::cout << *it << " ";

* Mais ici on ne doit pas modifier les elements...
const auto ne marche pas, auto& non plus
(on a deja un « pointeur » avec l'itérateur)

Il faut alors utiliser cbegin et cend

std: :vector<int> nbr{5, 10, 15, 20};

for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)
std::cout << *it << " ";

Itérateurs, parcours, algos

I * Finalement voila le C++ (presque) moderne

std: :vector<int> nbr{5, 16, 15, 20};

for (auto it = nbr. cbegln(), it!=nbr.cend(); ++it)
std::cout << *it << " ";

for (auto it = nbr.begin(); it!=nbr.end(); ++it)
¥it *= 2;

for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it A I I ;
étd rcout << *it <§ "(); O) 10 20 30 40

* Pour comparaison, I'approche par indice :

for (size_t i=0; i<nbr. 51ze(), ++1)
std::cout << nbr[i] << " ";

for (size_t i=0; i<nbr.size(); ++1i)
nbr[i] *= 2;

for (size_t i=0; i<nbr. 51ze(), ++1)
std::cout << nbr[i] << " ";

10 20 30 46

Itérateurs, parcours, algos

I * Et si une liste était mieux qu’un vecteur ?

<int> nbr{s, 10, 15, 20};

for (auto it = nbr. cbegln(), it!=nbr.cend(); ++it)
std::cout << *it << " ";

for (auto it = nbr.begin(); it!=nbr.end(); ++it)
¥it *= 2;

for (auto it = nbr. cbegln(), it!=nbr.cend(); ++it) ETNBELEEL: -
std::cout << *it << " "; 16 268 36 48

* Pour comparaison, I'approche par indice casse !
for e S04, error:

no match for 'operator|[]'

for _(size_t _i=0; i<nbr.size(); ++1i)
Cobr (AT > 2
for (size_t i=0; i<nbr.size(); ++1i)
std: : cout < "

Itérateurs, parcours, algos 0

std: :vector H
std::1ist . AU choix !
<int> nbr{s, 10, 15, 20};
for (auto it = nbr. cbegln(), it!=nbr.cend(); ++it)

std::cout << *it << " ";

for (auto it = nbr.begin(); it!=nbr.end(); ++it) Le méme code
¥it *= 2;

for (auto it = nbr. cbegln(), it!=nbr.cend(); ++it)
std::cout << *it << " "; y

* [es iterateurs permettent de substituer un
conteneur a un autre sans casser le code :
IIs permettent une abstraction des algorithmes
par rapport aux Structures de données concretes

» C'est le Graal du software, le decouplage ultime

Itérateurs, parcours, algos

I Un tel résultat valait bien tous ces sacrifices...

* Desormais tous les algorithmes de la STL
peuvent étre codes sur la base des iterateurs :
IIs s’appliquent a plusieurs conteneurs a la fois
(avec quelques restrictions selon les aptitudes

de I'iterateur et du conteneur viseé)

* C’est la raison pour laquelle les algorithmes
et methodes de la STL utilisent exclusivement
des iterateurs

Itérateurs, parcours, algos

I * Exemple d’algorithme non trivial rendu
Independant des structures de donnees

I std: :vector
//’ std::1list
std: :deque Au choix !

std: :set

{"“~—— std: :unordered_set

<int> nbr{5, 10, 15, 20};

for (auto it = nbr.begin(); it != nbr.end();)

if (*it % 2 == 0) _
it = nbr.erase(it); Ce code supprime
else les élements pairs
++1it;
}

for (auto it = nbr.cbegin(); it!=nbr.cend(); ++it)

L q C
std::cout << *it << " "; _ 1 i

Itérateurs, parcours, algos

I * Le méme code utilisateur peut fonctionner
sur des « mecaniques » tres différentes

std: :vector std::1list
m first | MLILL 3 next ; = prev 4 next - | prev 2 | MULL [—- last
begin] end Immg‘i 4 3 8 5 2 | uninit | uninit { uninit . ‘
std: :deque std: :set std: :unordered_set

i e i =0l o b
4 [\

L hik) =1 P N - ”
2| ~— 31 93
3 o) - : -'(1”(] -9 {_____. ./___-1
4 B v Y

o | ! i

h\‘\ [14 73 94 hik) =3 "
By

SN =4 o " N !

23

Itérateurs, parcours, algos 0

e En resumeé les itérateurs fournissent un
meécanisme plus general que [1] pour

> étre utllisables avec tous les conteneurs
> servir d’interface de parcours (boucles)

> servir d’interface avec certaines methodes
(erase / insert / find)

> servir d’interface avec les algorithmes STL

std: :vector<int> nbr{10, 5, 20, 15}; \\\\\§-¥

std::sort(nbr.begin(), nbr.end()); Trier!

for (auto it = nbr. cbegln(), it!=nbr.cend(); ++it)
std::cout << *it << " ";

Itérateurs, parcours, algos

* Et si je veux trier a I’envers ou parcourir
les elements en sens inverse ?

> Utiliser les reverse iterators qui s’obtiennent
en prefixant parr :

std: :vector<int> nbr{10, 5, 20, 15}; \
std: :sort(nbr.rbegin(), nbr.rend()); Tri inverse I\

for (auto it = nbr. cbegln(), it!=nbr.cend(); ++it) - _ _
std::cout << *it << " "; EE 15].E 5

> std::sort est en moyenne log-lineaire O(N log N)
trier 10° entiers Iui prend environ 20ms a 1GHz
Le tri bulle que vous savez coder est O(N?)

il prendrait 10* étapes, environ 15 minutes !

Itérateurs, parcours, algos

I * Et si je veux trier des élephants ?

> |l faudra fournir a I'algorithme un moyen
I de comparer 2 objets de type Elephant

> Soit en surchargeant operator<

> Soit en passant une fonction en parametre

> Soit en passant un « foncteur » en parametre

> Soit en utilisant une fonction lambda anonyme ...

> Voir lien ci dessus

> Dans tous les cas il faudra payer le prix de la
permutation memoire d’objets lourds. Il est
préferable si possible de permuter des pointeurs

https://stackoverflow.com/questions/1380463/sorting-a-vector-of-custom-objects

Itérateurs, parcours, algos 0

I * Et si je veux juste parcourir les eléments et que
je trouve la syntaxe des itérateurs trop lourde ?

I > Utiliser la syntaxe « range-based for loop »

std::vector<int> nbr{5, 10, 15, 20};

for (auto elem : nbr) elem est une copie
std::cout << elem << " "; dechaque élement

for (auto& elem : nbr) elem est une référence
elem *= 2; de chaque élément

10 20 30 46

for (const auto& elem : nbr) elem est une référence
std::cout << elem << " "; constante de chaque élément

> C’est chic !

48

R

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs sequentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

Conteneurs sequentiels

. o=
-y N*ﬁ P TPt
o _

Conteneurs sequentiels 0

I * Les conteneurs « sequentiels » correspondent
aux structures de données lineaires (1D)

vector deque = double-ended queue
0 et

=
»> 9 e ———
begin| end Ftoragq 4 3 8 5 2 | uninit | uninit | uninit 3 E"“h——__‘ : ' ! . :);
4 et A N AN AN IR M e

. H\\ I :
Y NI

> [es conteneurs séquentiels vector et deque
sont organisés de facon contigué en mémoire
directement (vector) ou avec indirection (deque)
=> |Is disposent d’un acces "aléatoire" en [i]
efficace en O(1)

Conteneurs sequentiels 0

I * Les conteneurs « sequentiels » correspondent
aux structures de données lineaires (1D)

I list
; —_— - | — -
‘ firgt = MLILL 3 mext prew 4 next prew 2 MULL |s—a |asi

- - |

forward list

‘ firgl fF——— 3 ‘T'IE'J'H '—l‘" 4 ‘r"lE:'l.[L 2 ‘HJLL\

> | es conteneurs sequentiels list et forward _list
relient les élements par chainage (pointeurs)
Pour acceder a un elément Il faut parcourir
=> |Is ne disposent pas d’un acces "aleatoire"
Il n’y a pas d’acces en [1]

Conteneurs sequentiels

I * Les conteneurs séequentiels contigués
vector et deque ne stockent pas les élements
a des emplacements stables :

I Insert et erase peuvent bouger les elements

* Les eléements ne doivent pas étre pointes !

vector erase element

be&n end storage 5 |><|15

\/f

be&n end [storage 5 115(20

Conteneurs sequentiels

I * Les conteneurs séequentiels contigués
vector et deque ne stockent pas les élements
a des emplacements stables :

I Insert et erase peuvent bouger les elements

* Les eléements ne doivent pas étre pointes !

vector add element

Copie dans un nouvel

Objet avec espace de stockage

attribut vecteur

d’objets de type A
A
vector<A> vector<A> abc
push_back - A
A A A

_ _ abc _) abc gﬂi
Objet avec pointeur Objet avec pointeur
sur un élément o sur un élément A

A A
du vecteur def du vecteur N def JKl
A e A
! = ! A Lon
Les anciennes adresses

sont invalidées !

Conteneurs sequentiels

I * Les conteneurs séequentiels contigués
vector et deque ne stockent pas les élements

I a des emplacements stables :

Insert et erase peuvent bouger les elements

* Exception : deque avec ajout/retrait téte/queue

o L Rk =

:";’IIII|

deque

—™ push_front pop front

LN

/I

-7
HENE

Adresses stables

< push_back pop_back

Conteneurs sequentiels

I * Les conteneurs sequentiels non contigués
list et forward_list stockent les elements
a des emplacements stables :

I Insert et erase ne bougent pas les elements

* Les élements peuvent étre pointes !

Objet avec pointeur list erase element
sur un élement
- Vecteur/\ /\
./ first ——sinuLL | 3 | next i PﬂXﬁ e *i prev | 2 |muLL le— last

w
\), \)}

Adresses stables Adresses stables

Conteneurs sequentiels 0

I * Le hardware (processeur/memoire) prefere
les données contigués : ca va plus vite

I * Si il n’y a pas de contraintes fortes :

— Pas ou peu d’insertions/delétions

- Et/ou peu d’élements (N petit)

- Pas de besoin de stabilité des adresses
alors le choix « par defaut » est le vector

 Les autres conteneurs séquentiels presentent
d’autres profils d’utilisation, forward_list Stable,
leger mais parcours que dans un sens etc...

Conteneurs sequentiels

* Si on peut connaitre a l'avance le nombre
d’éléments qui sera dans un vecteur alors
Il est préférable de le declarer a cette taille

std: :vector<int> impairs(10);
for (size t i=0; i<impairs.size(); i++)
impairs[i] = 2*i+1;

for (const auto& elem : impairs)
std::cout << elem << " ";

Pré-allouer, préférable si possible

1357911 13 15 17 19

std: :vector<int> impairs;

for (const auto& elem : impairs)
std::cout << elem << " ";

. L : . push_back dans vecteur vide
for (int i=0; i<10; 1++l o Ca marche et c’est commode
impairs.push_back(2*i+1); mais ¢a impose des ré-allocations

1357911 13 15 17 19

Conteneurs sequentiels

* Si on peut connaitre a l'avance le nombre
d’éléments qui sera dans un vecteur alors
Il est préférable de le declarer a cette taille

std: :vector<int> impairs(10);

for (size_ t _4<0; i<impairs.size(); i++)
impair' = 2%i+1;

for (const auto& elem : impairs)
std::cout << elem << " ";

\

\ —_—
%ectominb impairs ; CRASH : Attention a ne pas tout mélanger !

for (int i=0; i<10; i++)
impairs.push_back(2*i+1);

for (const auto& elem : impairs)
std::cout << elem << " ";

Conteneurs sequentiels

* Sinon on remplit avec push_back quand
on ne peut pas faire autrement

* [a « complexité en temps amorti » est
O(1) par element ajoute avec push_back

push_back => ré-allocation

5|15
be&n end storagge\ /\
5 [15]20 o

\ marge ,

Mais il n’y a pas une ré-allocation a chaque push_back ! L’augmentation de la taille
du vecteur se fait de facon exponentielle, par exemple 2, 4, 8 ...

Quand on arrive a 1024 élement stockés on a copié 2+4+8...+512=1023 élements
Donc pour stocker N élements avec push_back on a fait environ 2N opérations :
2N opérations pour N élements — proportion de 2N/N = 2 = temps constant = O(1)

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs séquentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

Piles et files

o
";.-.'::--.'.-_'ﬂ e

* Les piles et files sont des conteneurs qui
Imposent des protocoles stricts et restreints
sur l'ordre d’'acces aux éléments stockées

r Piles et files O

* Pas d'itérateurs : pas de parcours !
Reécupérer les données - les consommer

Pile = std: :stack File = std: :queue
LIFO Last In First Out FIFO First In First Out

\l}—?[..pile...] g [..file...] <ﬂ

* Les piles et files sont des conteneurs qui
Imposent des protocoles stricts et restreints
sur l'ordre d’'acces aux éléments stockées

r Piles et files O

* Pas d'itérateurs : pas de parcours !
Reécupérer les données - les consommer: pop !

Pile = std: :stack File = std: :queue
LIFO Last In First Out FIFO First In First Out

empiler = push enfiler = push

1{> sommet = top téte = front <|‘_—|_|
[)-pile...] [()-file. (]

\?I g queue = back

dépiler = pop défiler = pop

Piles et files

#include <stack= Source : cppreference

#include <iostream=

int main()

; pile
std: :in‘t:=- S;
s.push(2);
s.push(6);
s.push(51);

std::cout << s.s5ize() << "
std::cout << "Top element:
<< s.top()
<< "\n";
std::cout << s.size() =< "
s.pop();
std::cout << s.s5ize() << "
std::cout << "Top element:

return 0;:

3 elements on stack
Top element: 51

3 elements on stack
2 elements on stack
Top element: 6

elements on stack\n";

1}
// Leaves element on stack

elements on stack\n":

elements on stack\n";
1} q:{ S.tnp{} {{ "\n";

https://en.cppreference.com/w/cpp/container/stack/top

* Les piles et files sont des conteneurs qui
sont a la base de nombreux algorithmes
permettant de traiter les structures de donnees

r Piles et files

non sequentielles, en particulier
les arbres et les graphes : second semestre =)

Pile = std: :stack
LIFO Last In First Out

Parcours en profondeur d’abord

Gestion de taches, sous-taches...
Exemple : appels de sous-programmes

Revenir en arriere - backtracking -
pour explorer des alternatives
Exemple : Undo/Redo

File = std: :queue
FIFO First In First Out

Parcours en largeur d’abord

Situations de communication

entre processus producteur et
consommateur asynchrones
Exemple : gestionnaire d'événement

Acces a des ressources partagées
Exemple : file d'impression

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs séquentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

LW T

Conteneurs ensemblistes : set

Conteneurs ensemblistes : set 0

L es conteneurs « ensemblistes »

set et unordered set sont des conteneurs
utilisés quand on veut souvent savoir si une
valeur appartient a un ensemble de valeurs.

Ils vont ajouter/enlever/(re)trouver des valeurs
efficacement

Il vont pouvoir servir de dictionnaire...
Methode find pour set : O(log N)
Methode find pour unordered_set : O(1)

Fonction find pour vector & sequentiels : O(N)
L’algo pour trouver est de tester 1 par 1!

Conteneurs ensemblistes : set

I set utilise un arbre binaire de recherche
* unordered_set utilise une table de hachage

> Voir chapitres G et H

* Exemple d'utilisation en situation reelle :
dans la classe Svgfile utilisee en TP on veut
eviter d’ouvrir plusieurs fois le méme fichier,
un attribut « static » (variable globale de classe
nous y reviendrons) contiendra 'ensemble
des noms de fichiers en cours d’utilisation...

static std::set<std::string> s openfiles;

ligne 44 svgfile.h

Conteneurs ensemblistes : set

I * Exemple montrant l'utilisation de find

S/ la valeur demandée existe dans le conteneur
find retourne l'itérateur sur cet élement

sinon Il retourne l'itérateur de fin

#include <iostream=>

#include <set>

int main()

{

std: :set<int=>

auto search =

1f (search !=
std::cout
T else {
std::cout
¥

Source : cppreference

Found 2

example = {1, 2, 3, 4};
example.find(2);
example.end()) {

<< "Found " << (*search) <<

‘\n’;

<< "Not found\n";

https://en.cppreference.com/w/cpp/container/set/find

Conteneurs ensemblistes : set

I * Autre exemple montrant les methodes
iInsert (ajout a 'ensemble) et erase (enlever)

I void check(const std::set<int>& ensemble, int val)
{

auto trouve = ensemble.find(val);
if (trouve!=ensemble.end())
std::cout << val << " est dans 1l'ensemble" << std::endl;

else
std::cout << val << " n'est pas dans l'ensemble" << std::endl;

int main()

std: :set<int> nbr;

nbr.insert(5);
check(nbr, 3);
nbr.insert(3);
check(nbr, 3);
nbr.erase(3);
check(nbr, 3);

n'est pas dans 1l'ensemble
t dans 1'ensemble
est pas dans 1'ensemble

i

3 es
]

i

n

Conteneurs ensemblistes : set

I * set marche avec tous les types comparables
avec operator< ou foncteur less — chapitre G

I * unordered_set marche avec tous les types
hachables (avec foncteur hash) — chapitre H

* Types basics int, double... pointeurs... string
sont utilisables par defaut

* Pour avoir std: :set<Ecureuil> Il faudra dire
au systeme comment les comparer
(idem que pour les algos de tri)

* Pour avoir std: :unordered set<Elephant>

Il faudra dire au systeme
comment hacher un eléphant !

Conteneurs ensemblistes : set 0

I * set et unordered_set garantissent l'unicité

des valeurs qui leur sont ajoutées :
on peut ajouter (insert) plusieurs
fois la méme valeur sans creer de doublon !

* Utiliser les versions multiset et unordered multiset

SI vous voulez des doublons !

» set est naturellement toujours trié :

son parcours donnera les élément dans l'ordre
croissant (selon la méthode de comparaison...)
Le tri se fait directement a chaque insertion
(insertion a la bonne place)

* unordered_set n’est ni trié ni triable !

74

B

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs séquentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

Conteneurs associatifs : map

<>

Zurich 143 km
Basel 114 km

Lausanne 116 km
Bern 24 km

Conteneurs associatifs : map 0

I * map et unordered_map sont des conteneurs
qui contiennent des paires clé-valeur (key-value)

I * |Is se déclarent avec 2 parametres de type :
std: :map<K, V>

- K est le type clé
méme contraintes que set & unordered_set

-V est le type valeur
besoin constructeur par défaut pour acces [key]

* Un conteneur associatif permet de retrouver
tres efficacement la valeur associée a une cle

O(log N) pour map, O(1) pour unordered_map

Conteneurs associatifs : map 0

I Exemple avec une map qui associe un entier(valeur)
a une chaine(clé) : std: :map<std: :string, int>

* Les paires sont rangées dans une struct genéeriqgue
std: :pair avec attribut first (clé) et second (valeur)

std: :map<std::string, int> asso Bace] -3 114

{ = ;
{"zurich", 143}, Bern -> 24
"Basel", 114}, .
E"Lausanne", 116%, Lausanne -»> 116
{"Bern, 24} Zurich ->» 143

s

for(auto it=asso.cbegin(); it!=asso.cend(); ++it)
std::cout << it->first << " -> " << it->second << std::endl;

for(const auto& elem : asso)
std::cout << elem.first << " -> " << elem.second << std::endl;

Conteneurs associatifs : map 0

I * On peut appeler explicitement la méthode insert
ou utiliser la notation acces direct par [clé]

* Noter que le conteneur map fait une insertion triée
dans 'ordre des clés (et non dans l'ordre des insert)

std: :map<std::string, int> asso; Basel -> 114
Bern ->» 24

asso.insert(std: :make_pair("Zurich", 143));

lLausanne -> 116
Zurich -»> 143

asso.insert({"Basel", 114});

asso["Lausanne"] = 116;

asso["Bern"] = 24;

for(const auto& elem : asso)
std: :cout << elem.first << " -> " << elem.second << std::endl;

Conteneurs associatifs : map 0

I Attention avec la notation acces direct par [clé]
le seul fait de parler d’une clé creer une entree !

I * Ca ne plante pas, mais c’est rarement bon signe...

std::cout << asso["Bern"] << std::endl;
asso["Bern"] = 25; 26
std::cout << asso["Bern"] << std::endl; A
++asso["Bern"]; - 1 s 1
std::cout << asso["Bern"] << std::endl; Basel -> 114
Bern -> 26

Lausanne -> 116
dMexico -> @

Zurich -» 143

std::cout << asso["Mexico"] << std::endl;

for(const auto& elem : asso)
std::cout << elem.first << " -> " << elem.second << std::endl;

Conteneurs associatifs : map

I * La féte est gachée ! L'acces direct par [clé]
est une belle syntaxe mais il faut gerer les aléas...

* Donc en genéeral on doit se rappeler qu’'une
clé peut ne pas exister (et qu’il vaut mieux le savoir)

auto trouve = asso.find("Tokyo");
if (trouve!=asso.end())
std::cout << trouve->first << " -> " << trouve->second << std::endl;
else
std::cout << "Tokyo pas trouvé" << std::endl;

Tokyo pas trouve

trouve = asso.find("Lausanne"); Lausanne -3> 116
if (trouve!=asso.end())

std::cout << trouve->first << " -> " << trouve->second << std::endl;
else

std::cout << "Lausanne pas trouvé" << std::endl;

Conteneurs associatifs : map

I * Enlever des eéléments ne pose pas de probleme...
Vérifier de ne pas utiliser un itérateur qui vaut end() !

* L’objet valeur associé est détruit. Si la valeur est un
pointeur c’est le pointeur qui est détruit, pas le pointe.

trouve = asso.find("Bern");
if (trouve!=asso.end())
asso.erase(trouve); Lausanne -> 116

Zurich -> 143

Basel -> 114

asso.erase("Mexico");

asso.erase("Sidney");

for(const auto& elem : asso)
std: :cout << elem.first << " -> " << elem.second << std::endl;

Conteneurs associatifs : map

* map et unordered_map s’utilisent pratigquement
de la méme facon (méme interface de base)

* unordered_map ne donne aucune garantie
d’ordre dans la sequence de parcours :
ce n’est ni l'ordre d’ajout des éléments
ni un ordre naturel

* unordered_map peut étre plus rapide pour des
grosses maps mais ca depend de nhombreux
facteurs (voir implémentations chapitres G et H)
Il faut faire des tests pour vraiment savoir

O(log N) de map donne des bonnes performances

log, 10° = 10 log, 10° = 20 log, 10° = 30

Conteneurs associatifs : map

I * Du moment qu’il est comparable (operator<) ou
hachable n’importe quel type clé est possible

I std: :map<Ecureuil, Elephant>
A chaque écureuil on associe un éléphant
(indiquer au systeme operator< entre ecureuils)

° std: :unordered_map<Elephant, Ecureuil>
A chaque élephant on associe un écureuil
(indiquer au systeme le hachage d’éléphant)

* Mais le plus souvent on utilise un type cle de
type-valeur (au sens value-type, voir cours 5)

std: :map<Date, std::string> saints;

I Conteneurs associatifs : map

* Autre exemple (atypique)

(W N]

.14 -> Moins que P1i
.141 -> Moins que P1

std: :map<double, std::string> quoi;

3

quoi[3.1413] = "entre 3.141 et 3.142 ?"; ENNEAKEEPTNIN RS RS
quoi[3.14] = "Moins que Pi"; 3.1412 -> peut-on ranger
quoi[3.1411] = "Combien de choses “; 3.1413 -> entre 3.141 et 3.142 ?
quoi[3.15] = "Plus que Pi"; 3.142 -> Plus que Pi
quoi[3.141] = "Moins que Pi"; 3.15 -> Plus que Pi
quoi[3.1412] = "peut-on ranger ";

quoi[3.142] = "Plus que Pi";

for(const auto& elem : quoi)
std: :cout << elem.first <«

-> " << elem.second << std::endl;

Conteneurs associatifs : map

I * | es conteneurs associatifs trouvent un nhombre
considérable d’application en programmation

I * Parmi les exemples d'usage : la sérialisation

o Sérialiser = transformer des données RAM

en séquence d’octets pour sauvegarde fichier
ou stockage base de données ou transfert réseadu...

* Le probleme : les objets des types-entités se
designent reciproquement par pointeurs, et les
pointeurs ne se rechargent pas !

* Une solution possible: associer un int a chacun !
std: :map<Elephant*, int>

et sauver ces Iindices reciproques

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs séquentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

Arbre Binaire de Recherche

Centre
infotouriste

Express

Arbre Binaire de Recherche

70

31 93

* set et map utilisent une structure de donnéee
arbre binaire de recherche

* set y stocke juste une clé
* map y stocke une paire clé-valeur

Arbre Binaire de Recherche

I » Caractéristiques des arbres binaires equilibreés :
on peut atteindre une feuille parmi n=2° en p étapes

I profondeur p

0

N\

V3f(z| |y P

N\

K

/

J/N\U F/Q\C

n=2° feuilles

Arbre Binaire de Recherche

I » Caractéristiques des arbres binaires equilibreés :
on peut atteindre une feuille parmi n=2° en p étapes

I - Un acces a un element parmi n est efficace p=log, n

0

R

P

N\

K

/

J/N\U F/Q\C

n=2° feuilles

Arbre Binaire de Recherche

I Arbre Binaire de Recherche : insertion triée efficace

chague nceud porte une valeur unique : clé du tri...

Arbre Binaire de Recherche

I Arbre Binaire de Recherche : insertion triée efficace

* Propriéeté a vérifier : pour tout nceud
max(sous arbre gauche) < valeur du nceud
min(sous arbre droit) > valeur du nceud

Arbre Binaire de Recherche

I - Pour insérer : parcours en log, n - efficace

* On aiguille a chagque niveau a gauche ou a droite
I selon la valeur rencontree

ajouter 9

Arbre Binaire de Recherche

I - Pour rechercher : parcours en log, n - efficace

* On aiguille a chagque niveau a gauche ou a droite
I selon la valeur rencontree

Arbre Binaire de Recherche

I * On obtient tous les nceuds dans l'ordre trié en
utilisant un parcours en profondeur infixeé

I 1346789 101314

Arbre Binaire de Recherche

I * L'Insertion n'est efficace que si l'arbre binaire
de recherche est équilibre

* Un mécanisme de re-équilibrage efficace doit étre
utilisé au fur et a mesure des insertions ...

Voir introduction de Wikipedia

https://fr.wikipedia.org/wiki/Arbre_binaire_de_recherche

97

S

COURS 7

A) Structures de donnees & STL
B) Iterateurs, parcours, algos

C) Conteneurs séquentiels

D) Piles et files

E) Conteneurs ensemblistes : set
F) Conteneurs associatifs : map
G) Arbre Binaire de Recherche
H) Table de hachage

i

Table de hachage

&\ TAVAVAVAWAVAVAVAVAY

:

-

sy m e

99
r Table de hachage

I Voir introduction de Wikipedia
wo=o] 4T Tot—
I hik) =1 P 3 — m— =
hik) =2 A g
ho=3] o
woed| TR TR

* unordered_set et unordered_map utilisent une
structure de donnée table de hachage

* unordered_set y stocke juste une cle
* unordered_map y stocke une paire clé-valeur

https://fr.wikipedia.org/wiki/Table_de_hachage

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99

