
1

Conception et Programmation
Orientée Objet

C++

Robin FERCOQ
 2018-2019

INGE2
S3

2

POO - C++

Sommaire général du semestre

COURS

1. Intro, concepts, 1 exemple
2. Modélisation objet / UML
3. C++ pratique 1
4. C++ pratique 2
5. Classes & C++ : bases
6. Classes & C++ : compléments
7. Conteneurs & C++ : la STL
8. Héritage / polymorphisme
9. Abstraction / design patterns
10.Exceptions, flots, fichiers ...
11.Templates côté développeur
12.Gestion mémoire / smarts ptrs

TPs

1. Organisation objet des données
2. Diagrammes de classe UML
3. C++ pratique, E/S, string, vector
4. C++ pratique, type &, surcharge
5. Date : une classe simple en C++
6. UML et C++, associations
7. Gestion de collections complexes
8. Collections polymorphes
9. Modèle composite et graphismes
10.Persistance / fichiers / except.
11.Développement de templates
12.Soutenance de projet ...

Semaine suivante

3

 Abstraction / design patterns

Retopistics: A Renegade Excavation, Julie Mehretu

4

COURS 9

A) Classes abstraites / interfaces
B) Couplage / inversion du contrôle
C) Héritage multiple
D) Design patterns
E) Delegation pattern
F) Strategy pattern
G) Composite pattern

5

COURS 9

A) Classes abstraites / interfaces
B) Couplage / inversion du contrôle
C) Héritage multiple
D) Design patterns
E) Delegation pattern
F) Strategy pattern
G) Composite pattern

6

Classes abstraites / interfaces

Composition suprématiste, Kasimir Malevitch

7

Classes abstraites / interfaces

● Le polymorphisme (Rappel du dernier cours)
➔ Héritage : classe de Base, classe Dérivée
➔ Dérivée redéfinit méthode(s) classe Base
➔ Objets manipulés par pointeurs/référence Base
➔ Méthodes classe Base déclarées virtual

Derivee

+agir() «override»

Base

+agir()

Base

Derivee

Base

Derivee

Conteneur de
pointeurs sur Base

mix

Base*

agir à la manière
d’un objet Base

agir à la manière
d’un objet Derivee

agir à la manière
d’un objet Derivee

agir à la manière
d’un objet Base

!

8

Classes abstraites / interfaces
class Base
{
 public :
 virtual ~Base() = default;
 virtual void agir();
};

base.h

void Base::agir()
{
 std::cout << "J'agis d'une certaine maniere\n";
}

base.cpp

class Derivee : public Base
{
 public :
 virtual void agir();
};

derivee.h

void Derivee::agir()
{
 std::cout << "J'agis d'une autre maniere\n";
}

derivee.cpp

9

Classes abstraites / interfaces
class Base
{
 public :
 virtual ~Base() = default;
 virtual void agir();
};

base.h

void Base::agir()
{
 std::cout << "J'agis d'une certaine maniere\n";
}

base.cpp

class Derivee : public Base
{
 public :
 virtual void agir();
};

derivee.h

void Derivee::agir()
{
 std::cout << "J'agis d'une autre maniere\n";
}

derivee.cpp

Obligatoire : destructeur virtuel

Méthode à redéfinir : virtuelle

Méthode redéfinie !

10

Classes abstraites / interfaces

int main()
{
 std::list<Base*> mix;

 mix.push_back(new Base);
 mix.push_back(new Derivee);
 mix.push_back(new Base);
 mix.push_back(new Derivee);

 for (auto ptobj : mix)
 ptobj->agir();

 for (auto ptobj : mix)
 delete ptobj;

 return 0;
}

main.cpp

● Le polymorphisme permet de traiter "à égalité"
tous les objets d’une hiérarchie d’héritage
avec une classe de base en commun, tout en
conservant les spécificité de chacun...

Ici destruction
polymorphe
(appel au bon destructeur)

action
polymorphe

11

Classes abstraites / interfaces

● Souvent le polymorphisme des classes dérivées
est l’objectif principal de l’utilisation de l’héritage

● Dans ce cas implémenter certaines/toutes les
méthodes de la classe de base peut ne pas
avoir de sens : on ne les implémentera pas !

!

Rectangle
- largeur : Real
- hauteur : Real

Forme
#position : Coords

+dessiner()
+aire() : Real

+dessiner()
+aire() : Real

Cercle
- rayon : Real

+dessiner()
+aire() : Real

TriangleIsocele
- base : Real
- hauteur : Real
+dessiner()
+aire() : Real

Italique : méthodes non implémentées
(non définies) dans la classe de base
En C++ on dit « méthode virtuelle pure »

Pour simplifier on
a omis de mettre
les constructeurs
et les destructeurs...

12

Classes abstraites / interfaces

● Certaines méthodes de la classe de base ne
sont pas définies : celle-ci est non instanciable

● On dit que la classe est abstraite : aucun objet
de type « Forme » n’est possible

!

Rectangle
- largeur : Real
- hauteur : Real

Forme
#position : Coords

+dessiner()
+aire() : Real

+dessiner()
+aire() : Real

Cercle
- rayon : Real

+dessiner()
+aire() : Real

TriangleIsocele
- base : Real
- hauteur : Real
+dessiner()
+aire() : Real

Italique : classe abstraite
il suffit qu’une seule méthode
soit virtuelle pure pour que la
classe soit abstraite

13

Classes abstraites / interfaces

● Toutes les méthodes virtuelles pures de la
classe de base abstraite doivent être définies
par une classe dérivée pour l’instancier...

● On dit que la classe dérivée est concrète :
on peut avoir des objets Rectangle, Cercle...

!

Rectangle
- largeur : Real
- hauteur : Real

Forme
#position : Coords

+dessiner()
+aire() : Real

+dessiner()
+aire() : Real

Cercle
- rayon : Real

+dessiner()
+aire() : Real

TriangleIsocele
- base : Real
- hauteur : Real
+dessiner()
+aire() : Real

Pas italique : toutes les méthodes
sont définies, la classe est concrète

14

Classes abstraites / interfaces

● De nombreuses utilisations, la plus évidente :
grouper des objets « similaires en principe »
mais différents en pratique (traitements
spécifiques pour des opérations communes)

!

Rectangle
- largeur : Real
- hauteur : Real

Forme
#position : Coords

+dessiner()
+aire() : Real

+dessiner()
+aire() : Real

Cercle
- rayon : Real

+dessiner()
+aire() : Real

TriangleIsocele
- base : Real
- hauteur : Real
+dessiner()
+aire() : Real

Groupe de formes

Objets instances des
classes concrètes

15

Classes abstraites / interfaces

● Les méthodes virtuelles pures s’indiquent avec
=0 en fin de déclaration de la méthode.

● Le classe Forme est non instanciable mais elle
peut fournir un constructeur (pour les dérivées)

!

class Forme
{
 public :
 Forme(Coords position);
 virtual ~Forme() = default;
 virtual void dessiner(Svgfile& svgout) = 0;
 virtual double aire() = 0;

 protected :
 Coords m_position;
};

Forme::Forme(Coords position)
 : m_position{position}
{ }

forme.h

forme.cpp

16

Classes abstraites / interfaces

● Les méthodes virtuelles pures s’indiquent avec
=0 en fin de déclaration de la méthode.

● Le classe Forme est non instanciable mais elle
peut fournir un constructeur (pour les dérivées)

!

class Forme
{
 public :
 Forme(Coords position);
 virtual ~Forme() = default;
 virtual void dessiner(Svgfile& svgout) = 0;
 virtual double aire() = 0;

 protected :
 Coords m_position;
};

Forme::Forme(Coords position)
 : m_position{position}
{ }

forme.h

forme.cpp

Ces 2 méthodes sont virtuelles pures.
Au moins une méthode est virtuelle pure
donc la classe est automatiquement abstraite

Polymorphisme
=> destructeur virtuel (si possible default)

Un construteur
n’est jamais virtuel

17

Classes abstraites / interfaces

● Une classe concrète hérite de la classe abstraite
● Elle définit toutes les méthodes virtuelles de la

classe de abstraite de base
● Elle peut ajouter des attributs, un constructeur...

rectangle.h

rectangle.cpp

class Rectangle : public Forme
{
 public :
 Rectangle(Coords position, double largeur, double hauteur);
 virtual void dessiner(Svgfile& svgout);
 virtual double aire();

 private :
 double m_largeur;
 double m_hauteur;
};

Rectangle::Rectangle(Coords position, double largeur, double hauteur)
 : Forme{position}, m_largeur{largeur}, m_hauteur{hauteur}
{ }

18

Classes abstraites / interfaces

● Une classe concrète hérite de la classe abstraite
● Elle définit toutes les méthodes virtuelles de la

classe de abstraite de base
● Elle peut ajouter des attributs, un constructeur...

rectangle.h

rectangle.cpp

class Rectangle : public Forme
{
 public :
 Rectangle(Coords position, double largeur, double hauteur);
 virtual void dessiner(Svgfile& svgout);
 virtual double aire();

 private :
 double m_largeur;
 double m_hauteur;
};

Rectangle::Rectangle(Coords position, double largeur, double hauteur)
 : Forme{position}, m_largeur{largeur}, m_hauteur{hauteur}
{ }

Si possible pas de destructeur
(destructeur implicite ok)

Facultatif (ces méthodes sont
de toute façon virtuelles)

Appel au constructeur de la classe de base
(classe de base non instanciable directement)

19

Classes abstraites / interfaces

● Une classe concrète hérite de la classe abstraite
● Elle définit toutes les méthodes virtuelles de la

classe de abstraite de base
● Elle peut ajouter des attributs, un constructeur...
● Tout ceci est spécifique à cette classe concrète

rectangle.cppvoid Rectangle::dessiner(Svgfile& svgout)
{
 svgout.addRect(m_position.getX()-m_largeur/2,
 m_position.getY()-m_hauteur/2,
 m_position.getX()+m_largeur/2,
 m_position.getY()+m_hauteur/2);
}

double Rectangle::aire()
{
 return m_largeur * m_hauteur;
}

20

Classes abstraites / interfaces

● Utiliser les classe concrètes sans les connaître !
main.cppdouble aireTotale(std::vector<Forme*> formes)

{
 double total = 0;
 for (auto ptforme : formes)
 total += ptforme->aire();
 return total;
}

int main()
{
 std::vector<Forme*> groupe;

 groupe.push_back(new Rectangle{{100,100}, 150, 50});
 groupe.push_back(new Circle{{200,200}, 50});
 groupe.push_back(new TriangleIsocele{{300,300}, 100, 100});

 for (auto ptforme : groupe)
 ptforme->dessiner(svgout);

 std::cout << aireTotale(groupe) << std::endl;

 for (auto ptforme : groupe)
 delete ptforme;

Code polymorphe

21

Classes abstraites / interfaces

● Il y a souvent intérêt à abstraire complètement
la classe de base : elle ne propose plus aucune
méthode concrète ni aucun attribut !

● On dit que la classe est abstraite pure ou
que la classe de base définit une interface

Hexapode
- angleHanche[6]
- angleGenou[6]

« interface »

Robot

+avancer(distance)
+tourner(angle)

Humanoide
- posJambe[2]
- posCentreGrav

RobotARoues
- nbToursRoues
- angleDirectrice

+avancer(distance)
+tourner(angle)

+avancer(distance)
+tourner(angle)

+avancer(distance)
+tourner(angle)

!

Aucun attribut

Que des méthodes virtuelles pures

22

Classes abstraites / interfaces
class Robot
{
 public :
 virtual ~Robot() = default;
 virtual void avancer(double distance) = 0;
 virtual void tourner(double angle) = 0;
};

robot.h

class RobotARoues : public Robot
{
 public :
 RobotARoues();
 virtual void avancer(double distance);
 virtual void tourner(double angle);

 private :
 int m_nbToursRoues;
 double m_angleDirectrice;
};

robot_a_roues.h

RobotARoues::RobotARoues() : m_nbToursRoues{0}, m_angleDirectrice{0} { }

void RobotARoues::avancer(double distance) {
 m_nbToursRoues += distance/3.14;
}
void RobotARoues::tourner(double angle) {
 m_angleDirectrice = angle;
}

robot_a_roues.cpp

Classe interface
Pas de constructeur. Pas d’attribut. Que des méthodes virtuelles pures (sauf le destructeur)

Classe concrète
implémente l’interface

23

COURS 9

A) Classes abstraites / interfaces
B) Couplage / inversion du contrôle
C) Héritage multiple
D) Design patterns
E) Delegation pattern
F) Strategy pattern
G) Composite pattern

24

Couplage / inversion du contrôle

Blue Beams, Judith Godwin

25

Couplage / inversion du contrôle

● L’utilisation de classes abstraites ou interfaces
va plus loin que les conteneurs polymorphes...

● Elle permet de diminuer le couplage entre
composants appelants et composants appelés

!

methodesRect()

methodesCercle()

methodesTriangle()

switch(codeForme)
 case RECT:
 dessinerRect();
 case CERCLE:
 dessinerCercle();
 case TRIANGLE:
 dessinerTriangle();

Autre code qui
gère des formes
 ...Rect
 ...Cercle
 ...Triangle

Autre code qui
gère des formes
 ...Rect
 ...Cercle
 ...Triangle

100000 lignes utiliser/organiser
des formes/groupes de formes

Fort couplage « interface »
Forme

+methodes() ...

methodes()

methodes()

methodes()Forme& forme
forme.dessiner();

Autre code qui
gère des formes

 forme...

Autre code qui
gère des formes

 forme...

100000 lignes utiliser/organiser
des formes/groupes de formes

Faible couplage

Classes
 « en vrac »

26

Couplage / inversion du contrôle

● Un couplage fort oblige à reprendre le code
utilisateur quand les classes sont étendues

➔ Avec une interface, ajouter une nouvelle classe
nécessite juste de définir ses méthodes !

!

methodesRect()

methodesCercle()

methodesTriangle()

methodesPenta()

switch(codeForme)
 case RECT:
 dessinerRect();
 case CERCLE:
 dessinerCercle();
 case TRIANGLE:
 dessinerTriangle();
 case PENTA:
 dessinerPenta();

Autre code qui
gère des formes
 ...Rect
 ...Cercle
 ...Triangle
 ...Penta

Autre code qui
gère des formes
 ...Rect
 ...Cercle
 ...Triangle
 ...Penta

100000 lignes utiliser/organiser
des formes/groupes de formes

Fort couplage « interface »
Forme

+methodes() ...

methodes()

methodes()

methodes()

methodes()

Forme& forme
forme.dessiner();

Autre code qui
gère des formes

 forme...

Autre code qui
gère des formes

 forme...

100000 lignes utiliser/organiser
des formes/groupes de formes

Faible couplage

Classes
 « en vrac »

27

Couplage / inversion du contrôle

● L’interface constitue en quelque sorte un
 « guichet unique » pour toutes les démarches
concernant une catégorie de classes !

➔ L’interface doit être stable, c’est une articulation

!

« interface »
Forme

+methodes() ...

methodes()

methodes()

methodes()

methodes()

Forme& forme
forme.dessiner();

Autre code qui
gère des formes

 forme...

Autre code qui
gère des formes

 forme...

28

Couplage / inversion du contrôle

● Principe de conception : dependency inversion
➔ Les modules de haut niveau ne doivent pas

dépendre des modules de bas niveau.
Tous doivent dépendre des abstractions.

!

Fort couplage

«interface» «interface»

«interface» «interface» «interface»

Composants de bas niveau,
Types utilitaires, types valeurs...

Composants intermédiaires
Types entités, composites...

Classes de niveau application
Types Document, Jeu, Systeme...

Faible couplage

Depend upon abstractions. Do not depend upon concrete classes.

https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://stackoverflow.com/questions/22832639/difference-between-depend-on-abstractions-not-concrete-classes-and-program-to

29

Couplage / inversion du contrôle

● Plutôt que coder l’application « de bas en haut »
on code l’application de l’abstrait vers le concret

➔ Par exemple un Maillage pourrait être indifférent
au fait de manipuler des Sommets en 2D ou 3D

!

«interface» «interface»

«interface» «interface» «interface»

«interface» «interface»

«interface» «interface» «interface»

Développement Résultat Développement Résultat

30

Couplage / inversion du contrôle

● Ce qui donne la forme moderne de bibliothèque
➔ Le framework par opposition à la library est

une base de code qui propose avant tout des
abstractions et qui contrôle le code utilisateur

«interface» «interface»

«interface» «interface» «interface»

Classic library Code utilisateur Modern framework Code utilisateur

31

Couplage / inversion du contrôle

● Inversion de contrôle (inversion of control) :
« le flot d'exécution d'un logiciel n'est plus sous
le contrôle direct de l'application elle-même mais
du framework »

«interface»

Classic library Code utilisateur Modern framework Code utilisateur

Boucle

Composant de bibliothèque
appelé par le code utilisateur

Boucle

Composant utilisateur appelé
par le code de framework

https://en.wikipedia.org/wiki/Inversion_of_control

32

Couplage / inversion du contrôle

● Inversion de contrôle (inversion of control)
● Différentes techniques « objets » pour réaliser

l’inversion de contrôle. Hériter d’une interface
du framework est une des façons...

/// Classe interface (Abstraite pure)
class Fonction
{
 public :
 virtual double evaluer(double x)=0;
};

/// Intégration méthode du point milieu
double integrer(Fonction& f,
 double a, double b,
 double pas)
{
 double somme = 0;
 for (double x = a+pas/2; x<b; x+=pas)
 somme += f.evaluer(x) * pas;
 return somme;
}

/// Code utilisateur
class Fracrat : public Fonction
{
 public :
 double evaluer(double x);
};

double Fracrat::evaluer(double x)
{
 return 1/(1+x*x);
}

int main()
{
 Fracrat fr;
 std::cout<<4.0*integrer(fr,
 0, 1,
 0.001) << std::endl;

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

33

Couplage / inversion du contrôle

● Inversion de contrôle (inversion of control)
● Différentes techniques « objets » pour réaliser

l’inversion de contrôle. Hériter d’une interface
du framework est une des façons...

/// Classe interface (Abstraite pure)
class Fonction
{
 public :
 virtual double evaluer(double x)=0;
};

/// Intégration méthode du point milieu
double integrer(Fonction& f,
 double a, double b,
 double pas)
{
 double somme = 0;
 for (double x = a+pas/2; x<b; x+=pas)
 somme += f.evaluer(x) * pas;
 return somme;
}

/// Code utilisateur
class Fracrat : public Fonction
{
 public :
 double evaluer(double x);
};

double Fracrat::evaluer(double x)
{
 return 1/(1+x*x);
}

int main()
{
 Fracrat fr;
 std::cout<<4.0*integrer(fr,
 0, 1,
 0.001) << std::endl;

Appel par l’interface

Polymorphisme...

Classe concrète hérite interface

Implémentation !

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

34

Couplage / inversion du contrôle

/// Classe interface (Abstraite pure)
class Fonction
{
 public :
 virtual double evaluer(double x)=0;
};

/// Intégration méthode du point milieu
double integrer(Fonction& f,
 double a, double b,
 double pas)
{
 double somme = 0;
 for (double x = a+pas/2; x<b; x+=pas)
 somme += f.evaluer(x) * pas;
 return somme;
}

/// Code utilisateur
class Fracrat : public Fonction
{
 public :
 double evaluer(double x);
};

double Fracrat::evaluer(double x)
{
 return 1/(1+x*x);
}

int main()
{
 Fracrat fr;
 std::cout<<4.0*integrer(fr,
 0, 1,
 0.001) << std::endl;

π = 4(arctan 1−arctan 0) = 4 [arctan x]
0

1

= 4∫
0

1
1

1+x2 ≈ 4 ∑
x=0.0005

0.9995 step0.001

0.001
1

1+x2

https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

35

COURS 9

A) Classes abstraites / interfaces
B) Couplage / inversion du contrôle
C) Héritage multiple
D) Design patterns
E) Delegation pattern
F) Strategy pattern
G) Composite pattern

36

Héritage multiple

African sonata, Vladimir Kush

37

Héritage multiple

● L’héritage simple implique pour une classe
dérivée d’avoir une seule classe de base

● L’héritage multiple implique pour une classe
dérivée d’avoir plusieurs classes de base

Striped

+showStripes()

TalkingZebra

+showStripes()
+talk(msg : String)

Talking

+talk(msg : String)

!

38

Héritage multiple

● L’héritage multiple est souvent utile pour hériter
des capacités de classes abstraites/interfaces,
mais pas exclusivement (ici Colored est concrète)

● Héritage simple et multiple sont compatibles...

ColoredTalkingZebra

Striped

+showStripes()

FlamingoTalkingZebra

+showStripes()
+talk(msg : String)

Talking

+talk(msg : String)

Colored
#color : string

+tellColor()

Tiger

+showStripes()

39

Héritage multiple

● Les classes de base de l’exemple...
class Striped
{
 public :
 virtual void showStripes() = 0;
};
class Talking
{
 public :
 virtual void talk(std::string msg) = 0;
};
class Colored
{
 public :
 Colored(std::string color);
 virtual void tellColor();

 protected :
 std::string m_color;
};
Colored::Colored(std::string color)
 : m_color{color} { }

void Colored::tellColor() {
 std::cout << m_color << std::endl;
}

talking.h

striped.h

colored.h

colored.cpp

40

Héritage multiple

● À la déclaration de la classe dérivée, les classes
de base sont indiquées dans une liste

➔ Cette hiérarchie fera l’objet d’un exo TD/TP 9 ...

class TalkingZebra : public Striped, public Talking
{
 virtual void showStripes();
 virtual void talk(std::string msg);
};

void TalkingZebra::showStripes()
{
 std::cout << "|||||||" << std::endl;
}

void TalkingZebra::talk(std::string msg)
{
 std::cout << "I zay " << msg << std::endl;
}

talking_zebra.cpp

talking_zebra.h

!

Liste des classes de base

toutes les méthodes virtuelles pures
de toutes les classes de base doivent
être définies pour que la classe dérivée
puisse être instanciée

41

Héritage multiple

● Problèmes en cas d’héritage en diamant quand
une même classe est « héritée plusieurs fois »

● Il faut utiliser l’héritage virtuel virtual inheritance
Ou éviter ces situations (delegation pattern...)

!

StripedAnimal

TalkingZebra

+showStripes()
+talk(msg : String)

TalkingAnimal

+talk(msg : String)

Animal

+getName() : String
#name : String

+showStripes()

StripedAnimal a
un attribut name
hérité de Animal

TalkingAnimal a
un attribut name
hérité de Animal

TalkingZebra a 2 attributs name !
- name hérité de StripedAnimal
- name hérité de TalkingAnimal
=> voir lien « virtual inheritance »

https://en.wikipedia.org/wiki/Virtual_inheritance
https://en.wikipedia.org/wiki/Virtual_inheritance

42

COURS 9

A) Classes abstraites / interfaces
B) Couplage / inversion du contrôle
C) Héritage multiple
D) Design patterns
E) Delegation pattern
F) Strategy pattern
G) Composite pattern

43

Design patterns

Study for "Composition VII", Wassily Kandinsky

44

Design patterns

● Un design pattern (patron de conception) est
➔ « un arrangement caractéristique de modules,

 reconnu comme bonne pratique en réponse
 à un problème de conception d'un logiciel »

➔ « Il décrit une solution standard, utilisable dans
 la conception de différents logiciels »

➔ « Un patron de conception est issu de
 l'expérience des concepteurs de logiciels »

➔ « … le patron de conception décrit les grandes
 lignes d'une solution, qui peuvent ensuite être
 modifiées et adaptées selon les besoins »

https://fr.wikipedia.org/wiki/Patron_de_conception

45

Design patterns

● Une analogie en programmation procédurale :
➢ Pour parcourir une matrice on va utiliser

une double boucle imbriquée
➢ Pour « blinder » une saisie on va utiliser

faire saisie tant que saisie pas correcte
➢ Pour faire un menu application en console on va

faire
 saisie choix,
 selon choix appeler sous-prog. associé
tant que choix différent de quitter

● Ces algorithmes sont des sortes de design
patterns, des « recettes qui marchent »

46

Design patterns

● Les design patterns sont donc un peu comme
des algorithmes mais au niveau "orienté objet"

● « Les patrons offrent la possibilité de capitaliser
un savoir précieux né du savoir-faire d’experts »

● Rangés en 3 catégories :
➔ créateurs : ils définissent comment faire l'instanciation

et la configuration des classes et des objets
➔ structuraux : ils définissent comment organiser les

classes d'un programme dans une structure plus large
➔ comportementaux : ils définissent comment organiser

les objets pour que ceux-ci collaborent et expliquent le
fonctionnement des algorithmes impliqués

47

Design patterns
Les 23 patterns classiques

Simple survol :
tout ceci n’est
pas au programme !

48

Design patterns
Les 23 patterns classiques

Simple survol :
tout ceci n’est
pas au programme !

49

Design patterns
Les 23 patterns classiques

Simple survol :
tout ceci n’est
pas au programme !

50

Design patterns
Les 23 patterns classiques

Simple survol :
tout ceci n’est
pas au programme !

51

COURS 9

A) Classes abstraites / interfaces
B) Couplage / inversion du contrôle
C) Héritage multiple
D) Design patterns
E) Delegation pattern
F) Strategy pattern
G) Composite pattern

52

Delegation pattern

Roue de bicyclette, Marcel Duchamp

53

Delegation pattern

● Le pattern délégation correspond à l’usage de
la composition comme alternative à l’héritage

● Exemple, on a déjà une classe Rectangle, on
aimerait réutiliser ses méthodes pour une
classe Fenetre. Mais l’héritage pose problème...

Rectangle

+aire() : Integer

+largeur : Integer
+hauteur : Integer

Fenetre

+méthodes etc...

-contenu : etc...

Rectangle

+aire() : Integer

+largeur : Integer
+hauteur : Integer

Fenetre

+aire() : Integer
+méthodes etc...

-contenu : etc...

1 cadre

Héritage Problèmes :

conceptuellement
une Fenetre n’est pas
un Rectangle

Rectangle type valeur
Fenetre type entité

2 raisons de ne pas
vouloir faire un héritage

Composition OK :

Fenetre va recevoir
sa « Rectanglitude »
d’un objet composant
de type Rectangle

La méthode aire de
Fenetre déléguera
le travail à la méthode
aire de Rectangle

!

https://en.wikipedia.org/wiki/Delegation_pattern

54

Delegation pattern

● la composition comme alternative à l’héritage
struct Rectangle
{
 int m_largeur, m_hauteur;
 int aire();
};

Rectangle::aire()
{
 return m_largeur * m_hauteur;
}

class Fenetre
{
 public :
 Fenetre(Rectangle cadre);
 int aire();
 /// + méthodes ...

 private :
 Rectangle m_cadre;
 /// + m_contenu ...
};

Fenetre::Fenetre(Rectangle cadre)
 : m_cadre{cadre}
{ }

Fenetre::aire()
{
 /// Délégation !
 return m_cadre.aire();
}

int main()
{
 Fenetre maFenetre{ {10, 5} };

 std::cout << maFenetre.aire()
 << std::endl;

 return 0;
}

!

55

Delegation pattern

● Attention aux raccourcis ! On ne dit pas que la
composition peut toujours remplacer l’héritage !

● Les défauts de l’héritage sont un couplage fort
entre classe et des contraintes sémantiques

● La délégation nécessite du code de "plomberie"
(forwarder les appels de méthodes au délégué)

● On a déjà vu un exemple de délégation en TP
avec la relation Sommet / Coords :
On ne peut pas dire "1 Sommet est 1 Coords"
On peut dire "1 Sommet a 1 Coords"

● Vous avez sûrement remarqué qu’il fallait forwarder
(déléguer) pas mal de méthodes de Sommet à Coords

56

Delegation pattern

● La « délégation » au sens large indiquée
précédemment correspond au forwarding

● En toute rigueur le pattern Délégation implique
un passage en paramètre au composant appelé
du contexte this de l’appelant : le composant
fait comme si il était une classe de base.

● Ce pattern précis fera l’objet d’un exo TD/TP 9

https://en.wikipedia.org/wiki/Forwarding_(object-oriented_programming)

57

Delegation pattern

● En général la délégation ou le forwarding permet
de gérer des combinatoires d’aptitudes,
souvent trop lourds avec l’héritage multiple

Striped Talking Colored

Dog

Flamingo ✔
Pigeon ✔
Parrot ✔ ✔
Tiger ✔
Dinosaur ✔ ✔
TalkingZebra ✔ ✔
Marty ✔ ✔ ✔

58

Delegation pattern

● En général la délégation ou le forwarding permet
de gérer des combinatoires d’aptitudes,
souvent trop lourds avec l’héritage multiple

Striped

+showStripes()

- nbstripes

Animal

+showStripes()
+talk(...)
+getColor()

-specifics : etc...

0..1

Talking

+talk(...)

- sayings

Colored

+getColor()

- color

0..1 0..1

59

COURS 9

A) Classes abstraites / interfaces
B) Couplage / inversion du contrôle
C) Héritage multiple
D) Design patterns
E) Delegation pattern
F) Strategy pattern
G) Composite pattern

60

Strategy pattern

Watchdog II, Nam June Paik

61

Strategy pattern

● Le pattern strategy est un usage particulier de
délégation : on délègue à une classe qui hérite
d’une interface. Ceci permet de choisir/changer
de stratégie même en cours d’utilisation...

!

https://sourcemaking.com/design_patterns/strategy

62

Strategy pattern

● Le pattern strategy est un usage particulier de
délégation : on délègue à une classe qui hérite
d’une interface. Ceci permet de choisir/changer
de stratégie même en cours d’utilisation...

!

https://sourcemaking.com/design_patterns/strategy

63

Strategy pattern

● Là encore on dispose d’une technique puissante
pour gérer des combinatoires sans multiplier
les codes croisés (m+n au lieu de m×n)

m=3
n=4

Trajectoire

Pointillés

64

Strategy pattern

● Là encore on dispose d’une technique puissante
pour gérer des combinatoires sans multiplier
les codes croisés (m+n au lieu de m×n)

Trajectoire

+nextPosition()
...

Pointillé

+nextBlackOrWhite()
...

Tracé

+tracer()

...

Classes concrètes Classes concrètes

65

COURS 9

A) Classes abstraites / interfaces
B) Couplage / inversion du contrôle
C) Héritage multiple
D) Design patterns
E) Delegation pattern
F) Strategy pattern
G) Composite pattern

66

Composite pattern

Orphism, Sonia & Robert Delaunay

67

Composite pattern

● Le pattern composite permet de gérer des objets
composites arborescents où des composants
sont élémentaires (feuilles) et d’autres sont
des groupes de composants (composites)

!

Composite

Composite CompositeLeafLeaf

Leaf Leaf Leaf Leaf

Diagramme d’objets Diagramme de classes

https://sourcemaking.com/design_patterns/composite

68

Composite pattern

● Logiques de conteneurs imbriqués
exemple : systèmes de fichiers

69

Composite pattern

● Logiques de conteneurs imbriqués
exemple : documents structurés

doc

abstract

title

chapter title

section

chapter

title

section

p
p
p
p

a

chapter

70

Composite pattern

● Logiques de conteneurs imbriqués
exemple : documents structurés

doc

abstract

title

chapter title

section

chapter

title

section

p
p
p
p

a

chapter

71

Composite pattern

● Logiques de conteneurs imbriqués
exemple : documents structurés

doc

abstract

title

chapter title

section

chapter

title

section

p
p
p
p

a

chapter

72

Composite pattern

● Logiques de conteneurs imbriqués
exemple : documents structurés

doc

abstract

title

chapter title

section

chapter

title

section

p
p
p
p

a

chapter

73

Composite pattern

● Logiques de conteneurs imbriqués
exemple : documents structurés

doc

abstract

title

chapter title

section

chapter

title

section

p
p
p
p

a

chapter

74

Composite pattern

● Le pattern composite sera certainement très
utile au projet : c’est la façon idéal d’organiser
des groupes d’éléments graphiques et de gérer
à égalité les groupes et les primitives

● Ce pattern fera l’objet d’un exo TD/TP 9

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74

