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I 1. Intro, concepts, 1 exemple 1. Organisation objet des données
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++ ! compléments 6. UML et C++, associations
/. Conteneurs & C++ :la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Abstraction / design patterns 9. Modele composite et graphismes
10.Exceptions, flots, fichiers ... 10.Persistance / fichiers / except.
11.Templates cote developpeur 11.Développement de templates

12.Gestion méemoire / smarts ptrs 12.Soutenance de projet ...
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F Classes abstraites / interfaces
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Composition suprématiste, Kasimir Malevitch



Classes abstraites / interfaces 0

I * Le polymorphisme (Rappel du dernier cours)
> Heritage : classe de Base, classe Dérivée

I > Dérivée redefinit méthode(s) classe Base
> Objets manipules par pointeurs/référence Base
> Méthodes classe Base déclarées virtual

Base Conteneur de agir a la maniere

pointeurs surBy' Base d’'un objet Base
. mix : o .
+agir( ) Derivee | 29ira la maniere

AN .// d’'un objet Derivee

@

agir a la maniére

. —p
Derivee Base | i objet Base
— : agir a la maniere
+agir( ) «override» Base® Derivee | g, objet Derivee




o |
r Classes abstraites / interfaces

class Base base.h
{
public :
virtual ~Base() = default;
virtual void agir();
}s
void Base::agir() base.cpp
std::cout << "J'agis d'une certaine maniere\n";
}
N\
class Derivee : public Base derivee.h
public :
virtual void agir();
}s5
void Derivee::agir() derivee.cpp
{

std::cout << "J'agis d'une autre maniere\n";

}




F Classes abstraites / interfaces

glass Base base.h
pUbl\ilgr-’:cual -Base() - default: Obligatoire : destructeur virtuel
virtual void agir(); D . o
}; Méthode a redéfinir : virtuelle
void Base::agir() base.cpp
std::cout << "J'agis d'une certaine maniere\n";
}
AN
class Derivee : public Base derivee.h
public :
virtual void agir(); w———m
}; Méthode redéfinie !
void Derivee::agir() derivee.cpp

{
}

std::cout << "J'agis d'une autre maniere\n";




Classes abstraites / interfaces

I * Le polymorphisme permet de traiter "a egalité"
tous les objets d’'une hiérarchie d’héritage
avec une classe de base en commun, tout en
I conservant les specificite de chacun...

int main() main.cpp

std::list<Base*> mix;

mix.push_back(new Base);
mix.push_back(new Derivee);

mix.push_back(new Base);
mix.push_back(new Derivee); — r—
certalne maniere

for (auto ptobj : mix) action ‘agls d’ autre manilere
ptobj->agir(); _J polymorphe 'agis d° certaine maniere

autre maniere

for (auto ptobj : mix) ] jci destruction
delete ptobj; _ polymorphe

return 0: (appel au bon destructeur)




Classes abstraites / interfaces a

I * Souvent le polymorphisme des classes dérivees
est l'objectif principal de l'utilisation de I'héritage

I * Dans ce cas implémenter certaines/toutes les
meéthodes de la classe de base peut ne pas
avolir de sens : on ne les implémentera pas !

o e Forme
o8 sonstructeurs #p03|t!on : Ciﬁ7 Italique : méthodes non implémentées
+d933/ner( ) P (non définies) dans la classe de base
+aire() : Real En C++ on dit «. méthode virtuelle pure »
AN
Trianglelsocele Rectangle Cercle
- base : Real - largeur : Real - rayon : Real
- hauteur : Real - hauteur : Real
+dessiner( ) +dessiner( ) +dessiner( )
+aire() : Real +aire() : Real +aire() : Real




Classes abstraites / interfaces a

» Certalnes methodes de la classe de base ne
sont pas définies : celle-ci est non instanciable

* On dit que la classe est abstraite : aucun objet
de type « Forme » n’est possible

Trianglelsocele

- base : Real
- hauteur : Real

- hauteur : Real

Forme
#position : Coords Italique : classe abstraite
+dessiner( ) il suffit qu’une seule méthode
+aire() : Real soit virtuelle pure pour que la
/\ classe soit abstraite
Rectangle Cercle
- largeur : Real - rayon : Real

+dessiner( )
+aire() : Real

+dessiner( )
+aire() : Real

+dessiner( )
+aire() : Real




Classes abstraites / interfaces a

* Toutes les methodes virtuelles pures de la
classe de base abstraite doivent étre définies
par une classe dérivée pour l'instancier...

* On dit que la classe derivée est concrete :
on peut avoir des objets Rectangle, Cercle...

Forme

#position : Coords

+dessiner( )
+aire() : Real

AN

Pas italique : toutes les méthodes
sont définies, la classe est concrete

/

Trianglelsocele

Rectangle

Cercle” /

- base : Real
- hauteur : Real

- largeur : Real
- hauteur : Real

- rayon : Real/

+dessiner( )

+aire() : Real

+dessiner( )
+aire() : Real

+dessiner( ) y
+aire() : Real




Classes abstraites / interfaces a

* De nombreuses utilisations, la plus evidente :
grouper des objets « similaires en principe »
mais différents en pratique (traitements
specifiques pour des opérations communes)

____________
" e
. ~

Trianglelsocele

- base : Real
- hauteur : Real

Forme
#position : Coords ;
+dessiner( ) Q !
+aire() : Real A /

Rectangle Cercle [
- largeur : Real . Real
- rayon : Rea Objets instances des

- hauteur : Real

+dessiner( )

+aire() : Real

+dessiner( )
+aire() : Real

+dessiner( )
+aire() : Real

classes concréetes




Classes abstraites / interfaces a

* [ es methodes virtuelles pures s’indiquent avec
=0 en fin de déclaration de la méthode.

* Le classe Forme est non instanciable mais elle
peut fournir un constructeur (pour les dérivéees)

class Forme forme.h
{
public :
Forme(Coords position);
virtual ~Forme() = default;
virtual void dessiner(Svgfile& svgout) = 0;
virtual double aire() = 0;

protected :
Coords m_position;

¥

Forme: :Forme(Coords position) forme.cpp

: m_position{position}

{1}




Classes abstraites / interfaces a

* [ es methodes virtuelles pures s’indiquent avec
=0 en fin de déclaration de la méthode.

* Le classe Forme est non instanciable mais elle
peut fournir un constructeur (pour les dérivéees)

class Forme Un construteur Polymorphisme forme.h
{ public / n’est jamais virtuel / => destructeur virtuel (si possible default)
Forme(Coords position);
virtual ~Forme() = default;
virtual void dessiner(Svgfile& svgout) = 0;
virtual double aire() = @;‘,K\\\\\
protected : o Ces 2 méthodes sont virtuelles pures.
_ Coords m_position; Au moins une méthode est virtuelle pure
¥ donc la classe est automatiquement abstraite
forme.cpp

Forme: :Forme(Coords position)
: m_position{position}

{1}




Classes abstraites / interfaces

I * Une classe concrete hérite de la classe abstraite

e Elle définit toutes les méthodes virtuelles de la
classe de abstraite de base

» Elle peut ajouter des attributs, un constructeur...

class Rectangle : public Forme rectangle.h
{
public :
Rectangle(Coords position, double largeur, double hauteur);
virtual void dessiner(Svgfile& svgout);
virtual double aire();

private :
double m_largeur;
double m_hauteur;

¥

Rectangle: :Rectangle(Coords position, double largeur, double hauteur)
: Forme{position}, m largeur{largeur}, m_hauteur{hauteur}

1

rectangle.cpp




Classes abstraites / interfaces

I * Une classe concrete hérite de la classe abstraite

e Elle définit toutes les méthodes virtuelles de la
classe de abstraite de base

* Elle peut ajouter des attributs, un constructeur...

class Rectangle : public Forme rectangle.h
{
public :
Rectangle(Coords position, double largeur, double hauteur);
virtual void dessiner(Svgfile& svgout);

virtual double aire(); =
. ; Si possible pas de destructeur
. Facultatif (ces méthodes sont ) . .
private : de toute fagon virtuelles) (destructeur implicite ok)

double m_largeur;
double m_hauteur;

¥

Rectangle: :Rectangle(Coords position, double largeur, double hauteur)
: Forme{position}, m largeur{largeur}, m_hauteur{hauteur}

{1} L Appel au constructeur de la classe de base
(classe de base non instanciable directement) rectangle.cpp




Classes abstraites / interfaces

* Une classe concrete hérite de la classe abstraite

e Elle définit toutes les méthodes virtuelles de la
classe de abstraite de base

* Elle peut ajouter des attributs, un constructeur...
* Tout ceci est specifique a cette classe concrete

void Rectangle::dessiner(Svgfile& svgout) rectangle.cpp
{
svgout.addRect(m position.getX()-m_largeur/2,
m_position.getY()-m_hauteur/2,
m_position.getX()+m_largeur/2,
m_position.getY()+m_hauteur/2);
}

double Rectangle::aire()

{

return m_largeur * m_hauteur;

¥




r Classes abstraites / interfaces

 Utiliser les classe concretes sans les connaitre !

double aireTotale(std::vector<Forme*> formes) )
{
double total = ©;
for (auto ptforme : formes) Code polymorphe
total += ptforme->aire();
return total;
} /

int main()

std: :vector<Forme*> groupe; :J

groupe.push back(new Rectangle{{100,100}, 150, 50});
groupe.push_back(new Circle{{200,200}, 50});
groupe.push_back(new TriangleIsocele{{300,300}, 100, 100});

for (auto ptforme : groupe) )
ptforme->dessiner(svgout);

std::cout << aireTotale(groupe) << std::endl;

for (auto ptforme : groupe)
delete ptforme;

main.cpp




Classes abstraites / interfaces a

* |l y a souvent intérét a abstraire completement
la classe de base : elle ne propose plus aucune
meéthode concrete ni aucun attribut !

* On dit que la classe est abstraite pure ou
gue la classe de base définit une interface

« interface »
Robot
<+—— Aucun attribut

+avancer(distance)

+tourner(angle) <+—— Que des méthodes virtuelles pures
RobotARoues Hexapode Humanoide
- nbToursRoues - angleHanche[6] - posJambe[2]
- angleDirectrice - angleGenou[6] - posCentreGrav

+avancer(distance)
+tourner(angle)

+avancer(distance)
+tourner(angle)

+avancer(distance)
+tourner(angle)




r Classes abstraites / interfaces

class Robot Classe interface robot.h
{ Pasbilq constructeur. Pas d’attribut. Que des méthodes virtuelles pures (sauf le destructeur)
public :

virtual ~Robot() = default;
virtual void avancer(double distance) = ©;
virtual void tourner(double angle) = ©;

}s5
class RobotARoues : public Robot Classe concréte robot a roues.h
{ implémente l’interface -
public :
RobotARoues () ;
virtual void avancer(double distance);
virtual void tourner(double angle);
private :
int m_nbToursRoues;
double m_angleDirectrice;
}s

RobotARoues: :RobotARoues() : m_nbToursRoues{0}, m angleDirectrice{0} { }

void RobotARoues::avancer(double distance) {

m nbToursRoues += distance/3.14;

- robot_a_roues.cpp
void RobotARoues: :tourner(double angle) {

m_angleDirectrice = angle;
}
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I Couplage / inversion du controle

il | i :

|' 1 A ] &

i

Blue Beams, Judith Godwin




I Couplage / inversion du controle a

o L'uti
vap

 Elle

Isation de classes abstraites ou interfaces
us loin que les conteneurs polymorphes...

nermet de diminuer le couplage entre
composants appelants et composants a

opelés

Fort couplage

100000 lignes utiliser/organiser
des formes/groupes de formes

Autre code qui

gere des formes
...Rect
...Cercle :::

...Triangle

Autre code qui
gere des formes

...Rect -
...Cercle

...Triangle ~

NN

« envrac »

methodesRect( )

switch(codeForme)
case RECT:
dessinerRect();
case CERCLE:

case TRIANGLE:

dessinerCercle();’/

dessinerTriangle();

Classes

methodesCercle( ) A
/ methodesTriangle( )

Faible couplage

100000 lignes utiliser/organiser

« interface »
Forme

des formes/groupes de formes

+methodes( ) ...

7aN

Autre code qui
gere des formes
|

forme... — |

Autre code qui

methodes( )
gere des formes

forme... /

Forme& forme /

forme.dessiner();

\
O

methodes( ) ,,

methodes( )




I Couplage / inversion du controle a

* Un couplage fort oblige a reprendre le code
utilisateur quand les classes sont étendues

> Avec une Interface, ajouter une nouvelle classe
necessite juste de définir ses méthodes !

Fort couplage Faible couplage | « interface »
100000 lignes utiliser/organiser 100000 lignes utiliser/organiser Forme
g 9 g g
des formes/groupes de formes Classes des formes/groupes de formes +methodes()

Aut de qui i
e s oo «envracy ] e fotmes / ZaN

oo C

c..Cercle O\ !

iimete forme... =]

...Penta \

. AN

Autre code qui | methodesRect( ) Aut de qui methodes( )
gereRceigs: formes | ggr‘gedgg Formes

...Cercle forme /

...Triangle ~ T

.- -Penta ~J methodesCercle( ) methodes( )
switch(codeFor‘meB< A A

case RECT:

dessinerRect();
case CERCLE: Forme& forme

dessinerCercle();/ methodesTriangle( ) forme.dessiner(); methodes( )
case TRIANGLE:

dessinerTriangle();
case PENTA:

dessinerPenta(); —» methodesPenta( ) methodes( )




Couplage / inversion du controle 0

I * L’interface constitue en quelgue sorte un
« guichet unique » pour toutes les démarches
I concernant une categorie de classes !

> L’'Interface doit étre stable, c’est une articulation

« interface »
Forme
+methodes( ) ...

Autre code qui 4455

gere des formes

forme... — | ! ‘
Autre code q methodeS()

gere des formes

forme.. /

methodes( ) ,,
Forme& forme /
forme.dessiner(); methodes( ) O

methodes( )




Couplage / inversion du controle a

* Principe de conception : dependency inversion

> [ es modules de haut niveau ne doivent pas
I dependre des modules de bas niveau.
Tous doivent dépendre des abstractions.

Depend upon abstractions. Do not depend upon concrete classes.

Fort couplage Faible couplage
Classes de niveau application
\ Types Document, Jeu, Systeme... \ p: ;
m «interfacey
GRS
, Composants intermédiaires | /.
Types entités, composites... '/ / '/ \¥

-
«interface» |«|nterface»| |«|nterface» |

Composants de bas niveau, D@
] Types utilitaires, types valeurs...



https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://stackoverflow.com/questions/22832639/difference-between-depend-on-abstractions-not-concrete-classes-and-program-to

Couplage / inversion du controle a

* Plutot que coder I'application « de bas en haut »
on code l'application de I'abstrait vers le concret

> Par exemple un Maillage pourrait étre indifferent
au fait de manipuler des Sommets en 2D ou 3D

Développement

Résultat

|

/]

O ¥
O
]

v O

Développement

«interface»

» | |«interface»

Résultat

-
|«interface»| «interface» |«interface»|




Couplage / inversion du controle

* Ce qui donne la forme moderne de bibliotheque

> Le framework par opposition a la library est
I une base de code qui propose avant tout des
abstractions et qui controle le code utilisateur

Code utilisateur Modern framework Code utilisateur




Couplage / inversion du controle

I * Inversion de controle ( inversion of control ) :
« le flot d'exécution d'un logiciel n'est plus sous
le contrOle direct de l'application elle-méme mais
I du framework »

Classic library Code utilisateur Modern framework Code utilisateur

Boucle Boucle

L Composant de bibliotheque . ) |j
appelé par le code utilisateur Composant utilisateur appele
par le code de framework



https://en.wikipedia.org/wiki/Inversion_of_control

Couplage / inversion du controle

I * Inversion de controle ( inversion of control )

* Différentes techniques « objets » pour réaliser
I I'inversion de controle. Hériter d’une interface
du framework est une des facons...

class Fonction

{ .
public :

}s

{

return somme;

}

virtual double evaluer(double x)=0;

double integrer(Fonction& f,

double a, double b,
double pas)

double somme = 0;
for (double x = a+pas/2; x<b; x+=pas)
somme += f.evaluer(x) * pas;

class Fracrat : public Fonction

{ .
public :

double evaluer(double x);
}s

double Fracrat::evaluer(double x)

return 1/(1+x*x);

¥

int main() A
{ 3.1415
Fracrat fr;
std: :cout<<4.0*integrer(fr,
@) 1)
0.001) << std::endl;



https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

Couplage / inversion du controle

I * Inversion de controle ( inversion of control )

* Différentes techniques « objets » pour réaliser
I I'inversion de controle. Hériter d’une interface
du framework est une des facons...

class Fonction class Fracrat : public Fonction
{ {Classe concreéte hérite interface
public : public :
virtual double evaluer(double x)=90; double evaluer(double x);
}s Polymorphisme... }s Implémentation !
double Fracrat:revaluer(double x)
double integrer(Honction& f, {

ouble a, double b, return 1/(1+x*x);
ouble pas) }

{
double somme = \9; int main() -
for (double 2; x<b; x+=pas)||{ 3.1415
somme +& f.evaluer(x) * pas; Fracrat fr;
\ return somme; Appel par I'interface std::cout<<g.@iintegr‘er‘(1‘:r‘,
0.001) << std::endl;



https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

I Couplage / inversion du controle

1
7w = 4(arctan 1—arctan0) = 4[arctan x|
0
1 1 0.9995 step 0.001 1
=4[ —=~4 D 0.001—;
o 1+x x=0.0005 1+x
class Fonction class Fracrat : public Fonction
{ {
public : public :
virtual double evaluer(double x)=0; double evaluer(double x);
}s }s

double Fracrat::evaluer(double x)
double integrer(Fonction& f,

double a, double b, return 1/(1+x*x);
double pas) }
{
double somme = 0; int main() -
for (double x = a+pas/2; x<b; x+=pas)||{ 3.1415
somme += f.evaluer(x) * pas; Fracrat fr;
return somme; std: :cout<<4.0*integrer(fr,
} @: 1)

0.001) << std::endl;



https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu
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Heéritage multiple

African sonata, Vladimir Kush



r Heéritage multiple G

I * L’heritage simple implique pour une classe
dérivée d’avoir une seule classe de base

I * L’heritage multiple impligue pour une classe
derivée d’avoir plusieurs classes de base

Striped Talking
+showsStripes( ) +talk( msg : String )|
AN AN
TalkingZebra

+showStripes( )
+talk( msg : String )|




Heritage multiple

I * L’héritage multiple est souvent utile pour hériter
des capacités de classes abstraites/interfaces,

I mais pas exclusivement (ici Colored est concréte)
* Héritage simple et multiple sont compatibles...
Striped Talking Colored
#color : string
+showsStripes( ) +talk( msg : String )| +tellColor( )
AN AN AN AN AN
Tiger TalkingZebra <}— Flamingo
rehowStipes() ColoredTalkingZebra
+showStripes( ) +talk( msg : String )|




Heritage multiple

* L es classes de base de I'exemple...

class Striped

{
public :
virtual void showStripes() = 0;

striped.h

class Talking
{
public :
virtual void talk(std::string msg) = 0;

talking.h

class Colored
{
public :
Colored(std::string color);
virtual void tellColor();

protected :
std::string m_color;

colored.h

Calored::CElored(std::string color)
: m_color{color} { }

void Colored::tellColor() {
std::cout << m_color << std::endl;
}

colored.cpp




r Heéritage multiple G

* A la déclaration de la classe dérivée, les classes
de base sont indiguees dans une liste

> Cette hiérarchie fera I'objet d’'un exo TD/TP 9 ...

Liste des classes de base talking_zebra.h

r N
class TalkingZebra : public Striped, public Talking

virtual void showStripes();
virtual void talk(std::string msg);

¥

void TalkingZebra::showStripes() talking zebra.cpp
std::cout << "[|]||]]||" << std::endl; toutes les méthodes virtuelles pures

} de toutes les classes de base doivent

étre définies pour que la classe dérivée
puisse étre instanciée

std::cout << "I zay " << msg << std::endl;

void TalkingZebra::talk(std::string msg)

¥




r Heéritage multiple G

I * Problemes en cas d’héritage en diamant quand
une méme classe est « héritée plusieurs fois »

I * || faut utiliser I'heritage virtuel virtual inheritance
Ou éviter ces situations (delegation pattern...)

Animal
StrivedAnimal #name : String TalkinaAnimal
tripedAnimal a +getName( ) : String alkingAnimal a

un attribut name = un attribut name
hérité de Animal 1 A hérité de Animal

StripedAnimal TalkingAnimal

+showsStripes( ) +talk( msg : String )

TalkingZebra | TalkingZebra a 2 attributs name !
- name hérité de StripedAnimal
+showStripes( ) - name hérité de TalkingAnimal
+talk( msg : String )| => voir lien « virtual inheritance »



https://en.wikipedia.org/wiki/Virtual_inheritance
https://en.wikipedia.org/wiki/Virtual_inheritance
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Design patterns

Study for "Composition VII", Wassily Kandinsky



r Design patterns

I * Un design pattern ( patron de conception ) est

> « Un arrangement caractéeristiqgue de modules,
I reconnu comme bonne pratique en réponse
a un probleme de conception d'un logiciel »

> « Il décrit une solution standard, utilisable dans
la conception de différents logiciels »

> « Un patron de conception est Issu de
'expérience des concepteurs de logiciels »

> « ... le patron de conception décrit les grandes
lignes d'une solution, qui peuvent ensuite étre
modifiees et adaptées selon les besoins »


https://fr.wikipedia.org/wiki/Patron_de_conception

r Design patterns

I * Une analogie en programmation procédurale :

- Pour parcourir une matrice on va utiliser
I une double boucle imbriquee

- Pour « blinder » une saisie on va utiliser
faire saisie tant que saisie pas correcte

- Pour faire un menu application en console on va
faire
saisie choix,
selon choix appeler sous-prog. associé
tant que choix difféerent de quitter

* Ces algorithmes sont des sortes de design
patterns, des « recettes qui marchent »



Design patterns

Les design patterns sont donc un peu comme
des algorithmes mais au niveau "orienté objet"

« Les patrons offrent la possibilite de capitaliser
un savoir précieux né du savoir-faire d’experts »

Rangés en 3 catégories :
créateurs : ils définissent comment faire l'instanciation

et la configuration des classes et des objets
structuraux : ils definissent comment organiser les

classes d'un programme dans une structure plus large

comportementaux : ils définissent comment organiser
les objets pour que ceux-ci collaborent et expliquent le
fonctionnement des algorithmes impliques




Design patterns

Les 23 patterns classiques

Abstract Factory Facade Proxy M ‘t Memento
emento
Adapter El Factory Method I] Observer Caretaker -state
E’ - Type: Behavioral ‘
Bridge [5] Fiyweint Singleton
EI v Wi EI What it is: x
c | Builde Interprete State Without violating encapsulation, capture |
Hoer R and externalize an object’s internal state I
; - Strat so that the object can be restored to this - I
Chain of Responsibility Iterator eqy i Originator :
Command Mediator Template Method state s
i Visitor +setMemento(in m : Memento)
EI Composite Memento +createMementa()
E’ Decorator El Prototype
. N «interfacen i -
«interfacen successor Chain of Responsibility Observer Subject roties [ Rluces
Client Handler ) ) i +aftach(in o : Observer) il
[handleRequest) Type: Behavioral Typs: Buhaviond +detach(in o : Observer) +update()
f +notifi()
What it is: What it is:
Avoid coupling the sender of a request to Dgﬂne a one-to-many deper!den cy between
its receiver by giving more than one object objects so that when one object changes
a chance to handle the request. Chain the state, all its dependents are notified and
receiving objects and pass the request updated automatically.
ConcreteHandler1 | |ConcreteHandler2 | along the chain until an object handles it. ConcoutaSubiect|| ohsorves |HomcretsCbssryer
+handleRequest() +handleRequest() -subjectState Al -observerState
+update()
Client Invoker Command State Context .—l
Type: Behavioral Type: Behavioral trequest() winterfaces
State
Command What it is: What it is: +handle
- ——— il Encapsulate a request as an object, Allow an object to alter its behavior when 0
+execute() thereby letting you parameterize clients its internal state changes. The object will
with different requests, queue or log appear to change its class.
P requests, and support undoable operations. | |
Receiver ConcreteCommand ConcreteState1 ConcreteState2
+execute() +handle() +handle()




Les 23 patterns classiques

Design patterns

Client Interpreter Strategy Context  [@——
l = —— Type: Behavioral winterfaces
; I
«interfacex NpaRESap What it Is: Strategy
Context AbstractExpression What it is: Define a family of algorithms, RseUn]
+interpret() Giv_en a language, deﬁn_e a representation encapsulate each one, and make them
for its grammar along with an interpreter interchangeable. Lets the algorithm vary
that uses the representation to interpret independently from
| sentences in the language. clients that use it. l |
ConcreteStrategyA ConcreteStrategyB
TerminalExpression NonterminalExpression +execute() +execute()
+interpret() : Context +interpret() : Context
Client T
emplate Method
lterator P AbstractClass
: i Type: Behavicral +templateMethod()
winterfaces «interfaces Type:Canmior - #subMethod()
Aggregate Iterator What it is: What it is:
+createlterator() +next() Provide a way to access the elements of Deﬁnel the skefel_orl of an algorithm in an
an aggregate object sequentially without operation, deferring some step_'s to subclasses.
exposing its underlying representation. Lets subclasses redefine certain steps
of an algorithm without changing the I
algorithm's structure. ConcreteClass
ConcreteAggregate Concretelterator +subMethod()
+createlterator() : Context +next() : Context
informs Visit «interface»
: ISior Visit
winterfaces MEdIEtOI' — - — 4 Client
Mediator i ; +visitElementAfin a : ConcreteEfementA)
Colleage : Type: Behavioral
: +visitElementB{in b : ConcreteElemen
Type: Behavioral sitEle Biin b : C leEl 1B,
i What it is: 4}‘ ;
What it is: . ainterfacen
Define an object that encapsulates how a z‘:rg;?rsrz:: 2: 31?;?;';1:1?:); - Element
i i C teVisit e \fiel
ﬂuﬂgblscl:;:t'?;ac;;:gcf:zﬂ?:f:"in object structure. Lets you define a it it +accepl(in v : Visitor)
4 ezchgo trfer exﬂ:fif:iilly 'a iy uarﬁ new operation without changing  [+visitElementA(in a : ConcreteElementA)
dat isi inb: A
updates their interactions independently. the classes of the elements on  [+visitElementB(in b : ConcreteElementB)

ConcreteMediator

ConcreteColleague

which it operates.

ConcreteElementA

+accept(in v : Visitor)

ConcreteElementB

+accept(in v : Visitor)
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Les 23 patterns classiques

winterfaces Adapte[ F’rc-){y Client
Adaplnr 4 Client
+operation() Type: Structural Type: Structural e
winterfacen
What it is: : : What it is- Subject
Convert the interface of a class into Provide a surrogate or placeholder for +request()
another interface clients expect. Lets another object to control access to it.
et A classes work together that couldn't 4
Adaptee otherwise because of incompatible
-adaptee P - interfaces. [ |
n
+operation() pRdaptsOpariend RealSubject it s Proxy
+request() i +request()
Abstraction . Client
: | Bridge Abstract Factory i
+operation
elnterteioes TP el Type: Creational Ab‘i;'i:ctl'f;:g;w
Implementor — s 0 ainterfacen
+operationimpl() sl O What it is: ermalePrc ] AbstractProduct
Decouple an abstraction from its Provides an interface for creating A
!mplementatlon 50 that the two can vary families of related or dependent
Tyiepancently. objects without specifying their
| | concrete class.
ConcretelmplementorA C telmplementorB i it
oncretelmplementor!
: createProductAl) Gonorstafroduct
+operationimpl() +aperationimpl() +createProductB()
«interface» .
Component Composite Builder Director e
+operalion() children - i)
+add(in ¢ : Component) Type: Structural Type: Creational +construct() +buildPart()
+remove(in ¢ - Component) s
2 e What it is: What it is:
getChild(in i : int) . . :
Compose objects into tree structures to Separate the construction of a
represent part-whole hierarchies. Lets complex object from its representing
| clients treat individual abjects and so that the same construction
compositions of objects uniformly, process can create different ConcreteBuilder
Component representations.
- +buildPart()
Leaf +operation() +getResult()
+operation() +add(in ¢ ; Component)
+remove(in ¢ : Component)
+getChild(in i : int)
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Les 23 patterns classiques

+operation(in extrinsicState)

+operation(in extrinsicState)

f

winterface»
Component Sl Decorator Factory Method cinterface» Creato
+operation, +operation() Product
i 0 Type: Structural Type: Creational :?ﬂ?ﬁ”ﬂ:m”
Decorator What it is: What it is:
- Altach additional responsibilities to an Define an interface for creating an
L 4pi*+operation() object dynamically. Provide a flexible object, but let subclasses decide which
alternative to sub-classing for extending class to instantiate. Lets a class defer
ConcreateDecorator functionality. instantiation to subclasses. - =
oncreteCreator
-addedState ConcreteProduct 4 —— — —— TactoryMethod()
+operation()
+addedBehavion()
Facade Facade Prototype Client
Complex system 1 lrfa
Type: Structural Type: Creational sinterface»
ype: Structura ype: Creationa Brotatyps
What it is: What it is: +clone()
Provide a unified interface to a set of Specify the kinds of objects to create
interfaces in a subsystem. Defines a high- using a prototypical instance, and
level interface that makes the subsystem create new objects by copying this
easier to use. prototype. [ |
ConcretePrototype ConcretePrototype2
+clone() +clone()
FlyweightFactory .
+gelFlyweight(in key) Flyweight Singleton
winterfaces ; Singleton
Flyweight Type: Structural Type: Creational
- e -static uniguelnstance
= +operation(in extrinsicStats) What it is: What it is: singletonData
Use sharing to support large numbers of Ensqre aclass onlg has one instan_:}a and +slatic instance()
fine grained objects efficiently. provide a global point of access toit. +SingletonOperation()
| |
ConcreteFlyweight UnsharedConcreteFlyweight
L-intrinsicState -allState
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Delegation pattern

Roue de bicyclette, Marcel Duchamp



I
I

Delegation pattern

* Le pattern délégation correspond a l'usage de

la composition comme alternative a I’heritage

* Exemple, on a deja une classe Rectangle, on
aimerait réutiliser ses méthodes pour une

classe Fenetre. Mais I'héritage pose probleme...

Heritage Problemes :

conceptuellement
une Fenetre n’est pas
un Rectangle

Rectangle type valeur
Fenetre type entité

2 raisons de ne pas
vouloir faire un héritage

Rectangle

Rectangle

+largeur : Integer
+hauteur : Integer

+largeur : Integer
+hauteur : Integer

+aire( ) : Integer

+aire( ) : Integer

1 Qcad re

Fenetre

Fenetre

-contenu : etc...

-contenu : etc...

+méthodes etc...

+aire( ) : Integer
+méthodes eftc...

Composition OK :

Fenetre va recevoir
sa « Rectanglitude »
d’un objet composant
de type Rectangle

La méethode aire de
Fenetre déleguera

le travail a la méthode
aire de Rectangle



https://en.wikipedia.org/wiki/Delegation_pattern

* |a composition comme alternative a I’héritage

Delegation pattern

struct Rectangle

int m_largeur, m_hauteur;
int aire();

¥
Rectangle: :aire()
{
return m_largeur * m_hauteur;
}

Fenetre: :Fenetre(Rectangle cadre)
: m_cadre{cadre}

{1}

Fenetre::aire()

{

return m_cadre.aire();

class Fenetre

{ .
public :

Fenetre(Rectangle cadre);
int aire();

private :
Rectangle m_cadre;

}s

int main()
Fenetre maFenetre{ {10, 5} };

std::cout << maFenetre.aire()
<< std::endl;
56)

return 0;




r Delegation pattern

I » Attention aux raccourcis ! On ne dit pas gue la
composition peut toujours remplacer I’'héritage !

I * Les defauts de I'héritage sont un couplage fort
entre classe et des contraintes sémantiques

* La delegation nécessite du code de "plomberie”
(forwarder les appels de méthodes au délégué)

* On a déja vu un exemple de délegation en TP

avec la relation Sommet / Coords :
On ne peut pas dire "1 Sommet est 1 Coords"
On peut dire "1 Sommet a 1 Coords"

* Vous avez strement remarqué qu’il fallait forwarder
(deleguer) pas mal de methodes de Sommet a Coords



* La « délegation » au sens large indiquée
precédemment correspond au forwarding

* En toute rigueur le pattern Délégation implique
un passage en parametre au composant appelé
du contexte this de I'appelant : le composant
fait comme si Il était une classe de base.

r Delegation pattern

» Ce pattern precis fera l'objet d’un exo TD/TP 9


https://en.wikipedia.org/wiki/Forwarding_(object-oriented_programming)

r Delegation pattern

I * En général la délégation ou le forwarding permet
de gérer des combinatoires d’aptitudes,

souvent trop lourds avec I'néritage multiple

I Striped Talking Colored

Dog

Flamingo v

Pigeon v

Parrot v v

Tiger v

Dinosaur v v

TalkingZebra v v

Marty v v v



* En général la délégation ou le forwarding permet
de gérer des combinatoires d’aptitudes,
souvent trop lourds avec I'néritage multiple

58
r Delegation pattern

Striped Talking Colored
- nbstripes - sayings - color
+showStripes() +talk(...) +getColor()
O..1/r 0..11\ O..1/r
Animal

-specifics : etc...

+showStripes()
+talk(...)
+getColor()
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Strategy pattern

‘Watchdog I, Nam June Paik



I * Le pattern strategy est un usage particulier de

r Strategy pattern

delégation : on délegue a une classe qui hérite
d’'une interface. Ceci permet de choisir/changer
de stratégie méme en cours d'utilisation...

Client

context Interface
-strateqy

<

+algorithmi)

| T |

ImplementationOne ImplementationTwo

+algorithmi) +algorithmi)



https://sourcemaking.com/design_patterns/strategy

r Strategy pattern 0

I * Le pattern strategy est un usage particulier de
delégation : on délegue a une classe qui hérite
d’'une interface. Ceci permet de choisir/changer

I de stratégie méme en cours d'utilisation...

TransportationToAirport Strategy

City bus Personal car Taxi

Concrete strategies (options)



https://sourcemaking.com/design_patterns/strategy

r Strategy pattern

I * La encore on dispose d’'une technigue puissante
oour gérer des combinatoires sans multiplier
I es codes croisés (m+n au lieu de mxn)

4 Pointillés
n= >
m=3 o
.o'—---:o - / —_..’ - :’ -. ’.'
\\’~ l‘~ ': \\. ( : \. | ';. ’
. . :...'— ¢"l: =S /I S 7’ 1 .
Trajectoire R ,’ RO B B /\ :
“--"' ‘/J . -\-', -'.-"
‘ :----EI_ _____ : —': I__ll -“l .:..I " e,
\ il SRR IR 1




r Strategy pattern

I * La encore on dispose d’'une technigue puissante
oour gérer des combinatoires sans multiplier

I es codes croisés (m+n au lieu de mxn)
Trace
<> > Pointillé
+tracer() >——> Irajectoire
. +nextBlackOrWhite()
+nextPosition() N\
AN

T
G RART |

Classes concreétes Classes concreétes
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Composite pattern

e}
Orphism, Sonia & Robert Delaunay




r Composite pattern 0

I * Le pattern composite permet de gerer des objets
composites arborescents ou des composants
sont élémentaires (feuilles) et d’autres sont
I des groupes de composants (composites)

Diagramme d’objets Diagramme de classes

«[nterface:

Component elements

Composite : N
+doThis()

- - Composite
Leaf Composite Leaf Composite Leat

T A
+doThis() IEEHTE::{TENH



https://sourcemaking.com/design_patterns/composite

Composite pattern

* Logiques de conteneurs imbriqués
exemple : systemes de fichiers

M
()

—=| paint

C T T
AIJIJDIJIJJ

Makefile

Integer.c

button.c

Makefile

fanvas.c

brush.c

/ |(root directory)
boot| |(usr| [etc] [home) ‘dev ‘proc]
bin) (lib) (share) linclude sue (

.bashrc  [.mozilla) [Desktop) (Pictures) (Music) .bashrc (Desktop) (Docs]
family)  [hawaii] (downtown) pets

ﬂ YJ\M
mom.jpg timmyjpg ... img01.jpg img02.jpg img03.jpg ... fido.jpg fluffy.jpg



Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc

title abstract chapter chapter chapter
ID §"intro” |D="details" |D="summary"
[ |
title section section

I [ ] ]

title p p P P
ID="p13"—!
a

doc |title

abstract

chapter

section

section

chapter

chapter




Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc

|
fitle abstract @ chapter chapter
3 mitro" |D="details" |D="summary"
[ |
title section section
I [ ] ]
title p p P P
ID="p13"—!
a

doc

title

abstract

section

chapter

chapter




Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc
[ | [ |
title abstract chapter chapter chapter
ID §"intro” |D="details" |D="summary"
[ |
title section section

I [ ] ]

title p p P P
ID="p13"—!
a

doc

title

abstract

chapter

section

chapter

chapter




Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc
[ I | |
title abstract chapter chapter chapter
ID §"intro” |D="details" |D="summary"
[ |
title section section
I [ —— ]
title p p p
|D="p13"
a

doc |title
abstract
chapter [iitle
section [title

o

B ]

section

chapter

chapter




Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc

title abstract chapter chapter chapter
ID §"intro” |D="details" |D="summary"
[ |
title section section

title p p

doc |title

abstract

chapter

section

section

chapter

chapter




r Composite pattern

I * Le pattern composite sera certainement tres
utile au projet : c’est la facon idéal d’'organiser
des groupes d’élements graphiques et de gerer
I a egalité les groupes et les primitives

* Ce pattern fera I'objet d’un exo TD/TP 9
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