Robin FERCOQ

|-|!| ECE PARIS Ny 2B16:5015

ECOLE D'INGENIEURS

Conception et Programmation

Orientée Objet
C++

r POO - C++

I Sommaire general du semestre
COURS Semaine suivante > TPs

I 1. Intro, concepts, 1 exemple 1. Organisation objet des données
2. Modélisation objet / UML 2. Diagrammes de classe UML
3. C++ pratique 1 3. C++ pratique, E/S, string, vector
4. C++ pratique 2 4. C++ pratique, type &, surcharge
5. Classes & C++ : bases 5. Date : une classe simple en C++
6. Classes & C++ ! compléments 6. UML et C++, associations
/. Conteneurs & C++ :la STL /. Gestion de collections complexes
8. Heritage / polymorphisme 8. Collections polymorphes
9. Abstraction / design patterns 9. Modele composite et graphismes
10.Exceptions, flots, fichiers ... 10.Persistance / fichiers / except.
11.Templates cote developpeur 11.Développement de templates

12.Gestion méemoire / smarts ptrs 12.Soutenance de projet ...

r Abstraction / design patterns

Retopistics: A Renegade Excavation, Julie Mehretu

COURS 9

A) Classes abstraites / interfaces

B) Couplage / inversion du controle
C) Heritage multiple

D) Design patterns

E) Delegation pattern

F) Strategy pattern

G) Composite pattern

COURS 9

A) Classes abstraites / interfaces

B) Couplage / inversion du controle
C) Heritage multiple

D) Design patterns

E) Delegation pattern

F) Strategy pattern

G) Composite pattern

F Classes abstraites / interfaces

¥

N
N

Composition suprématiste, Kasimir Malevitch

Classes abstraites / interfaces 0

I * Le polymorphisme (Rappel du dernier cours)
> Heritage : classe de Base, classe Dérivée

I > Dérivée redefinit méthode(s) classe Base
> Objets manipules par pointeurs/référence Base
> Méthodes classe Base déclarées virtual

Base Conteneur de agir a la maniere

pointeurs surBy' Base d’'un objet Base
. mix : o .
+agir() Derivee | 29ira la maniere

AN .// d’'un objet Derivee

@

agir a la maniére

. —p
Derivee Base | i objet Base
— : agir a la maniere
+agir() «override» Base® Derivee | g, objet Derivee

o |
r Classes abstraites / interfaces

class Base base.h
{
public :
virtual ~Base() = default;
virtual void agir();
}s
void Base::agir() base.cpp
std::cout << "J'agis d'une certaine maniere\n";
}
N\
class Derivee : public Base derivee.h
public :
virtual void agir();
}s5
void Derivee::agir() derivee.cpp
{

std::cout << "J'agis d'une autre maniere\n";

}

F Classes abstraites / interfaces

glass Base base.h
pUbl\ilgr-’:cual -Base() - default: Obligatoire : destructeur virtuel
virtual void agir(); D . o
}; Méthode a redéfinir : virtuelle
void Base::agir() base.cpp
std::cout << "J'agis d'une certaine maniere\n";
}
AN
class Derivee : public Base derivee.h
public :
virtual void agir(); w———m
}; Méthode redéfinie !
void Derivee::agir() derivee.cpp

{
}

std::cout << "J'agis d'une autre maniere\n";

Classes abstraites / interfaces

I * Le polymorphisme permet de traiter "a egalité"
tous les objets d’'une hiérarchie d’héritage
avec une classe de base en commun, tout en
I conservant les specificite de chacun...

int main() main.cpp

std::list<Base*> mix;

mix.push_back(new Base);
mix.push_back(new Derivee);

mix.push_back(new Base);
mix.push_back(new Derivee); — r—
certalne maniere

for (auto ptobj : mix) action ‘agls d’ autre manilere
ptobj->agir(); _J polymorphe 'agis d° certaine maniere

autre maniere

for (auto ptobj : mix)] jci destruction
delete ptobj; _ polymorphe

return 0: (appel au bon destructeur)

Classes abstraites / interfaces a

I * Souvent le polymorphisme des classes dérivees
est l'objectif principal de l'utilisation de I'héritage

I * Dans ce cas implémenter certaines/toutes les
meéthodes de la classe de base peut ne pas
avolir de sens : on ne les implémentera pas !

o e Forme
o8 sonstructeurs #p03|t!on : Ciﬁ7 Italique : méthodes non implémentées
+d933/ner() P (non définies) dans la classe de base
+aire() : Real En C++ on dit «. méthode virtuelle pure »
AN
Trianglelsocele Rectangle Cercle
- base : Real - largeur : Real - rayon : Real
- hauteur : Real - hauteur : Real
+dessiner() +dessiner() +dessiner()
+aire() : Real +aire() : Real +aire() : Real

Classes abstraites / interfaces a

» Certalnes methodes de la classe de base ne
sont pas définies : celle-ci est non instanciable

* On dit que la classe est abstraite : aucun objet
de type « Forme » n’est possible

Trianglelsocele

- base : Real
- hauteur : Real

- hauteur : Real

Forme
#position : Coords Italique : classe abstraite
+dessiner() il suffit qu’une seule méthode
+aire() : Real soit virtuelle pure pour que la
/\ classe soit abstraite
Rectangle Cercle
- largeur : Real - rayon : Real

+dessiner()
+aire() : Real

+dessiner()
+aire() : Real

+dessiner()
+aire() : Real

Classes abstraites / interfaces a

* Toutes les methodes virtuelles pures de la
classe de base abstraite doivent étre définies
par une classe dérivée pour l'instancier...

* On dit que la classe derivée est concrete :
on peut avoir des objets Rectangle, Cercle...

Forme

#position : Coords

+dessiner()
+aire() : Real

AN

Pas italique : toutes les méthodes
sont définies, la classe est concrete

/

Trianglelsocele

Rectangle

Cercle” /

- base : Real
- hauteur : Real

- largeur : Real
- hauteur : Real

- rayon : Real/

+dessiner()

+aire() : Real

+dessiner()
+aire() : Real

+dessiner() y
+aire() : Real

Classes abstraites / interfaces a

* De nombreuses utilisations, la plus evidente :
grouper des objets « similaires en principe »
mais différents en pratique (traitements
specifiques pour des opérations communes)

" e
. ~

Trianglelsocele

- base : Real
- hauteur : Real

Forme
#position : Coords ;
+dessiner() Q !
+aire() : Real A /

Rectangle Cercle [
- largeur : Real . Real
- rayon : Rea Objets instances des

- hauteur : Real

+dessiner()

+aire() : Real

+dessiner()
+aire() : Real

+dessiner()
+aire() : Real

classes concréetes

Classes abstraites / interfaces a

* [es methodes virtuelles pures s’indiquent avec
=0 en fin de déclaration de la méthode.

* Le classe Forme est non instanciable mais elle
peut fournir un constructeur (pour les dérivéees)

class Forme forme.h
{
public :
Forme(Coords position);
virtual ~Forme() = default;
virtual void dessiner(Svgfile& svgout) = 0;
virtual double aire() = 0;

protected :
Coords m_position;

¥

Forme: :Forme(Coords position) forme.cpp

: m_position{position}

{1}

Classes abstraites / interfaces a

* [es methodes virtuelles pures s’indiquent avec
=0 en fin de déclaration de la méthode.

* Le classe Forme est non instanciable mais elle
peut fournir un constructeur (pour les dérivéees)

class Forme Un construteur Polymorphisme forme.h
{ public / n’est jamais virtuel / => destructeur virtuel (si possible default)
Forme(Coords position);
virtual ~Forme() = default;
virtual void dessiner(Svgfile& svgout) = 0;
virtual double aire() = @;‘,K\\\\\
protected : o Ces 2 méthodes sont virtuelles pures.
_ Coords m_position; Au moins une méthode est virtuelle pure
¥ donc la classe est automatiquement abstraite
forme.cpp

Forme: :Forme(Coords position)
: m_position{position}

{1}

Classes abstraites / interfaces

I * Une classe concrete hérite de la classe abstraite

e Elle définit toutes les méthodes virtuelles de la
classe de abstraite de base

» Elle peut ajouter des attributs, un constructeur...

class Rectangle : public Forme rectangle.h
{
public :
Rectangle(Coords position, double largeur, double hauteur);
virtual void dessiner(Svgfile& svgout);
virtual double aire();

private :
double m_largeur;
double m_hauteur;

¥

Rectangle: :Rectangle(Coords position, double largeur, double hauteur)
: Forme{position}, m largeur{largeur}, m_hauteur{hauteur}

1

rectangle.cpp

Classes abstraites / interfaces

I * Une classe concrete hérite de la classe abstraite

e Elle définit toutes les méthodes virtuelles de la
classe de abstraite de base

* Elle peut ajouter des attributs, un constructeur...

class Rectangle : public Forme rectangle.h
{
public :
Rectangle(Coords position, double largeur, double hauteur);
virtual void dessiner(Svgfile& svgout);

virtual double aire(); =
. ; Si possible pas de destructeur
. Facultatif (ces méthodes sont) . .
private : de toute fagon virtuelles) (destructeur implicite ok)

double m_largeur;
double m_hauteur;

¥

Rectangle: :Rectangle(Coords position, double largeur, double hauteur)
: Forme{position}, m largeur{largeur}, m_hauteur{hauteur}

{1} L Appel au constructeur de la classe de base
(classe de base non instanciable directement) rectangle.cpp

Classes abstraites / interfaces

* Une classe concrete hérite de la classe abstraite

e Elle définit toutes les méthodes virtuelles de la
classe de abstraite de base

* Elle peut ajouter des attributs, un constructeur...
* Tout ceci est specifique a cette classe concrete

void Rectangle::dessiner(Svgfile& svgout) rectangle.cpp
{
svgout.addRect(m position.getX()-m_largeur/2,
m_position.getY()-m_hauteur/2,
m_position.getX()+m_largeur/2,
m_position.getY()+m_hauteur/2);
}

double Rectangle::aire()

{

return m_largeur * m_hauteur;

¥

r Classes abstraites / interfaces

 Utiliser les classe concretes sans les connaitre !

double aireTotale(std::vector<Forme*> formes))
{
double total = ©;
for (auto ptforme : formes) Code polymorphe
total += ptforme->aire();
return total;
} /

int main()

std: :vector<Forme*> groupe; :J

groupe.push back(new Rectangle{{100,100}, 150, 50});
groupe.push_back(new Circle{{200,200}, 50});
groupe.push_back(new TriangleIsocele{{300,300}, 100, 100});

for (auto ptforme : groupe))
ptforme->dessiner(svgout);

std::cout << aireTotale(groupe) << std::endl;

for (auto ptforme : groupe)
delete ptforme;

main.cpp

Classes abstraites / interfaces a

* |l y a souvent intérét a abstraire completement
la classe de base : elle ne propose plus aucune
meéthode concrete ni aucun attribut !

* On dit que la classe est abstraite pure ou
gue la classe de base définit une interface

« interface »
Robot
<+—— Aucun attribut

+avancer(distance)

+tourner(angle) <+—— Que des méthodes virtuelles pures
RobotARoues Hexapode Humanoide
- nbToursRoues - angleHanche[6] - posJambe[2]
- angleDirectrice - angleGenou[6] - posCentreGrav

+avancer(distance)
+tourner(angle)

+avancer(distance)
+tourner(angle)

+avancer(distance)
+tourner(angle)

r Classes abstraites / interfaces

class Robot Classe interface robot.h
{ Pasbilq constructeur. Pas d’attribut. Que des méthodes virtuelles pures (sauf le destructeur)
public :

virtual ~Robot() = default;
virtual void avancer(double distance) = ©;
virtual void tourner(double angle) = ©;

}s5
class RobotARoues : public Robot Classe concréte robot a roues.h
{ implémente l’interface -
public :
RobotARoues () ;
virtual void avancer(double distance);
virtual void tourner(double angle);
private :
int m_nbToursRoues;
double m_angleDirectrice;
}s

RobotARoues: :RobotARoues() : m_nbToursRoues{0}, m angleDirectrice{0} { }

void RobotARoues::avancer(double distance) {

m nbToursRoues += distance/3.14;

- robot_a_roues.cpp
void RobotARoues: :tourner(double angle) {

m_angleDirectrice = angle;
}

23

R

COURS 9

A) Classes abstraites / interfaces

B) Couplage / inversion du controle
C) Heritage multiple

D) Design patterns

E) Delegation pattern

F) Strategy pattern

G) Composite pattern

I Couplage / inversion du controle

il | i :

|' 1 A] &

i

Blue Beams, Judith Godwin

I Couplage / inversion du controle a

o L'uti
vap

 Elle

Isation de classes abstraites ou interfaces
us loin que les conteneurs polymorphes...

nermet de diminuer le couplage entre
composants appelants et composants a

opelés

Fort couplage

100000 lignes utiliser/organiser
des formes/groupes de formes

Autre code qui

gere des formes
...Rect
...Cercle :::

...Triangle

Autre code qui
gere des formes

...Rect -
...Cercle

...Triangle ~

NN

« envrac »

methodesRect()

switch(codeForme)
case RECT:
dessinerRect();
case CERCLE:

case TRIANGLE:

dessinerCercle();’/

dessinerTriangle();

Classes

methodesCercle() A
/ methodesTriangle()

Faible couplage

100000 lignes utiliser/organiser

« interface »
Forme

des formes/groupes de formes

+methodes() ...

7aN

Autre code qui
gere des formes
|

forme... — |

Autre code qui

methodes()
gere des formes

forme... /

Forme& forme /

forme.dessiner();

\
O

methodes() ,,

methodes()

I Couplage / inversion du controle a

* Un couplage fort oblige a reprendre le code
utilisateur quand les classes sont étendues

> Avec une Interface, ajouter une nouvelle classe
necessite juste de définir ses méthodes !

Fort couplage Faible couplage | « interface »
100000 lignes utiliser/organiser 100000 lignes utiliser/organiser Forme
g 9 g g
des formes/groupes de formes Classes des formes/groupes de formes +methodes()

Aut de qui i
e s oo «envracy] e fotmes / ZaN

oo C

c..Cercle O\ !

iimete forme... =]

...Penta \

. AN

Autre code qui | methodesRect() Aut de qui methodes()
gereRceigs: formes | ggr‘gedgg Formes

...Cercle forme /

...Triangle ~ T

.- -Penta ~J methodesCercle() methodes()
switch(codeFor‘meB< A A

case RECT:

dessinerRect();
case CERCLE: Forme& forme

dessinerCercle();/ methodesTriangle() forme.dessiner(); methodes()
case TRIANGLE:

dessinerTriangle();
case PENTA:

dessinerPenta(); —» methodesPenta() methodes()

Couplage / inversion du controle 0

I * L’interface constitue en quelgue sorte un
« guichet unique » pour toutes les démarches
I concernant une categorie de classes !

> L’'Interface doit étre stable, c’est une articulation

« interface »
Forme
+methodes() ...

Autre code qui 4455

gere des formes

forme... — | ! ‘
Autre code q methodeS()

gere des formes

forme.. /

methodes() ,,
Forme& forme /
forme.dessiner(); methodes() O

methodes()

Couplage / inversion du controle a

* Principe de conception : dependency inversion

> [es modules de haut niveau ne doivent pas
I dependre des modules de bas niveau.
Tous doivent dépendre des abstractions.

Depend upon abstractions. Do not depend upon concrete classes.

Fort couplage Faible couplage
Classes de niveau application
\ Types Document, Jeu, Systeme... \ p: ;
m «interfacey
GRS
, Composants intermédiaires | /.
Types entités, composites... '/ / '/ \¥

-
«interface» |«|nterface»| |«|nterface» |

Composants de bas niveau, D@
] Types utilitaires, types valeurs...

https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://stackoverflow.com/questions/22832639/difference-between-depend-on-abstractions-not-concrete-classes-and-program-to

Couplage / inversion du controle a

* Plutot que coder I'application « de bas en haut »
on code l'application de I'abstrait vers le concret

> Par exemple un Maillage pourrait étre indifferent
au fait de manipuler des Sommets en 2D ou 3D

Développement

Résultat

|

/]

O ¥
O
]

v O

Développement

«interface»

» | |«interface»

Résultat

-
|«interface»| «interface» |«interface»|

Couplage / inversion du controle

* Ce qui donne la forme moderne de bibliotheque

> Le framework par opposition a la library est
I une base de code qui propose avant tout des
abstractions et qui controle le code utilisateur

Code utilisateur Modern framework Code utilisateur

Couplage / inversion du controle

I * Inversion de controle (inversion of control) :
« le flot d'exécution d'un logiciel n'est plus sous
le contrOle direct de l'application elle-méme mais
I du framework »

Classic library Code utilisateur Modern framework Code utilisateur

Boucle Boucle

L Composant de bibliotheque .) |j
appelé par le code utilisateur Composant utilisateur appele
par le code de framework

https://en.wikipedia.org/wiki/Inversion_of_control

Couplage / inversion du controle

I * Inversion de controle (inversion of control)

* Différentes techniques « objets » pour réaliser
I I'inversion de controle. Hériter d’une interface
du framework est une des facons...

class Fonction

{ .
public :

}s

{

return somme;

}

virtual double evaluer(double x)=0;

double integrer(Fonction& f,

double a, double b,
double pas)

double somme = 0;
for (double x = a+pas/2; x<b; x+=pas)
somme += f.evaluer(x) * pas;

class Fracrat : public Fonction

{ .
public :

double evaluer(double x);
}s

double Fracrat::evaluer(double x)

return 1/(1+x*x);

¥

int main() A
{ 3.1415
Fracrat fr;
std: :cout<<4.0*integrer(fr,
@) 1)
0.001) << std::endl;

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

Couplage / inversion du controle

I * Inversion de controle (inversion of control)

* Différentes techniques « objets » pour réaliser
I I'inversion de controle. Hériter d’une interface
du framework est une des facons...

class Fonction class Fracrat : public Fonction
{ {Classe concreéte hérite interface
public : public :
virtual double evaluer(double x)=90; double evaluer(double x);
}s Polymorphisme... }s Implémentation !
double Fracrat:revaluer(double x)
double integrer(Honction& f, {

ouble a, double b, return 1/(1+x*x);
ouble pas) }

{
double somme = \9; int main() -
for (double 2; x<b; x+=pas)||{ 3.1415
somme +& f.evaluer(x) * pas; Fracrat fr;
\ return somme; Appel par I'interface std::cout<<g.@iintegr‘er‘(1‘:r‘,
0.001) << std::endl;

https://en.wikipedia.org/wiki/Inversion_of_control
https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

I Couplage / inversion du controle

1
7w = 4(arctan 1—arctan0) = 4[arctan x|
0
1 1 0.9995 step 0.001 1
=4[—=~4 D 0.001—;
o 1+x x=0.0005 1+x
class Fonction class Fracrat : public Fonction
{ {
public : public :
virtual double evaluer(double x)=0; double evaluer(double x);
}s }s

double Fracrat::evaluer(double x)
double integrer(Fonction& f,

double a, double b, return 1/(1+x*x);
double pas) }
{
double somme = 0; int main() -
for (double x = a+pas/2; x<b; x+=pas)||{ 3.1415
somme += f.evaluer(x) * pas; Fracrat fr;
return somme; std: :cout<<4.0*integrer(fr,
} @: 1)

0.001) << std::endl;

https://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_du_rectangle_et_du_point_milieu

35

R

COURS 9

A) Classes abstraites / interfaces

B) Couplage / inversion du controle
C) Heritage multiple

D) Design patterns

E) Delegation pattern

F) Strategy pattern

G) Composite pattern

Heéritage multiple

African sonata, Vladimir Kush

r Heéritage multiple G

I * L’heritage simple implique pour une classe
dérivée d’avoir une seule classe de base

I * L’heritage multiple impligue pour une classe
derivée d’avoir plusieurs classes de base

Striped Talking
+showsStripes() +talk(msg : String)|
AN AN
TalkingZebra

+showStripes()
+talk(msg : String)|

Heritage multiple

I * L’héritage multiple est souvent utile pour hériter
des capacités de classes abstraites/interfaces,

I mais pas exclusivement (ici Colored est concréte)
* Héritage simple et multiple sont compatibles...
Striped Talking Colored
#color : string
+showsStripes() +talk(msg : String)| +tellColor()
AN AN AN AN AN
Tiger TalkingZebra <}— Flamingo
rehowStipes() ColoredTalkingZebra
+showStripes() +talk(msg : String)|

Heritage multiple

* L es classes de base de I'exemple...

class Striped

{
public :
virtual void showStripes() = 0;

striped.h

class Talking
{
public :
virtual void talk(std::string msg) = 0;

talking.h

class Colored
{
public :
Colored(std::string color);
virtual void tellColor();

protected :
std::string m_color;

colored.h

Calored::CElored(std::string color)
: m_color{color} { }

void Colored::tellColor() {
std::cout << m_color << std::endl;
}

colored.cpp

r Heéritage multiple G

* A la déclaration de la classe dérivée, les classes
de base sont indiguees dans une liste

> Cette hiérarchie fera I'objet d’'un exo TD/TP 9 ...

Liste des classes de base talking_zebra.h

r N
class TalkingZebra : public Striped, public Talking

virtual void showStripes();
virtual void talk(std::string msg);

¥

void TalkingZebra::showStripes() talking zebra.cpp
std::cout << "[|]||]]||" << std::endl; toutes les méthodes virtuelles pures

} de toutes les classes de base doivent

étre définies pour que la classe dérivée
puisse étre instanciée

std::cout << "I zay " << msg << std::endl;

void TalkingZebra::talk(std::string msg)

¥

r Heéritage multiple G

I * Problemes en cas d’héritage en diamant quand
une méme classe est « héritée plusieurs fois »

I * || faut utiliser I'heritage virtuel virtual inheritance
Ou éviter ces situations (delegation pattern...)

Animal
StrivedAnimal #name : String TalkinaAnimal
tripedAnimal a +getName() : String alkingAnimal a

un attribut name = un attribut name
hérité de Animal 1 A hérité de Animal

StripedAnimal TalkingAnimal

+showsStripes() +talk(msg : String)

TalkingZebra | TalkingZebra a 2 attributs name !
- name hérité de StripedAnimal
+showStripes() - name hérité de TalkingAnimal
+talk(msg : String)| => voir lien « virtual inheritance »

https://en.wikipedia.org/wiki/Virtual_inheritance
https://en.wikipedia.org/wiki/Virtual_inheritance

42

B

COURS 9

A) Classes abstraites / interfaces

B) Couplage / inversion du controle
C) Heritage multiple

D) Design patterns

E) Delegation pattern

F) Strategy pattern

G) Composite pattern

Design patterns

Study for "Composition VII", Wassily Kandinsky

r Design patterns

I * Un design pattern (patron de conception) est

> « Un arrangement caractéeristiqgue de modules,
I reconnu comme bonne pratique en réponse
a un probleme de conception d'un logiciel »

> « Il décrit une solution standard, utilisable dans
la conception de différents logiciels »

> « Un patron de conception est Issu de
'expérience des concepteurs de logiciels »

> « ... le patron de conception décrit les grandes
lignes d'une solution, qui peuvent ensuite étre
modifiees et adaptées selon les besoins »

https://fr.wikipedia.org/wiki/Patron_de_conception

r Design patterns

I * Une analogie en programmation procédurale :

- Pour parcourir une matrice on va utiliser
I une double boucle imbriquee

- Pour « blinder » une saisie on va utiliser
faire saisie tant que saisie pas correcte

- Pour faire un menu application en console on va
faire
saisie choix,
selon choix appeler sous-prog. associé
tant que choix difféerent de quitter

* Ces algorithmes sont des sortes de design
patterns, des « recettes qui marchent »

Design patterns

Les design patterns sont donc un peu comme
des algorithmes mais au niveau "orienté objet"

« Les patrons offrent la possibilite de capitaliser
un savoir précieux né du savoir-faire d’experts »

Rangés en 3 catégories :
créateurs : ils définissent comment faire l'instanciation

et la configuration des classes et des objets
structuraux : ils definissent comment organiser les

classes d'un programme dans une structure plus large

comportementaux : ils définissent comment organiser
les objets pour que ceux-ci collaborent et expliquent le
fonctionnement des algorithmes impliques

Design patterns

Les 23 patterns classiques

Abstract Factory Facade Proxy M ‘t Memento
emento
Adapter El Factory Method I] Observer Caretaker -state
E’ - Type: Behavioral ‘
Bridge [5] Fiyweint Singleton
EI v Wi EI What it is: x
c | Builde Interprete State Without violating encapsulation, capture |
Hoer R and externalize an object’s internal state I
; - Strat so that the object can be restored to this - I
Chain of Responsibility Iterator eqy i Originator :
Command Mediator Template Method state s
i Visitor +setMemento(in m : Memento)
EI Composite Memento +createMementa()
E’ Decorator El Prototype
. N «interfacen i -
«interfacen successor Chain of Responsibility Observer Subject roties [Rluces
Client Handler)) i +aftach(in o : Observer) il
[handleRequest) Type: Behavioral Typs: Buhaviond +detach(in o : Observer) +update()
f +notifi()
What it is: What it is:
Avoid coupling the sender of a request to Dgﬂne a one-to-many deper!den cy between
its receiver by giving more than one object objects so that when one object changes
a chance to handle the request. Chain the state, all its dependents are notified and
receiving objects and pass the request updated automatically.
ConcreteHandler1 | |ConcreteHandler2 | along the chain until an object handles it. ConcoutaSubiect|| ohsorves |HomcretsCbssryer
+handleRequest() +handleRequest() -subjectState Al -observerState
+update()
Client Invoker Command State Context .—l
Type: Behavioral Type: Behavioral trequest() winterfaces
State
Command What it is: What it is: +handle
- ——— il Encapsulate a request as an object, Allow an object to alter its behavior when 0
+execute() thereby letting you parameterize clients its internal state changes. The object will
with different requests, queue or log appear to change its class.
P requests, and support undoable operations. | |
Receiver ConcreteCommand ConcreteState1 ConcreteState2
+execute() +handle() +handle()

Les 23 patterns classiques

Design patterns

Client Interpreter Strategy Context [@——
l = —— Type: Behavioral winterfaces
; I
«interfacex NpaRESap What it Is: Strategy
Context AbstractExpression What it is: Define a family of algorithms, RseUn]
+interpret() Giv_en a language, deﬁn_e a representation encapsulate each one, and make them
for its grammar along with an interpreter interchangeable. Lets the algorithm vary
that uses the representation to interpret independently from
| sentences in the language. clients that use it. l |
ConcreteStrategyA ConcreteStrategyB
TerminalExpression NonterminalExpression +execute() +execute()
+interpret() : Context +interpret() : Context
Client T
emplate Method
lterator P AbstractClass
: i Type: Behavicral +templateMethod()
winterfaces «interfaces Type:Canmior - #subMethod()
Aggregate Iterator What it is: What it is:
+createlterator() +next() Provide a way to access the elements of Deﬁnel the skefel_orl of an algorithm in an
an aggregate object sequentially without operation, deferring some step_'s to subclasses.
exposing its underlying representation. Lets subclasses redefine certain steps
of an algorithm without changing the I
algorithm's structure. ConcreteClass
ConcreteAggregate Concretelterator +subMethod()
+createlterator() : Context +next() : Context
informs Visit «interface»
: ISior Visit
winterfaces MEdIEtOI' — - — 4 Client
Mediator i ; +visitElementAfin a : ConcreteEfementA)
Colleage : Type: Behavioral
: +visitElementB{in b : ConcreteElemen
Type: Behavioral sitEle Biin b : C leEl 1B,
i What it is: 4}‘ ;
What it is: . ainterfacen
Define an object that encapsulates how a z‘:rg;?rsrz:: 2: 31?;?;';1:1?:); - Element
i i C teVisit e \fiel
ﬂuﬂgblscl:;:t'?;ac;;:gcf:zﬂ?:f:"in object structure. Lets you define a it it +accepl(in v : Visitor)
4 ezchgo trfer exﬂ:fif:iilly 'a iy uarﬁ new operation without changing [+visitElementA(in a : ConcreteElementA)
dat isi inb: A
updates their interactions independently. the classes of the elements on [+visitElementB(in b : ConcreteElementB)

ConcreteMediator

ConcreteColleague

which it operates.

ConcreteElementA

+accept(in v : Visitor)

ConcreteElementB

+accept(in v : Visitor)

Design patterns

Les 23 patterns classiques

winterfaces Adapte[F’rc-){y Client
Adaplnr 4 Client
+operation() Type: Structural Type: Structural e
winterfacen
What it is: : : What it is- Subject
Convert the interface of a class into Provide a surrogate or placeholder for +request()
another interface clients expect. Lets another object to control access to it.
et A classes work together that couldn't 4
Adaptee otherwise because of incompatible
-adaptee P - interfaces. [|
n
+operation() pRdaptsOpariend RealSubject it s Proxy
+request() i +request()
Abstraction . Client
: | Bridge Abstract Factory i
+operation
elnterteioes TP el Type: Creational Ab‘i;'i:ctl'f;:g;w
Implementor — s 0 ainterfacen
+operationimpl() sl O What it is: ermalePrc] AbstractProduct
Decouple an abstraction from its Provides an interface for creating A
!mplementatlon 50 that the two can vary families of related or dependent
Tyiepancently. objects without specifying their
| | concrete class.
ConcretelmplementorA C telmplementorB i it
oncretelmplementor!
: createProductAl) Gonorstafroduct
+operationimpl() +aperationimpl() +createProductB()
«interface» .
Component Composite Builder Director e
+operalion() children - i)
+add(in ¢ : Component) Type: Structural Type: Creational +construct() +buildPart()
+remove(in ¢ - Component) s
2 e What it is: What it is:
getChild(in i : int) . . :
Compose objects into tree structures to Separate the construction of a
represent part-whole hierarchies. Lets complex object from its representing
| clients treat individual abjects and so that the same construction
compositions of objects uniformly, process can create different ConcreteBuilder
Component representations.
- +buildPart()
Leaf +operation() +getResult()
+operation() +add(in ¢ ; Component)
+remove(in ¢ : Component)
+getChild(in i : int)

Design patterns

Les 23 patterns classiques

+operation(in extrinsicState)

+operation(in extrinsicState)

f

winterface»
Component Sl Decorator Factory Method cinterface» Creato
+operation, +operation() Product
i 0 Type: Structural Type: Creational :?ﬂ?ﬁ”ﬂ:m”
Decorator What it is: What it is:
- Altach additional responsibilities to an Define an interface for creating an
L 4pi*+operation() object dynamically. Provide a flexible object, but let subclasses decide which
alternative to sub-classing for extending class to instantiate. Lets a class defer
ConcreateDecorator functionality. instantiation to subclasses. - =
oncreteCreator
-addedState ConcreteProduct 4 —— — —— TactoryMethod()
+operation()
+addedBehavion()
Facade Facade Prototype Client
Complex system 1 lrfa
Type: Structural Type: Creational sinterface»
ype: Structura ype: Creationa Brotatyps
What it is: What it is: +clone()
Provide a unified interface to a set of Specify the kinds of objects to create
interfaces in a subsystem. Defines a high- using a prototypical instance, and
level interface that makes the subsystem create new objects by copying this
easier to use. prototype. [|
ConcretePrototype ConcretePrototype2
+clone() +clone()
FlyweightFactory .
+gelFlyweight(in key) Flyweight Singleton
winterfaces ; Singleton
Flyweight Type: Structural Type: Creational
- e -static uniguelnstance
= +operation(in extrinsicStats) What it is: What it is: singletonData
Use sharing to support large numbers of Ensqre aclass onlg has one instan_:}a and +slatic instance()
fine grained objects efficiently. provide a global point of access toit. +SingletonOperation()
| |
ConcreteFlyweight UnsharedConcreteFlyweight
L-intrinsicState -allState

COURS 9

A) Classes abstraites / interfaces

B) Couplage / inversion du controle
C) Heritage multiple

D) Design patterns

E) Delegation pattern

F) Strategy pattern

G) Composite pattern

Delegation pattern

Roue de bicyclette, Marcel Duchamp

I
I

Delegation pattern

* Le pattern délégation correspond a l'usage de

la composition comme alternative a I’heritage

* Exemple, on a deja une classe Rectangle, on
aimerait réutiliser ses méthodes pour une

classe Fenetre. Mais I'héritage pose probleme...

Heritage Problemes :

conceptuellement
une Fenetre n’est pas
un Rectangle

Rectangle type valeur
Fenetre type entité

2 raisons de ne pas
vouloir faire un héritage

Rectangle

Rectangle

+largeur : Integer
+hauteur : Integer

+largeur : Integer
+hauteur : Integer

+aire() : Integer

+aire() : Integer

1 Qcad re

Fenetre

Fenetre

-contenu : etc...

-contenu : etc...

+méthodes etc...

+aire() : Integer
+méthodes eftc...

Composition OK :

Fenetre va recevoir
sa « Rectanglitude »
d’un objet composant
de type Rectangle

La méethode aire de
Fenetre déleguera

le travail a la méthode
aire de Rectangle

https://en.wikipedia.org/wiki/Delegation_pattern

* |a composition comme alternative a I’héritage

Delegation pattern

struct Rectangle

int m_largeur, m_hauteur;
int aire();

¥
Rectangle: :aire()
{
return m_largeur * m_hauteur;
}

Fenetre: :Fenetre(Rectangle cadre)
: m_cadre{cadre}

{1}

Fenetre::aire()

{

return m_cadre.aire();

class Fenetre

{ .
public :

Fenetre(Rectangle cadre);
int aire();

private :
Rectangle m_cadre;

}s

int main()
Fenetre maFenetre{ {10, 5} };

std::cout << maFenetre.aire()
<< std::endl;
56)

return 0;

r Delegation pattern

I » Attention aux raccourcis ! On ne dit pas gue la
composition peut toujours remplacer I’'héritage !

I * Les defauts de I'héritage sont un couplage fort
entre classe et des contraintes sémantiques

* La delegation nécessite du code de "plomberie”
(forwarder les appels de méthodes au délégué)

* On a déja vu un exemple de délegation en TP

avec la relation Sommet / Coords :
On ne peut pas dire "1 Sommet est 1 Coords"
On peut dire "1 Sommet a 1 Coords"

* Vous avez strement remarqué qu’il fallait forwarder
(deleguer) pas mal de methodes de Sommet a Coords

* La « délegation » au sens large indiquée
precédemment correspond au forwarding

* En toute rigueur le pattern Délégation implique
un passage en parametre au composant appelé
du contexte this de I'appelant : le composant
fait comme si Il était une classe de base.

r Delegation pattern

» Ce pattern precis fera l'objet d’un exo TD/TP 9

https://en.wikipedia.org/wiki/Forwarding_(object-oriented_programming)

r Delegation pattern

I * En général la délégation ou le forwarding permet
de gérer des combinatoires d’aptitudes,

souvent trop lourds avec I'néritage multiple

I Striped Talking Colored

Dog

Flamingo v

Pigeon v

Parrot v v

Tiger v

Dinosaur v v

TalkingZebra v v

Marty v v v

* En général la délégation ou le forwarding permet
de gérer des combinatoires d’aptitudes,
souvent trop lourds avec I'néritage multiple

58
r Delegation pattern

Striped Talking Colored
- nbstripes - sayings - color
+showStripes() +talk(...) +getColor()
O..1/r 0..11\ O..1/r
Animal

-specifics : etc...

+showStripes()
+talk(...)
+getColor()

59

e

COURS 9

A) Classes abstraites / interfaces

B) Couplage / inversion du controle
C) Heritage multiple

D) Design patterns

E) Delegation pattern

F) Strategy pattern

G) Composite pattern

Strategy pattern

‘Watchdog I, Nam June Paik

I * Le pattern strategy est un usage particulier de

r Strategy pattern

delégation : on délegue a une classe qui hérite
d’'une interface. Ceci permet de choisir/changer
de stratégie méme en cours d'utilisation...

Client

context Interface
-strateqy

<

+algorithmi)

| T |

ImplementationOne ImplementationTwo

+algorithmi) +algorithmi)

https://sourcemaking.com/design_patterns/strategy

r Strategy pattern 0

I * Le pattern strategy est un usage particulier de
delégation : on délegue a une classe qui hérite
d’'une interface. Ceci permet de choisir/changer

I de stratégie méme en cours d'utilisation...

TransportationToAirport Strategy

City bus Personal car Taxi

Concrete strategies (options)

https://sourcemaking.com/design_patterns/strategy

r Strategy pattern

I * La encore on dispose d’'une technigue puissante
oour gérer des combinatoires sans multiplier
I es codes croisés (m+n au lieu de mxn)

4 Pointillés
n= >
m=3 o
.o'—---:o - / —_..’ - :’ -. ’.'
\\’~ l‘~ ': \\. (: \. | ';. ’
. . :...'— ¢"l: =S /I S 7’ 1 .
Trajectoire R ,’ RO B B /\ :
“--"' ‘/J . -\-', -'.-"
‘ :----EI_ _____ : —': I__ll -“l .:..I " e,
\ il SRR IR 1

r Strategy pattern

I * La encore on dispose d’'une technigue puissante
oour gérer des combinatoires sans multiplier

I es codes croisés (m+n au lieu de mxn)
Trace
<> > Pointillé
+tracer() >——> Irajectoire
. +nextBlackOrWhite()
+nextPosition() N\
AN

T
G RART |

Classes concreétes Classes concreétes

65

R

COURS 9

A) Classes abstraites / interfaces

B) Couplage / inversion du controle
C) Heritage multiple

D) Design patterns

E) Delegation pattern

F) Strategy pattern

G) Composite pattern

Composite pattern

e}
Orphism, Sonia & Robert Delaunay

r Composite pattern 0

I * Le pattern composite permet de gerer des objets
composites arborescents ou des composants
sont élémentaires (feuilles) et d’autres sont
I des groupes de composants (composites)

Diagramme d’objets Diagramme de classes

«[nterface:

Component elements

Composite : N
+doThis()

- - Composite
Leaf Composite Leaf Composite Leat

T A
+doThis() IEEHTE::{TENH

https://sourcemaking.com/design_patterns/composite

Composite pattern

* Logiques de conteneurs imbriqués
exemple : systemes de fichiers

M
()

—=| paint

C T T
AIJIJDIJIJJ

Makefile

Integer.c

button.c

Makefile

fanvas.c

brush.c

/ |(root directory)
boot| |(usr| [etc] [home) ‘dev ‘proc]
bin) (lib) (share) linclude sue (

.bashrc [.mozilla) [Desktop) (Pictures) (Music) .bashrc (Desktop) (Docs]
family) [hawaii] (downtown) pets

ﬂ YJ\M
mom.jpg timmyjpg ... img01.jpg img02.jpg img03.jpg ... fido.jpg fluffy.jpg

Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc

title abstract chapter chapter chapter
ID §"intro” |D="details" |D="summary"
[|
title section section

I []]

title p p P P
ID="p13"—!
a

doc |title

abstract

chapter

section

section

chapter

chapter

Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc

|
fitle abstract @ chapter chapter
3 mitro" |D="details" |D="summary"
[|
title section section
I []]
title p p P P
ID="p13"—!
a

doc

title

abstract

section

chapter

chapter

Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc
[| [|
title abstract chapter chapter chapter
ID §"intro” |D="details" |D="summary"
[|
title section section

I []]

title p p P P
ID="p13"—!
a

doc

title

abstract

chapter

section

chapter

chapter

Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc
[I | |
title abstract chapter chapter chapter
ID §"intro” |D="details" |D="summary"
[|
title section section
I [——]
title p p p
|D="p13"
a

doc |title
abstract
chapter [iitle
section [title

o

B]

section

chapter

chapter

Composite pattern

* Logiques de conteneurs imbriqués

exemple : documents structures

doc

title abstract chapter chapter chapter
ID §"intro” |D="details" |D="summary"
[|
title section section

title p p

doc |title

abstract

chapter

section

section

chapter

chapter

r Composite pattern

I * Le pattern composite sera certainement tres
utile au projet : c’est la facon idéal d’'organiser
des groupes d’élements graphiques et de gerer
I a egalité les groupes et les primitives

* Ce pattern fera I'objet d’un exo TD/TP 9

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74

