Robin FERCOQ

|-|!| ECE PARIS Ny 2B16:5015

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

r POO - C++

I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des données
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++ ! compléments 6. UML et C++, associations
/. Conteneurs & C++ :la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Modeles objets avances 9. Modele composite et graphismes
10.Exceptions, flots, fichiers .. 10.Persistance / fichiers / except.
11.Templates cote developpeur 11.Développement de templates

12.Gestion méemoire / smarts ptrs 12.Soutenance de projet ...

Heritage / polymorphisme

COURS 8

A) Heritage simple, presentation
B) Heritage simple en C++

C) Upcasting, slicing

D) Virtuel & polymorphisme

COURS 8

A) Heritage simple, preésentation
B) Heritage simple en C++

C) Upcasting, slicing

D) Virtuel & polymorphisme

F Heritage simple, présentation

Héritage simple, présentation 0

L’heéritage est un concept de programmation
orientée objet : une relation entre 2 classes

—

Classe de base ou classe mere

Zebra
N\

Classe dérivée ou classe fille

ColoredZebra

Tres different d’une association :

Il n’y a pas 2 objets (instances) impliqués

Une classe fille spécialise la classe mere

La classe mere généralise une classe fille
(plutdt quand il y a plusieurs : généralise des classes filles)

e | es attributs et methodes de la classe mere
sont automatiquement herités par la classe fille

* On ne les répete pas, ni en UML, ni en code

1
r Héritage simple, présentation a

Zebra
Chaque objet Zebra a # water : Real
— des attributs # nbstripes : Integer
— des méthodes + getWater() : Real
+ drink(moreWater : Real)
+ showStripes()
Héritage des membres N\
Chaque objet ColoredZebra a ColoredZebra
— les attributs Zebra + les siens # color : String
— les méthodes Zebra + les siennes |+ getColor() : String

F Héritage simple, présentation a

I * Une méme classe peut servir plusieurs fois de
classe de base

I * La classe fille n’ajoute pas forcement d’attribut

Zebra
Chaque objet Zebra a # water : Real
— des attributs # nbstripes : Integer
— des méthodes + getWater() : Real
+ drink(moreWater : Real)
+ showStripes()
Héritage des membres N\
V TalkingZebra
Chaque objet TalkingZebra a
— les attributs Zebra c’est tout ! + say(phrase : String)
— les méthodes Zebra + les siennes | * talkAboutStripes()

Héritage simple, présentation a

I * L a classe fille ne peut pas remplacer/enlever
des attributs par rapport a la classe mere

* Mais la classe fille peut redéfinir des méthodes

Zebra
Ici un objet TalkingZebra a une # water : Real
méthode drink spécifique : # nbstripes : Integer
par rapport a la classe mere, + getWater() : Real
la méthode drink a été redéfinie + drink(moreWater : Real)
- g + showStripes()
overriding TaN
overloading
TalkingZebra
Concretement I'appel a drink
pour un TalkingZebra exéecutera + say(phrase : String)
un autre code que drink de Zebra + talkAboutStripes()
+ drink(moreWater : Real)

Héritage simple, présentation a

I * Une classe mere peut (ce n’est pas oblige !)
avolir plusieurs classes filles (#héritage multiple)

* Les classes saeurs n‘ont pas de relation spéciale

Strictement equivalent
au schéma slide suivant

Zebra

water : Real
nbstripes : Integer

+ getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

[1

ColoredZebra TalkingZebra
color : String
+ getColor() : String + say(phrase : String)

+ talkAboutStripes()
+ drink(moreWater : Real)

Héritage simple, présentation a

I * Une classe mere peut (ce n’est pas oblige !)
avolir plusieurs classes filles (#héritage multiple)

* Les classes sceurs n'ont pas de relation spéciale

Strictement equivalent

Cette fagon de dessiner au schéma slide précédent

I’héritage de plusieurs
classes filles d’'une méme

classe mére est la facon Zebra
usuelle : elle n'implique # water : Real

aucune relation directe # nbstripes : Integer

(de dépendance ou autre) + getWater() : Real

entre les 2 filles. + drink(moreWater : Real)

+ showStripes()

ZF

ColoredZebra TalkingZebra
color : String
+ getColor() : String + say(phrase : String)

+ talkAboutStripes()
+ drink(moreWater : Real)

Héritage simple, présentation a

I * Usage 1 : reutiliser, modifier « a la carte »

> J'al déja une classe Zebra, il me faut des zebres
I de couleur, mais j’aural encore besoin de zebres
sans couleur (je ne veux pas modifier Zebra)

Sans modifier la classe meére
Sans recoder ’existant Zebra

water : Real
nbstripes : Integer

\// + getWater() : Real
s = . + drink(moreWater : Real
Spécialiser + showstipes() o
Customiser T

v ColoredZebra

color : String
+ getColor() : String

Héritage simple, présentation 0

I * Usage 1 : reutiliser, modifier « a la carte »

> C’est particulierement utile quand on a des
I grosses classes de bibliotheques (on ne
veut/peut pas acceder a la classe de base)

Sans modifier la classe mére Window
Sans recoder I'existant

On utilise tout ce qui convient
On change juste ce qu’il faut !

- width : Integer
- height : Integer

+ close(...)

\/ + resize(...)
Spécialiser recrawi)
+ minimize(...)

CUStOMisel" + maximize(...)

V in
MyAppWindow

Typiquement on redéfinit

quelques méthodes : + close(...) <<override>>
overriding + redraw(...) <<override>>

Héritage simple, présentation 0

I * Usage 2 : factoriser, ne pas dupliquer du code

> J'al déja une classe ColoredZebra, il me faut
I aussi des zebres qui parlent, mais je ne veux
pas recoder toute la « zebritude » en commun

Sans dépendre d’une sceur Zebra
Sans recoder I'existant % water - Real
Identifier une classe meére 4 \r']vssterzbe;e}meger
/\ + getWater() : Real
+ drink(moreWater : Real)
Ve Ve . + showStripes()
Généraliser z
/N ColoredZebra TalkingZebra
color : String
+ getColor() : String + say(phrase : String)
+ talkAboutStripes()
+ drink(moreWater : Real)

Héritage simple, présentation a

I * Usage 3 : modulariser, separer les niveaux

> Au final Je veux des zebres coloreés telepathes,
I je peux développer separément et garder
sépares zebritude / coloration / télepathie

Séparer en modules Zebra

3 fois 100 lignes de code # water : Real
nbstripes : Integer

/\ + getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

Organiser 2
ColoredZebra

color : String
v + getColor() : String

TelepathicColoredZebra
gatheredThoughts : String
+ readMind(target : Mind)

Héritage simple, présentation a

I » Usage 3 : modulariser, hiérarchiser

> Au final je veux différentes variantes de zebres
I plus ou moins spécialisées : on arrive a une
hierarchie ou arbre d’héritage

Hiérarchiser Zebra

water : Real
nbstripes : Integer

+ getWater() : Real
/\ + drink(moreWater : Real)
+ showStripe?) <<override>>
Organ’ser ColoredZebra TalkingZebra InvisibleZebra
color : String
+ getColor() : String + say(phrase : String) + showStripes()
v + talkAboutStripes()

+ drink(moreWater : Real)

TelepathicColoredZebra yay
gatheredThoughts : String I 1
+ readMind(target : Mind) CoolTalkingZebra TeacherZebra
catchyPhrase : String # knowledge : String
+ say(phrase : String) + teach(target : Audience)

Heritage simple, présentation

I * Usages mauvais

> Attention, si on ne retient que l'aspect
I « réutilisation de code existant » il est
facile de mal utiliser I’héritage

* Exemple : Il se trouve que j’al deja développe
une classe TalkingZebra, rien d’autre.
D’un coup J'al besoin d’une classe cheval
(une urgence, le patron met la pression) ...

» J'hérite Horse de Zebra ? Que faire des rayures ?

» Je renomme Zebra en Horse, et j’hérite Zebra

de Horse en ajoutant des rayures ?
Que faire du cavalier que Zebra accepte maintenant ?

Heritage simple, présentation

* Usages mauvais

> Attention, si on ne retient que l'aspect
« reutilisation de code existant » Il est
facile de mal utiliser I’héritage

Zebra

water : Real
nbstripes : Integer

+ getWater() : Real

+ showStripes()

+ drink(moreWater : Real)

AN

Horse

+ mount(rider : Person)

+ showStripes() <<override>>

Que font des rayures sur un cheval ?

?

Horse

water : Real

+ getWater() : Real

+ mount(rider : Person)

+ drink(moreWater : Real)

AN

Zebra

nbstripes : Integer

+ showStripes()

+ mount(rider : Person) <<override>>

Que fait un cavalier sur un zebre ?

Heritage simple, présentation

* Usages mauvais Je suis
un cheval !

Heritage simple, présentation

* Usage correct

Equine = equidé = famille des chevaux, des éanes, des zebres

Equine

Il se peut que la classe

water ;: Real

la plus générale soit
tellement génerale

+ getWater() : Real

qu’elle n’aura aucune

+ drink(moreWater : Real) Instance concrete !

AN

Zebra

nbstripes : Integer

+ showStripes()

Horse

+ mount(rider : Person)

Héritage simple, présentation 0

I * Usages mauvais / usages corrects

> Au dela de l'aspect technique « héritage des
attributs et méthodes de la classe parente »,
I'héritage a une sémantique de conception :
spécialisation / géenéralisation

> Dire « classe-dérivée est une classe-parente » oU
« classe-dérivée est une sorte de classe-parente »

doit faire sens sinon on ne comprend plus rien
> Dire « un cheval est un équide » fait sens
> Dire « un cheval est un zebre » ne fait pas sens
> Dire « un zebre est un cheval » ne fait pas sens

Heritage simple, présentation

I » Usages mauvais d’un autre genre !

> Attention, a 'inverse si on ne retient que l'aspect
« Ssemantique sous-ensemble censemble » il est
encore facile de mal utiliser I’héritage

Ensemble des carrés (C Ensemble des rectangles

Un carré est un rectangle :
automatiquement I'héritage est bon ?

Rectangle

AN

Carré

Informatique # Maths, réfléchissons !

Héritage simple, présentation 0

I » Usages mauvais d’un autre genre !

> Attention, a 'inverse si on ne retient que l'aspect
I « Ssemantique sous-ensemble censemble » il est
encore facile de mal utiliser I’héritage

Que faire de 2 attributs hérités quand
Rectangle I’objet spécialisé n’en demande qu’un ?

largeur : Real

4 hauteur - Real Attention I’héritage informatique n’est

pas juste de la théorie des ensembles,

+ setLargeur(largeur : Real) c’est un procedé essentiellement additif
+ setHauteur(hauteur : Real) eventuellement transformatif (override)
7N mais jamais soustractif
Carré Ici on est embétés, I’héritage marche mal,

Pas de solution toute faite, voir le CDC :

rien de plus... a quoi vont servir ces rectangles et carrés ?

override ?

Composition vs. Inheritance: How to Choose ?

There is no substitute for object modeling and critical design thinking. But if you must

have some guidelines, consider these -

Inheritance should only be used when:
Both classes are in the same logical domain
The subclass is a proper subtype of the superclass

The superclass's implementation is necessary or appropriate for the subclass

W=

The enhancements made by the subclass are primarily additive.

There are times when all of these things converge:
e Higher-level domain modeling
® Frameworks and framework extensions
e Differential programming

If you're not doing any of these things, you probably won't need class inheritance very
often. The “preference” for composition is not a matter of “better”, it's a question of
“most appropriate” for your needs, in a specific context.

Heritage simple, présentation

I * Un exemple de hiérarchie : exceptions STL
Les exceptions sont un mécanisme de gestion

I des situations anormales (échec ouverture fichier...)
exception
A
| |
runtime_error logic_error
| | | | |
overflow error underflow error invalid_argument length_error out_of range

bad alloc bad cast bad_type id bad_exception

27

S

COURS 8

A) Heritage simple, presentation
B) Heritage simple en C++

C) Upcasting, slicing

D) Virtuel & polymorphisme

Heritage simple en C++

Classe de base Méthode(s)

Heritage

Attribut(s) en plus Méthode(s) en plus

Classe dérivée

Héritage simple en C++ 0

Avant d’entrer dans le vif du code, un mot sur les
Specificateurs d’acces public / protected / private

Symboles UML correspondants

+ public : membre accessible par n'importe quel code
qui « connait » I'objet (valeur ou réference...)

protected : membre accessible uniquement par
les méthodes de la classe elle méme
et les méthodes des classes filles

— private . membre accessible uniquement par
les méthodes de la classe elle méme
pas d’acces pour les classes filles !

30

Heritage simple en C++

Si on considere que les classes filles ont vocation a
étre intimes (couplees) avec les attributs de la classe
mere alors on les met en protected

Vous comprenez ce que ca implique : si un aspect
implémentation de la classe mere change,

par exemple ses besoins en attributs evoluent,
alors le code des classes filles qui accedent
directement a ces attributs « protected » est cassé

C’est un compromis qui dépend de l'application :
- la classe mere a-t-elle des attributs + ou — stables ?
- les classes filles doivent-elles entrer dans les détails ?

Si on préfere encapsuler la mécanique de la classe
mere sans pour autant en bloquer 'usage pour ses filles
ni la truffer d’accesseurs publiques :

attributs en private, getters et setters en protected

Heritage simple en C++

I * L’héritage lui méme peut étre public / protected / private
* Un héritage public maintient les droits au méme niveau

public protected private
Base Dérivée Base Dérivée Base Dérivée

public |—| public public \ public public public
protected|———» [protected| | [protected|——»|protected| | |protected x protected
—

private

I I'héritage protected ou private les restreint

private |——»| private private |——| private private

* Dans les exemples de code qui suivent j’al choisi de
mettre les attributs en protected (ouvrir leur acces
direct au classes filles) et I'héritage en public pour
maintenir les droits d’acces au méme niveau dans
toute la hierarchie et ne pas alourdir avec des getters...

Heritage simple en C++

class Zebra
public :
Zebra(double water,
double getWater();

void showStripes();

void drink(double moreWater);

zebra.h

int nbstripes = 7);

protected :
double m water;
int m_nbstripes;

s

Zebra: :Zebra(double water, int nbstripes)
: m_water{water}, m_nbstripes{nbstripes}

1}

double Zebra::getWater

{ & O zebra.cpp
return m_water;

}

void Zebra::drink(double moreWater)

{
m_water = std::min(m_water+moreWater, 20.0);

}

void Zebra::showStripes()

{

std::cout << std::string(m_nbstripes,)
<< std::endl;

Heritage simple en C++

%nt main() main.cpp

Arnold Zebra
Zebra arnold{5}; ‘ ‘ “ ‘ “
)

std: :cout << "Arnold Zebra" << std::endl; j_.
arnold.showStripes(); -
arnold.drink(5);

std::cout << arnold.getWater() << std::endl;
std::cout << std::endl;

double Zebra::getWater()
{ zebra.cpp

return m_water;

}

void Zebra::drink(double moreWater)

{ m_water = std::min(m_water+moreWater, 20.0);
}

¥oid Zebra: :showStripes()

std::cout << std::string(m _nbstripes,)
<< std::endl;

34

Heritage simple en C++

Zebra

water : Real
nbstripes : Integer

+ getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

AN

ColoredZebra
color : String

+ getColor() : String

Heritage simple en C++

class ColoredZebra (¢ public Z%EEE:)

public :
ColoredZebra(double water, std::string color);

std::string getColor(); coloredzebra.h

protected :
std: :string m_color;

ColoredZebra: :ColoredZebra(double water, std::string color)
: Zebra{water}, m color{color}

{1}

. coloredzebra.cpp
std::string ColoredZebra: :getColor()

{
}

return m_color;

ColoredZebra Barbara{19, "blue"}; main.cpp

std::cout << "Barbara ColoredZebra" << std::endl; [EIgi:la:RRNsINs =1 Fd=lslg:
barbara.showStripes(); 1111
std::cout << "~" << barbara.getColor() << "~\n"; BN .
barbara.drink(5); “blue”
std::cout << barbara.getWater() << std::endl; 28
std::cout << std::endl;

36 |

Heritage simple en C++

¥

class ColoredZebra (¢ public Z%EEE:)

public :

ColoredZebra(double water, std::string color);
std::string getColor();

protected :
std: :string m_color;

coloredzebra.h

* [a syntaxe de I'heritage publique de la classe Derivee

depuis la classe Base est

class Derivee : public Base

{

. attributs et méthodes ajoutées ..

}s

Heéritage simple en C++ G

class Zebra zebra.h
; .
public :
Zebra(double water, int nbstripes = 7);
Zebra: :Zebra(double water, int nbstripes) zebra.cpp
: m_water{water}, m nbstripes{nbstripes}
1}
class ColoredZebra : public Zebra coloredzebra.h
{ .

public :
ColoredZebra(double water, std::string color);
std::string getColor();

protected :
std: :string m _color;

ColoredZebra: :ColoredZebra(double water, std::string color)x
. € 5 oterfester
1)

\@dZebra barbara{19, @ main.cpp 1)Demande_
construction

dérivée

’ coloredzebra.cpp

Heritage simple en C++

class Zebra zebra.h
{ public : Deuxieme
Zebra(double water‘,@nbstr‘ipes = 7);parametre
defaulted !
d Zebra: :Zebra(double water, int nbstripes zebra.cpp
. M_Water{waterj5;—mrbstripesinbstripes}
1}
class ColoredZebra : public Zebra coloredzebra.h
; .
public :

ColoredZebra(double water, std::string color);
std::string getColor();

protected :
std: :string m _color;

{3} coloredzebra.cpp

ColoredzZebra barbara{19, "blue"}; main.cpp

2) Relais
liste init.
constr.
dérivée

Heéritage simple en C++ G

class Zebra zebra.h

{

public :
Zebra(double water, int nbstripes = 7);
‘O

Attributs de base initialisés

-7 ohra/double . PR o b 3) liste init.
Y e) ; Zebra.c
. m_water{water}, m_nbstripes{nbstripes PP gg:zhﬂ
1} ;
I'objet de
class ColoredZebra : public Zebra coloredzebra.h base est
{ construit !

public :
ColoredZebra(double water, std::string color);
std::string getColor();

protected :
std: :string m _color;

}s

ColoredZebra: :ColoredZebra(double water, std::string color)

: Zebra{water}, m color{color}
{} coloredzebra.cpp

ColoredzZebra barbara{19, "blue"}; main.cpp

Heritage simple en C++ G

<{:1ass Zebra zebra.h
public :
Zebra(double water, int nbstripes = 7);
Zebra: :Zebra(double water, int nbstripes) zebra.cpp
: m_water{water}, m nbstripes{nbstripes}
1}
glass ColoredZebra : public Zebra coloredzebra.h
public :
ColoredZebra(double water, std::string color);
std::string getColor();
protected : Attributs de deérivée initialisés
std: :strin
}s 4) liste init.
ColoredZebra: :ColoredZ e|water, std::string color) cc’)n_st’r.
: Zebra{water}{m color{color dérivée,
{3 ~_ v coloredzebra.cpp suite et fin
dérivée est
- = '
ColoredZebra barbara{19, "blue"}; main.cpp construit |

Héritage simple en C++ 0

La demande de construction de I'objet dérivé par
le code client passe par le constructeur de deérivée
qui fait relais vers le constructeur de base

La partie base est construite avant la partie dérivée
On revient apres au constructeur dérivé pour finir !

Pour une hierarchie a plusieurs niveaux les relais
s’enchainent du plus deriveé au plus haut...

La construction/finalisation part enfin du plus haut
et redescend vers les plus spéecialises

Sans oublier qu’il faut qu’ll y ait relais explicite 2)
on peut dire que concretement la construction se
fait de la classe base vers la classe dérivée

La destruction (plus simple) se fait en sens inverse !

” ”

érivée

Destruction
classe d

AR

Heritage simple en C++

”

”

érivée

Construction
classe d

43

Heritage simple en C++

Zebra

water : Real
nbstripes : Integer

+ getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

AN

TalkingZebra

+ say(phrase : String)
+ talkAboutStripes()
+ drink(moreWater : Real)

overriding

Heritage simple en C++

class TalkingZebra (¢ public ZebE talkingzebra.h
{ .
public :
TalkingZebra();

TalkingZebra(int nbstripes);
void say(std::string phrase);
void talkAboutStripes();

void drink(double moreWater);

}s

TalkingZebra: :TalkingZebra() talkingzebra.cpp

: Zebra{o0}
1}

TalkingZebra::TalkingZebra(int nbstripes)
: Zebra{o0, nbstripes}

{1}

id TalkingZebra: :say(std::strin hrase . . .
¥°1 aikingsebra Y tne p) Suite slide suivant

size t ps = phrase.size();
std::cout << "f" << std::string(ps,) << "g\n";
std::cout <« "[" << phrase << "]\n";

std: :cout << << std::string(ps,) << "d\n";

Heritage simple en C++ 0

class TalkingZebra (¢ public ZéEEE:)

| }

talkingzebra.h
public :
TalkingZebra();
TalkingZebra(int nbstripes);
void say(std::string phrase);
void talkAboutStripes();
/// Overriding
void drink(double moreWater);
}s5
void TalkingZebra::talkAboutStripes()
{ talkingzebra.cpp
say("Hey, see my "
+ std::to_string(m _nbstripes)
+ " stripes ?");
} GhowstripesX); Appel a la méthode showStripes de la classe de base
void TalkingZebra: :drink(double moreWater)
{

if (_m_water<l.0)

["J'ai trop soif !"); Appel a la méthode say de la classe dérivée
else

~slurp...");
(Zebra: :dr‘inEDmor'eWater'); Appel a la méthode drink de Ila classe de base

Heritage simple en C++

TalkingZebra cathy; main.cpp

cathy.say("Hello, I'm Cathy"
" the TalkingZebra");

cathy.drink(5); Y ‘ - >
.) ppels a la méthode

cathy.drin k(>)) : redefinie (overriden)

cathy.talkAboutStripes();

std::cout << std::endl;

TalkingZebra david{5};

david.say("I'm David the TalkingZebra");
david.talkAboutStripes();

david.say("I'm envious of Cathy !");
std::cout << std::endl;

I'm envious of Cathy !

47

R

COURS 8

A) Heritage simple, presentation
B) Heritage simple en C++

C) Upcasting, slicing

D) Virtuel & polymorphisme

R

Upcasting, slicing

Upcasting, slicing 0

I * |l est possible de convertir un type dérivé dans un
type de base, cette conversion de type est un cast

* Cast « vers le haut » (vers une classe de base)
=> upcasting

* [’upcasting se fait automatiquement,
sans erreur, sans warning...

* La version castée vers le type de base est une
version « raccourcie » de la classe dérivée :
on y a perdu les attributs specifiques de la déerivee !

* Les données specifiques sont toujours la, rien
n’est perdu tant qu’on garde I'objet dans son type
derivé quelque part : c’est la copie ou la référence
au type de base qui n’a pas tout. C’est le slicing.

Upcasting, slicing

Le modéle théorique
de I’héritage : on ne répéte pas
les données membres dans la classe dérivée

Zebra

water : Real
nbstripes : Integer

AN

ColoredZebra
color : String

Le modéle réel de I’héritage : en mémoire un objet
de la classe dérivée a bien les données de la classe parente !

Zebra ColoredZebra

water : Real
nbstripes : Integer

water : Real
nbstripes : Integer
color : String

I * Lors d’'un upcast par reference ou par adresse le
systeme ne considere que la « partie haute » et

Upcasting, slicing

n’autorise pas l'acces aux attributs derives

I Zebra* ou Zebra&

|

ColoredZebra

water : Real
nbstripes : Integer
color : String

* Lors d’'un upcast par valeur le systeme copie la partie
commune a la classe de base dans un nouvel objet de

la classe de base

CO

le : Zebra

water : Real
nbstripes : Integer

-

ColoredZebra

water : Real
nbstripes : Integer
color : String

Upcasting, slicing

Zebra arnold{o};
ColoredZebra barbara{o, "blue"};
TalkingZebra cathy;

arnold; i I
<Sliced !

Zebra a
Zebra b
Zebra c

std: :cout

std: :cout

std: :cout

barbara;

cathy;

<<
<<

<<
<<

<<
<<

sizeof(a) <«
sizeof(arnold) << std::endl;
sizeof(b) << " "
sizeof(barbara) << std::endl;
sizeof(c) << " "
sizeof(cathy) << std::endl;

Ce qui n’implique aucune perte d’information,
I'objet barbara est toujours la avec ses 40 octets
c’est la copie b qui est slicée ...

Ce qu’il ne faut pas c’est jeter barbara et garder b !

Upcasting, slicing

void giveWaterByReference(Zebra& z)

{
std::cout << sizeof(z) << std::endl;
z.drink(5);

}

int main()

{

Zebra arnold{o};
ColoredZebra barbara{0, "blue"};
TalkingZebra cathy;

std::cout << arnold.getWater() << std::endl;
std::cout << barbara.getWater() << std::endl;
std::cout << cathy.getWater() << std::endl;

givelWaterByReference(arnold);
givelWaterByReference(barbara);
givelWaterByReference(cathy);

On donne a boire a barbara
par I’'intermédiaire d’une
réféerence slicée !

std::cout << arnold.getWater() << std::endl;
std::cout << barbara.getWater() << std::endl;
std::cout << cathy.getWater() << std::endl; Ettoutva bien’

Upcasting, slicing

void giveWaterByReference(Zebra& z)

{ std::cout << sizeof(z) << std::endl;
z.drink(5);
Par contre pour Cathy
. . elle a perdu sa qualite
%“t main() talkingZebra :

Zebra arnold{0}; la méthode redéfinie

cwara{e, "plue"}; drink est slicée !
alkingZebra cathy

std::cout << arnold.getWater() << std::endl;
std::cout << barbara.getWater() << std::endl;
std::cout << cathy.getWater() << std::endl;

givelWaterByReference(arnold); o3 41O goif | » ? 16
giveWaterByReference(barbara{i_g;éiél__—jl_______—rr C
givelWaterByReference(cathy); 5

std::cout << arnold.getWater() << std::endl;
std::cout << barbara.getWater() << std::endl;
std::cout << cathy.getWater() << std::endl;

r Upcasting, slicing

I * Attention a la situation suivante, qui compile sans
méme un Warning et qui conduit a des anomalies

(fuites mémoires et/ou plantages)

* On aura une solution radicale a ces 2 problemes...

void discardZebra(Zebra* pz)

NOT GOOD !

{
std::cout << "Good bye zebra of size "
<< sizeof(*pz) << std::endl;
delete pz;
J Hello to
%nt main() Good bye
ColoredZebra *dynamic = new ColoredZebra{0, "red

std::cout << "Hello to zebra of size "
<< sizeof(*dynamic) << std::endl;

discardZebra(dynamic);

zebra of size /40

zebra of sizel\l6

"}s

Note :

En toute rigueur
sizeof est une
indication "statique"
qui ne pourrait pas
retourner une info
sur un aspect de
type polymorphe

au run-time. Donc
ca n’est pas décisif...

56

R

COURS 8

A) Heritage simple, presentation
B) Heritage simple en C++

C) Upcasting, slicing

D) Virtuel & polymorphisme

Virtuel & polymorphisme

R T R

ERIRa RS Sy
5

Virtuel & polymorphisme

I * On peut demander au systeme de compilation de
conserver un acces aux methodes et attributs
derives quand on a un acces adresse ou réference

I Zebra® ou Zebra& ColoredZebra
,[# water : Real

3\ # nbstripes : Integer
Accés aux membres dérivés # color : String

* Ce meécanisme ne peut pas fonctionner par valeur :
on ne peut pas « caser » les attributs supplementaires
dans l'espace de stockage du type de base...

copie : Zebra ColoredZebra
water : Real 4_[# water : Real
nbstripes : Integer # nbstripes : Integer
¥~ # color : String

Ca ne rentre pas !

Virtuel & polymorphisme

I * Mais ca implique que chaque objet soit porteur d’une
Information de type qui n’est pas connue a la
compilation : Run-Time Type Info (RTTI)

I Zebra® ou Zebra& ColoredZebra RTTI
- (— RTTI cachée) 4ou 8
water : Real octets
nbstripes : Integer
Extension aux membres dérivés # color : String

* Cette information a un poids. La philosophie du C++
est qu’on ne paye que pour ce qu’on utilise...
Ce qui est pratique mais qui codte doit étre demandé

* La facon de demander un comportement polymorphe
est de declarer une/des methodes virtuelles
en faisant préceder leur déclaration de virtual

Virtuel & polymorphisme

En fait les attributs sont généralement caches (private
ou protected) et n’existent pas vu depuis le type de
base...

Ce qui nous intéresse ce sont les

methodes redeéfinies dans les classes deérivées
(lesquelles peuvent effectivement utiliser des attributs
que la classe de base n’a pas)

Ce sont ces methodes qui seront declarées virtual
dans la classe de base pour qu’un pointeur ou une
réféerence de type base puisse appeler la version
redéfinie de la classe deérivee effectivement referencee

C’est aussi valable et important pour le destructeur,
(y compris le destructeur automatique) pour pouvoir
detruire des objets dynamiques derives, par un Base*

Virtuel & polymorphisme 0

I * En fait les attributs sont genéralement cachés (private
ou protected) et n’existent pas vu depuis le type de

base...
I Zebra® ou Zebra&
Un appel a drink ou au destructeur
en partant de Zebra* ou Zebra&
d déclenche bien la méthode spécfique
Y:Iasse meére ou a la classe fille
Zebra TalkingZebra
(— RTTl cachee) 243 (— RTTI cachée) 734
water : Real # water : Real
nbstripes : Integer # nbstripes : Integer
+ drink(moreWater : Real) + drink(moreWater : Real)
~Zebra() ~TalkingZebra()

Virtuel & polymorphisme 0

I * On dit alors qu’on a un comportement polymorphe
et que la classe est une classe polymorphe
I (on peut redefinir ses méthodes sans se faire slicer!)

* A retenir : 4 "conditions" pour le polymorphisme
2 Ca concerne I’'hér itage (pas d’héritage, pas de polymorphisme)
> Une classe fille redéfinit des méthodes de la mere

> Les objets dérivés (ou pas) sont manipulés par
pointeurs ou réferences de type classe mere

> Les méthodes polymorphes sont déclarées
virtual dans la classe mere

* Quelle usine a gaz ! Ca sert a quoi ? C’est genial ?

r Virtuel & polymorphisme G

class Zebra zebra.h
{
public :
Zebra(double water, int nbstripes = 7);

— virtual ~Zebra() = default; Obligatoire pour le polymorphisme

double getWater(); < .
— virtual void drink(double moreWater) ;gier?ugleg;?)cs’elz ccileasst;(elc’;eétireet drink

void showStripes();

protected :
double m water;
int m_nbstripes;

}s
class TalkingZebra : public Zebra talkingzebra.h
public : Facultatif on peut remettre
TalkingZebra(); virtual dans la version spécialisée

TalkingZebra(int nbstripes); de la classe fille
— virtual ~TalkingZebra() = default;)))
—» virtual void say(std::string phrase); Obligatoire pour le polymorphisme

void talkAboutStripes(); de la méthode say si on veut la

/// Overriding redéfinir pour CoolTalkingZebra
—— virtual void drink(double moreWater);

}s

Virtuel & polymorphisme

v01d g1veWater‘ByRefer*ence(ebr‘a& z)

std:

:cout << sizeof(z) << std::endl;

z.drink(5);

1nt main()

Zebra arnold{0};

a barbara{9, "blue"};
TalkingZebr cathy;

std:
std:
std:

:cout << arnold.getWater() << std:
:cout << barbara.getWater() << std:
:cout << cathy.getWater() << std:

givelWaterByReference(arnold);

givelWaterByReference(barbara);
givelWaterByReference(cathy);

std:
std:
std:

:endl;

:endl;
:endl;

:cout << arnold.getWater() << std:
:cout << barbara.getWater() << std:
:cout << cathy.getWater() << std:

:endl;

:endl;
:endl;

Cathy garde sa qualite
talkingZebra a travers
une reférence Zebra:
la methode redéfinie
drink est polymorphe !

J'ai trop soif !

L LV R W

Virtuel & polymorphisme 0

Pas impressionnés ?
Attendez de voir un conteneur polymorphe

On peut traiter de maniéere uniforme un ensemble
de types hétérogenes (avec un parent commun)

Utilisation typique : dans une interface graphique
vous avez des boutons, des cadres, des menus,

des zones de textes, des zones d'images etc...

Tous ces eléments partagent le fait d’étre dessinables
et cliguables. Une classe parente a tous déclare
virtual sur une methode dessiner et sur une méthode
cliguer et hop : on peut mettre tout ces eléments

dans un méme conteneur. On dira qu’ils implementent
une méme Iinterface. Prochain cours !

66
r Virtuel & polymorphisme

int main()

{

I std: :vector<Zebra*> zoo;

zoo.push_back(new Zebra{5});
zoo.push_back(new ColoredZebra{10, "orange"});
zoo.push_back(new TalkingZebra);

J'ai trop

for (const auto& pz: zoo)

{
pz->drink(5);
std::cout << pz->getWater() << std::endl;
ColoredZebra* cz = dynamic_cast<ColoredZebra*>(pz);
H (gig::cout << cz->getColor() << std::endl;

} std::cout << std::endl;

for (const auto& pz: zoo)
delete pz;

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67

