
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Modèles objets avancés
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

Héritage / polymorphisme

4

COURS 8

A) Héritage simple, présentation
B) Héritage simple en C++
C) Upcasting, slicing
D) Virtuel & polymorphisme

5

COURS 8

A) Héritage simple, présentation
B) Héritage simple en C++
C) Upcasting, slicing
D) Virtuel & polymorphisme

6

Héritage simple, présentation

Zebra

ColoredZebra TalkingZebra

7

Héritage simple, présentation

● L’héritage est un concept de programmation
orientée objet : une relation entre 2 classes

● Classe de base ou classe mère

● Classe dérivée ou classe fille

● Très différent d’une association :
il n’y a pas 2 objets (instances) impliqués

● Une classe fille spécialise la classe mère
● La classe mère généralise une classe fille

(plutôt quand il y a plusieurs : généralise des classes filles)

!

Zebra

ColoredZebra

8

Héritage simple, présentation

● Les attributs et méthodes de la classe mère
sont automatiquement hérités par la classe fille

● On ne les répète pas, ni en UML, ni en code

!

Zebra
water : Real
nbstripes : Integer

+ getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

ColoredZebra
color : String

+ getColor() : String

Chaque objet Zebra a
→ des attributs
→ des méthodes

Chaque objet ColoredZebra a
→ les attributs Zebra + les siens
→ les méthodes Zebra + les siennes

Héritage des membres

9

Héritage simple, présentation

● Une même classe peut servir plusieurs fois de
classe de base

● La classe fille n’ajoute pas forcément d’attribut

!

Zebra
water : Real
nbstripes : Integer

+ getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

TalkingZebra

+ say(phrase : String)
+ talkAboutStripes()

Chaque objet Zebra a
→ des attributs
→ des méthodes

Chaque objet TalkingZebra a
→ les attributs Zebra c’est tout !
→ les méthodes Zebra + les siennes

Héritage des membres

10

Héritage simple, présentation

● La classe fille ne peut pas remplacer/enlever
des attributs par rapport à la classe mère

● Mais la classe fille peut redéfinir des méthodes

!

Zebra
water : Real
nbstripes : Integer

+ getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

TalkingZebra

+ say(phrase : String)
+ talkAboutStripes()
+ drink(moreWater : Real)

Ici un objet TalkingZebra a une
méthode drink spécifique :
par rapport à la classe mère,
la méthode drink a été redéfinie

 overriding
 ≠ overloading

Concrètement l’appel à drink
pour un TalkingZebra exécutera
un autre code que drink de Zebra

11

Héritage simple, présentation

● Une classe mère peut (ce n’est pas obligé !)
avoir plusieurs classes filles (≠héritage multiple)

● Les classes sœurs n’ont pas de relation spéciale

!

Strictement équivalent
au schéma slide suivant

12

Héritage simple, présentation

● Une classe mère peut (ce n’est pas obligé !)
avoir plusieurs classes filles (≠héritage multiple)

● Les classes sœurs n’ont pas de relation spéciale

!

Cette façon de dessiner
l’héritage de plusieurs
classes filles d’une même
classe mère est la façon
usuelle : elle n’implique
aucune relation directe
(de dépendance ou autre)
entre les 2 filles.

Strictement équivalent
au schéma slide précédent

13

Héritage simple, présentation

● Usage 1 : réutiliser, modifier « à la carte »
➔ J’ai déjà une classe Zebra, il me faut des zèbres

de couleur, mais j’aurai encore besoin de zèbres
sans couleur (je ne veux pas modifier Zebra)

!

Spécialiser
Customiser

Sans modifier la classe mère
Sans recoder l’existant

14

Héritage simple, présentation

● Usage 1 : réutiliser, modifier « à la carte »
➔ C’est particulièrement utile quand on a des

grosses classes de bibliothèques (on ne
veut/peut pas accéder à la classe de base)

!

Spécialiser
Customiser

Sans modifier la classe mère
Sans recoder l’existant
On utilise tout ce qui convient
On change juste ce qu’il faut !

Typiquement on redéfinit
quelques méthodes :
overriding

15

Héritage simple, présentation

● Usage 2 : factoriser, ne pas dupliquer du code
➔ J’ai déjà une classe ColoredZebra, il me faut

aussi des zèbres qui parlent, mais je ne veux
pas recoder toute la « zèbritude » en commun

!

Généraliser

Sans dépendre d’une sœur
Sans recoder l’existant
Identifier une classe mère

16

Héritage simple, présentation

● Usage 3 : modulariser, séparer les niveaux
➔ Au final je veux des zèbres colorés télépathes,

je peux développer séparément et garder
séparés zèbritude / coloration / télépathie

!

Séparer en modules
3 fois 100 lignes de code

Organiser

17

Héritage simple, présentation

● Usage 3 : modulariser, hiérarchiser
➔ Au final je veux différentes variantes de zèbres

plus ou moins spécialisées : on arrive à une
hiérarchie ou arbre d’héritage

!

Organiser

Hiérarchiser

<<override>>

18

Héritage simple, présentation

● Usages mauvais
➔ Attention, si on ne retient que l’aspect

« réutilisation de code existant » il est
facile de mal utiliser l’héritage

● Exemple : il se trouve que j’ai déjà développé
une classe TalkingZebra, rien d’autre.
D’un coup j’ai besoin d’une classe cheval
(une urgence, le patron met la pression) …

● J’hérite Horse de Zebra ? Que faire des rayures ?

● Je renomme Zebra en Horse, et j’hérite Zebra
de Horse en ajoutant des rayures ?
Que faire du cavalier que Zebra accepte maintenant ?

19

Héritage simple, présentation

● Usages mauvais
➔ Attention, si on ne retient que l’aspect

« réutilisation de code existant » il est
facile de mal utiliser l’héritage

?
Que fait un cavalier sur un zèbre ?Que font des rayures sur un cheval ?

20

Héritage simple, présentation

● Usages mauvais Je suis
un cheval !

21

Héritage simple, présentation

● Usage correct

Equine = équidé = famille des chevaux, des ânes, des zèbres

Il se peut que la classe
la plus générale soit
tellement générale
qu’elle n’aura aucune
instance concrète !

22

Héritage simple, présentation

● Usages mauvais / usages corrects
➔ Au delà de l’aspect technique « héritage des

attributs et méthodes de la classe parente »,
l’héritage a une sémantique de conception :
spécialisation / généralisation

➔ Dire « classe-dérivée est une classe-parente » ou
« classe-dérivée est une sorte de classe-parente »
doit faire sens sinon on ne comprend plus rien

➔ Dire « un cheval est un équidé » fait sens
➔ Dire « un cheval est un zèbre » ne fait pas sens
➔ Dire « un zèbre est un cheval » ne fait pas sens

!

23

Héritage simple, présentation

● Usages mauvais d’un autre genre !
➔ Attention, à l’inverse si on ne retient que l’aspect

« sémantique sous-ensemble⊂ensemble » il est
encore facile de mal utiliser l’héritage

Ensemble des rectanglesEnsemble des carrés

Un carré est un rectangle :
automatiquement l’héritage est bon ?

⊂

Informatique ≠ Maths, réfléchissons !

Rectangle

Carré

24

Héritage simple, présentation

● Usages mauvais d’un autre genre !
➔ Attention, à l’inverse si on ne retient que l’aspect

« sémantique sous-ensemble⊂ensemble » il est
encore facile de mal utiliser l’héritage

!

Rectangle
largeur : Real
hauteur : Real

+ setLargeur(largeur : Real)
+ setHauteur(hauteur : Real)

Carré
rien de plus...

override ?

Que faire de 2 attributs hérités quand
l’objet spécialisé n’en demande qu’un ?

Attention l’héritage informatique n’est
pas juste de la théorie des ensembles,
c’est un procédé essentiellement additif
éventuellement transformatif (override)
mais jamais soustractif

Ici on est embêtés, l’héritage marche mal,
Pas de solution toute faite, voir le CDC :
à quoi vont servir ces rectangles et carrés ?
…

25

Héritage simple, présentation !
Composition vs. Inheritance: How to Choose ?

26

Héritage simple, présentation

● Un exemple de hiérarchie : exceptions STL
Les exceptions sont un mécanisme de gestion
des situations anormales (échec ouverture fichier...)

27

COURS 8

A) Héritage simple, présentation
B) Héritage simple en C++
C) Upcasting, slicing
D) Virtuel & polymorphisme

28

Héritage simple en C++

Classe de base Méthode(s)Attribut(s)

Classe dérivée
Attribut(s) en plus

Héritage

Méthode(s) en plus

29

Héritage simple en C++

● Avant d’entrer dans le vif du code, un mot sur les
spécificateurs d’accès public / protected / private

● + public : membre accessible par n’importe quel code
 qui « connaît » l’objet (valeur ou référence...)

● # protected : membre accessible uniquement par
 les méthodes de la classe elle même
 et les méthodes des classes filles

● – private : membre accessible uniquement par
 les méthodes de la classe elle même
 pas d’accès pour les classes filles !

!

Symboles UML correspondants

30

Héritage simple en C++

● Si on considère que les classes filles ont vocation à
être intimes (couplées) avec les attributs de la classe
mère alors on les met en protected

● Vous comprenez ce que ça implique : si un aspect
implémentation de la classe mère change,
par exemple ses besoins en attributs évoluent,
alors le code des classes filles qui accèdent
directement à ces attributs « protected » est cassé

● C’est un compromis qui dépend de l’application :
- la classe mère a-t-elle des attributs + ou – stables ?
- les classes filles doivent-elles entrer dans les détails ?

● Si on préfère encapsuler la mécanique de la classe
mère sans pour autant en bloquer l’usage pour ses filles
ni la truffer d’accesseurs publiques :
attributs en private, getters et setters en protected

31

Base Dérivée Base Dérivée Base Dérivée

Héritage simple en C++

● L’héritage lui même peut être public / protected / private
● Un héritage public maintient les droits au même niveau

l’héritage protected ou private les restreint

● Dans les exemples de code qui suivent j’ai choisi de
mettre les attributs en protected (ouvrir leur accès
direct au classes filles) et l’héritage en public pour
maintenir les droits d’accès au même niveau dans
toute la hiérarchie et ne pas alourdir avec des getters...

public

protected

private

public

protected

private

public

public

protected

private

public

protected

private

protected

public

protected

private

public

protected

private

private

32

Héritage simple en C++
class Zebra
{
 public :
 Zebra(double water, int nbstripes = 7);
 double getWater();
 void drink(double moreWater);
 void showStripes();

 protected :
 double m_water;
 int m_nbstripes;
};

Zebra::Zebra(double water, int nbstripes)
 : m_water{water}, m_nbstripes{nbstripes}
{ }

double Zebra::getWater()
{
 return m_water;
}

void Zebra::drink(double moreWater)
{
 m_water = std::min(m_water+moreWater, 20.0);
}

void Zebra::showStripes()
{
 std::cout << std::string(m_nbstripes,'|')
 << std::endl;
}

zebra.h

zebra.cpp

33

Héritage simple en C++

main.cppint main()
{

 /// Arnold Zebra
 Zebra arnold{5};

 std::cout << "Arnold Zebra" << std::endl;
 arnold.showStripes();
 arnold.drink(5);
 std::cout << arnold.getWater() << std::endl;
 std::cout << std::endl;

double Zebra::getWater()
{
 return m_water;
}

void Zebra::drink(double moreWater)
{
 m_water = std::min(m_water+moreWater, 20.0);
}

void Zebra::showStripes()
{
 std::cout << std::string(m_nbstripes,'|')
 << std::endl;
}

zebra.cpp

34

Héritage simple en C++

Zebra
water : Real
nbstripes : Integer

+ getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

ColoredZebra
color : String

+ getColor() : String

35

Héritage simple en C++
class ColoredZebra : public Zebra
{
 public :
 ColoredZebra(double water, std::string color);
 std::string getColor();

 protected :
 std::string m_color;
};

ColoredZebra::ColoredZebra(double water, std::string color)
 : Zebra{water}, m_color{color}
{ }

std::string ColoredZebra::getColor()
{
 return m_color;
}

 /// Barbara ColoredZebra
 ColoredZebra Barbara{19, "blue"};

 std::cout << "Barbara ColoredZebra" << std::endl;
 barbara.showStripes();
 std::cout << "^" << barbara.getColor() << "^\n";
 barbara.drink(5);
 std::cout << barbara.getWater() << std::endl;
 std::cout << std::endl;

coloredzebra.cpp

coloredzebra.h

main.cpp

36

Héritage simple en C++
class ColoredZebra : public Zebra
{
 public :
 ColoredZebra(double water, std::string color);
 std::string getColor();

 protected :
 std::string m_color;
};

coloredzebra.h

● La syntaxe de l’héritage publique de la classe Derivee
depuis la classe Base est

class Derivee : public Base
{
 … attributs et méthodes ajoutées …
};

!

37

Héritage simple en C++

●

!
class Zebra
{
 public :
 Zebra(double water, int nbstripes = 7);
 ...

zebra.h

ColoredZebra::ColoredZebra(double water, std::string color)
 : Zebra{water}, m_color{color}
{ } coloredzebra.cpp

class ColoredZebra : public Zebra
{
 public :
 ColoredZebra(double water, std::string color);
 std::string getColor();

 protected :
 std::string m_color;
};

coloredzebra.h

Zebra::Zebra(double water, int nbstripes)
 : m_water{water}, m_nbstripes{nbstripes}
{ }

zebra.cpp

 ColoredZebra barbara{19, "blue"}; main.cpp 1) Demande
 construction
 dérivée

38

Héritage simple en C++

●

!
class Zebra
{
 public :
 Zebra(double water, int nbstripes = 7);
 ...

zebra.h

ColoredZebra::ColoredZebra(double water, std::string color)
 : Zebra{water}, m_color{color}
{ } coloredzebra.cpp

class ColoredZebra : public Zebra
{
 public :
 ColoredZebra(double water, std::string color);
 std::string getColor();

 protected :
 std::string m_color;
};

coloredzebra.h

Zebra::Zebra(double water, int nbstripes)
 : m_water{water}, m_nbstripes{nbstripes}
{ }

zebra.cpp

 ColoredZebra barbara{19, "blue"}; main.cpp

2) Relais
 liste init.
 constr.
 dérivée

Deuxième
paramètre
defaulted !

39

Héritage simple en C++

●

!
class Zebra
{
 public :
 Zebra(double water, int nbstripes = 7);
 ...

zebra.h

ColoredZebra::ColoredZebra(double water, std::string color)
 : Zebra{water}, m_color{color}
{ } coloredzebra.cpp

class ColoredZebra : public Zebra
{
 public :
 ColoredZebra(double water, std::string color);
 std::string getColor();

 protected :
 std::string m_color;
};

coloredzebra.h

Zebra::Zebra(double water, int nbstripes)
 : m_water{water}, m_nbstripes{nbstripes}
{ }

zebra.cpp

 ColoredZebra barbara{19, "blue"}; main.cpp

3) liste init.
 constr.
 base,
 l’objet de
 base est
 construit !

Attributs de base initialisés

40

Héritage simple en C++

●

!
class Zebra
{
 public :
 Zebra(double water, int nbstripes = 7);
 ...

zebra.h

ColoredZebra::ColoredZebra(double water, std::string color)
 : Zebra{water}, m_color{color}
{ } coloredzebra.cpp

class ColoredZebra : public Zebra
{
 public :
 ColoredZebra(double water, std::string color);
 std::string getColor();

 protected :
 std::string m_color;
};

coloredzebra.h

Zebra::Zebra(double water, int nbstripes)
 : m_water{water}, m_nbstripes{nbstripes}
{ }

zebra.cpp

 ColoredZebra barbara{19, "blue"}; main.cpp

4) liste init.
 constr.
 dérivée,
 suite et fin
 dérivée est
 construit !

Attributs de dérivée initialisés

41

Héritage simple en C++

● La demande de construction de l’objet dérivé par
le code client passe par le constructeur de dérivée
qui fait relais vers le constructeur de base

● La partie base est construite avant la partie dérivée
● On revient après au constructeur dérivé pour finir !
● Pour une hiérarchie à plusieurs niveaux les relais

s’enchaînent du plus dérivé au plus haut...
La construction/finalisation part enfin du plus haut
et redescend vers les plus spécialisés

● Sans oublier qu’il faut qu’il y ait relais explicite 2)
on peut dire que concrètement la construction se
fait de la classe base vers la classe dérivée

● La destruction (plus simple) se fait en sens inverse !

!

42

Héritage simple en C++

Construction
classe dérivée

Destruction
classe dérivée

43

Héritage simple en C++

Zebra
water : Real
nbstripes : Integer

+ getWater() : Real
+ drink(moreWater : Real)
+ showStripes()

TalkingZebra

+ say(phrase : String)
+ talkAboutStripes()
+ drink(moreWater : Real) overriding

!

44

Héritage simple en C++
class TalkingZebra : public Zebra
{
 public :
 TalkingZebra();
 TalkingZebra(int nbstripes);
 void say(std::string phrase);
 void talkAboutStripes();
 /// Overriding
 void drink(double moreWater);
};

/// Les zèbres bavards ont toujours soif au départ...
TalkingZebra::TalkingZebra()
 : Zebra{0}
{ }

TalkingZebra::TalkingZebra(int nbstripes)
 : Zebra{0, nbstripes}
{ }

void TalkingZebra::say(std::string phrase)
{
 size_t ps = phrase.size();
 std::cout << "╔" << std::string(ps,'═') << "╗\n";
 std::cout << "║" << phrase << "║\n";
 std::cout << "╚" << std::string(ps,'═') << "╝\n";
}

talkingzebra.h

talkingzebra.cpp

Suite slide suivant

45

Héritage simple en C++

void TalkingZebra::talkAboutStripes()
{
 say("Hey, see my "
 + std::to_string(m_nbstripes)
 + " stripes ?");

 showStripes();
}

void TalkingZebra::drink(double moreWater)
{
 if (m_water<1.0)
 say("J'ai trop soif !");
 else
 say("Slurp...");
 Zebra::drink(moreWater);
}

class TalkingZebra : public Zebra
{
 public :
 TalkingZebra();
 TalkingZebra(int nbstripes);
 void say(std::string phrase);
 void talkAboutStripes();
 /// Overriding
 void drink(double moreWater);
};

Appel à la méthode drink de la classe de base

Appel à la méthode say de la classe dérivée

!

talkingzebra.h

talkingzebra.cpp

Appel à la méthode showStripes de la classe de base

46

Héritage simple en C++
 /// Cathy TalkingZebra
 TalkingZebra cathy;

 cathy.say("Hello, I'm Cathy"
 " the TalkingZebra");
 cathy.drink(5);
 cathy.drink(5);
 cathy.talkAboutStripes();
 std::cout << std::endl;

 /// David TalkingZebra with less stripes
 TalkingZebra david{5};

 david.say("I'm David the TalkingZebra");
 david.talkAboutStripes();
 david.say("I'm envious of Cathy !");
 std::cout << std::endl;

main.cpp

Appels à la méthode
redéfinie (overriden)

47

COURS 8

A) Héritage simple, présentation
B) Héritage simple en C++
C) Upcasting, slicing
D) Virtuel & polymorphisme

48

Upcasting, slicing

49

Upcasting, slicing

● Il est possible de convertir un type dérivé dans un
type de base, cette conversion de type est un cast

● Cast « vers le haut » (vers une classe de base)
=> upcasting

● L’upcasting se fait automatiquement,
sans erreur, sans warning...

● La version castée vers le type de base est une
version « raccourcie » de la classe dérivée :
on y a perdu les attributs spécifiques de la dérivée !

● Les données spécifiques sont toujours là, rien
n’est perdu tant qu’on garde l’objet dans son type
dérivé quelque part : c’est la copie ou la référence
au type de base qui n’a pas tout. C’est le slicing.

!

50

Upcasting, slicing

Zebra
water : Real
nbstripes : Integer

ColoredZebra
color : String

Zebra
water : Real
nbstripes : Integer

ColoredZebra
water : Real
nbstripes : Integer
color : String

Le modèle théorique
de l’héritage : on ne répète pas
les données membres dans la classe dérivée

Le modèle réel de l’héritage : en mémoire un objet
de la classe dérivée a bien les données de la classe parente !

51

● Lors d’un upcast par référence ou par adresse le
système ne considère que la « partie haute » et
n’autorise pas l’accès aux attributs dérivés

● Lors d’un upcast par valeur le système copie la partie
commune à la classe de base dans un nouvel objet de
la classe de base

Upcasting, slicing

copie : Zebra
water : Real
nbstripes : Integer

ColoredZebra
water : Real
nbstripes : Integer
color : String

Zebra* ou Zebra& ColoredZebra
water : Real
nbstripes : Integer
color : String

52

Upcasting, slicing

 Zebra arnold{0};
 ColoredZebra barbara{0, "blue"};
 TalkingZebra cathy;

 Zebra a = arnold;
 Zebra b = barbara;
 Zebra c = cathy;

 std::cout << sizeof(a) << " "
 << sizeof(arnold) << std::endl;

 std::cout << sizeof(b) << " "
 << sizeof(barbara) << std::endl;

 std::cout << sizeof(c) << " "
 << sizeof(cathy) << std::endl;

Sliced !

Ce qui n’implique aucune perte d’information,
l’objet barbara est toujours là avec ses 40 octets
c’est la copie b qui est slicée …
Ce qu’il ne faut pas c’est jeter barbara et garder b !

53

Upcasting, slicing
void giveWaterByReference(Zebra& z)
{
 std::cout << sizeof(z) << std::endl;
 z.drink(5);
}

int main()
{
 Zebra arnold{0};
 ColoredZebra barbara{0, "blue"};
 TalkingZebra cathy;

 std::cout << arnold.getWater() << std::endl;
 std::cout << barbara.getWater() << std::endl;
 std::cout << cathy.getWater() << std::endl;

 giveWaterByReference(arnold);
 giveWaterByReference(barbara);
 giveWaterByReference(cathy);

 std::cout << arnold.getWater() << std::endl;
 std::cout << barbara.getWater() << std::endl;
 std::cout << cathy.getWater() << std::endl;

On donne à boire à barbara
par l’intermédiaire d’une
référence slicée !

Et tout va bien !

54

Upcasting, slicing
void giveWaterByReference(Zebra& z)
{
 std::cout << sizeof(z) << std::endl;
 z.drink(5);
}

int main()
{
 Zebra arnold{0};
 ColoredZebra barbara{0, "blue"};
 TalkingZebra cathy;

 std::cout << arnold.getWater() << std::endl;
 std::cout << barbara.getWater() << std::endl;
 std::cout << cathy.getWater() << std::endl;

 giveWaterByReference(arnold);
 giveWaterByReference(barbara);
 giveWaterByReference(cathy);

 std::cout << arnold.getWater() << std::endl;
 std::cout << barbara.getWater() << std::endl;
 std::cout << cathy.getWater() << std::endl;

Par contre pour Cathy
elle a perdu sa qualité
talkingZebra :
la méthode redéfinie
drink est slicée !

?
« J’ai trop soif ! »

55

Upcasting, slicing

void discardZebra(Zebra* pz)
{
 std::cout << "Good bye zebra of size "
 << sizeof(*pz) << std::endl;
 delete pz;
}

int main()
{

 ColoredZebra *dynamic = new ColoredZebra{0, "red"};

 std::cout << "Hello to zebra of size "
 << sizeof(*dynamic) << std::endl;

 /// Use dynamic...

 discardZebra(dynamic);

NOT GOOD !

● Attention à la situation suivante, qui compile sans
même un Warning et qui conduit à des anomalies
(fuites mémoires et/ou plantages)

● On aura une solution radicale à ces 2 problèmes...

Note :
En toute rigueur
sizeof est une
indication "statique"
qui ne pourrait pas
retourner une info
sur un aspect de
type polymorphe
au run-time. Donc
ça n’est pas décisif...

56

COURS 8

A) Héritage simple, présentation
B) Héritage simple en C++
C) Upcasting, slicing
D) Virtuel & polymorphisme

57

Virtuel & polymorphisme

58

Virtuel & polymorphisme

● On peut demander au système de compilation de
conserver un accès aux méthodes et attributs
dérivés quand on a un accès adresse ou référence

● Ce mécanisme ne peut pas fonctionner par valeur :
on ne peut pas « caser » les attributs supplémentaires
dans l’espace de stockage du type de base...

copie : Zebra
water : Real
nbstripes : Integer

ColoredZebra
water : Real
nbstripes : Integer
color : String

Zebra* ou Zebra& ColoredZebra
water : Real
nbstripes : Integer
color : String

Ça ne rentre pas !

Accès aux membres dérivés

59

Virtuel & polymorphisme

● Mais ça implique que chaque objet soit porteur d’une
information de type qui n’est pas connue à la
compilation : Run-Time Type Info (RTTI)

● Cette information a un poids. La philosophie du C++
est qu’on ne paye que pour ce qu’on utilise...
Ce qui est pratique mais qui coûte doit être demandé

● La façon de demander un comportement polymorphe
est de déclarer une/des méthodes virtuelles
en faisant précéder leur déclaration de virtual

Zebra* ou Zebra& ColoredZebra
(→ RTTI cachée)
water : Real
nbstripes : Integer
color : StringExtension aux membres dérivés

RTTI
4 ou 8
octets

60

Virtuel & polymorphisme

● En fait les attributs sont généralement cachés (private
ou protected) et n’existent pas vu depuis le type de
base...

● Ce qui nous intéresse ce sont les
méthodes redéfinies dans les classes dérivées
(lesquelles peuvent effectivement utiliser des attributs
que la classe de base n’a pas)

● Ce sont ces méthodes qui seront déclarées virtual
dans la classe de base pour qu’un pointeur ou une
référence de type base puisse appeler la version
redéfinie de la classe dérivée effectivement référencée

● C’est aussi valable et important pour le destructeur,
(y compris le destructeur automatique) pour pouvoir
détruire des objets dynamiques dérivés, par un Base*

61

Virtuel & polymorphisme

● En fait les attributs sont généralement cachés (private
ou protected) et n’existent pas vu depuis le type de
base...

Zebra* ou Zebra&

!

Zebra
(→ RTTI cachée) 243
water : Real
nbstripes : Integer

+ drink(moreWater : Real)
~Zebra()

TalkingZebra
(→ RTTI cachée) 734
water : Real
nbstripes : Integer

+ drink(moreWater : Real)
~TalkingZebra()

Un appel à drink ou au destructeur
en partant de Zebra* ou Zebra&
déclenche bien la méthode spécfique
à la classe mère ou à la classe fille

62

Virtuel & polymorphisme

● On dit alors qu’on a un comportement polymorphe
et que la classe est une classe polymorphe
(on peut redéfinir ses méthodes sans se faire slicer!)

● A retenir : 4 "conditions" pour le polymorphisme
➔ Ça concerne l’héritage (pas d’héritage, pas de polymorphisme)

➔ Une classe fille redéfinit des méthodes de la mère
➔ Les objets dérivés (ou pas) sont manipulés par

pointeurs ou références de type classe mère
➔ Les méthodes polymorphes sont déclarées
virtual dans la classe mère

 Quelle usine à gaz ! Ça sert à quoi ? C’est génial ?

!

63

Virtuel & polymorphisme !
class Zebra
{
 public :
 Zebra(double water, int nbstripes = 7);
 virtual ~Zebra() = default;
 double getWater();
 virtual void drink(double moreWater);
 void showStripes();

 protected :
 double m_water;
 int m_nbstripes;
};

class TalkingZebra : public Zebra
{
 public :
 TalkingZebra();
 TalkingZebra(int nbstripes);
 virtual ~TalkingZebra() = default;
 virtual void say(std::string phrase);
 void talkAboutStripes();
 /// Overriding
 virtual void drink(double moreWater);
};

zebra.h

talkingzebra.h

Obligatoire pour le polymorphisme
des méthodes destructeur et drink
virtual dans la classe mère

Obligatoire pour le polymorphisme
de la méthode say si on veut la
redéfinir pour CoolTalkingZebra

Facultatif on peut remettre
virtual dans la version spécialisée
de la classe fille

64

Virtuel & polymorphisme
void giveWaterByReference(Zebra& z)
{
 std::cout << sizeof(z) << std::endl;
 z.drink(5);
}

int main()
{
 Zebra arnold{0};
 ColoredZebra barbara{0, "blue"};
 TalkingZebra cathy;

 std::cout << arnold.getWater() << std::endl;
 std::cout << barbara.getWater() << std::endl;
 std::cout << cathy.getWater() << std::endl;

 giveWaterByReference(arnold);
 giveWaterByReference(barbara);
 giveWaterByReference(cathy);

 std::cout << arnold.getWater() << std::endl;
 std::cout << barbara.getWater() << std::endl;
 std::cout << cathy.getWater() << std::endl;

Cathy garde sa qualité
talkingZebra à travers
une référence Zebra:
la méthode redéfinie
drink est polymorphe !

8 octets en plus
pour tous les
objets (RTTI)

65

Virtuel & polymorphisme

● Pas impressionnés ?
● Attendez de voir un conteneur polymorphe
● On peut traiter de manière uniforme un ensemble

de types hétérogènes (avec un parent commun)
● Utilisation typique : dans une interface graphique

vous avez des boutons, des cadres, des menus,
des zones de textes, des zones d’images etc...
Tous ces éléments partagent le fait d’être dessinables
et cliquables. Une classe parente à tous déclare
virtual sur une méthode dessiner et sur une méthode
cliquer et hop : on peut mettre tout ces éléments
dans un même conteneur. On dira qu’ils implémentent
une même interface. Prochain cours !

!

66

Virtuel & polymorphisme !
int main()
{
 std::vector<Zebra*> zoo;

 /// Tout le monde dans le même zoo !
 zoo.push_back(new Zebra{5});
 zoo.push_back(new ColoredZebra{10, "orange"});
 zoo.push_back(new TalkingZebra);

 /// pz est un pointeur sur chacun successivement
 for (const auto& pz: zoo)
 {
 /// Pas de test à faire, tout le monde sait boire
 pz->drink(5);
 std::cout << pz->getWater() << std::endl;

 /// Est-ce que j'ai un zèbre de couleur ?
 ColoredZebra* cz = dynamic_cast<ColoredZebra*>(pz);
 if (cz)
 std::cout << cz->getColor() << std::endl;

 std::cout << std::endl;
 }

 /// On efface tout le monde sans fuite !
 for (const auto& pz: zoo)
 delete pz;

67

Bonnes vacances !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67

