Robin FERCOQ
ECE raArIs INGES 2016-2017

Z

I ECOLE D'INGENIEURS SS

Rappels sur les sous-programmes
et les passages de parametres

Entrées/sorties des sous-progs.

Entrees/sorties des sous-programmes

I Entrées/sorties des sous-progs.

I * Un sous-programme appelé peut utiliser des donnéees
qui sont fournies par I'appelant : ses entrées

* Un sous-programme appelé peut renvoyer des
données a I'appelant : ses sorties

int triple(int x) // Appelé
{

return 3*x;

}

int main() // Appelant (pas forcément le main)
{

int b, a=4;

b = triple(a); // b prend la valeur 12

Entrées/sorties des sous-progs.

 Dans le cas d'une fonction : la valeur retournée est
toujours une sortie

int triple(int x)
{

return 3*x;

}

int main|()

{
int b, a=4;

b =(Ctriple(a); // b prend la valeur 12

12

I Entrées/sorties des sous-progs.

I Dans le cas d'une fonction, la valeur retournée est
toujours une sortie, utilisée ou pas...

I int triple(int x)
{

return 3*x;

}

int main|()

{

int b, a=4;
? triple (a)); // 12 retourné : ignoré
// On a le droit de ne pas
12 // utiliser une sortie

// mais 11 faut le savoir

a vaut toujours 4 N

Entrées/sorties des sous-progs.

 Dans le cas d'une fonction, la valeur retournée est
toujours une sortie, appel utilisable dans tout contexte

compatible avec le type de retour
int triple(int x)
{

return 3*x;

}

int main|()

{
int b, a=4;

printf("%::?", triple(a)); // affiche 12

12

Entrées/sorties des sous-progs.

 Dans le cas d'une fonction, la valeur retournée est
toujours une sortie, 1) fonction évaluee 2) utilisation

int triple(int x)
{

return 3*x;

}

int main|()

{

valeur de a avant l'appel et I'affectation : 4

int a=4;

// a prend la valeur 12

équivaut a a=3%*a; ou encore a*=3; E—

Entrées/sorties des sous-progs.

* Les données en entrées peuvent venir de toute
expression compatible avec le type attendu

int triple(int x)
{

return 3*x;

}

int main|()
int b, ¢, a=4;

b = triple(4); // b prend la valeur 12
printf ("%d\n", triple(4)); // affiche 12
a = triple(2*a-1); // a prend la valeur 21

CcC = triple(<iiﬁﬁtriple(2)ﬁj:>); // c vaudra 18 S

8

I Entrées/sorties des sous-progs.

I * Cas d'un sous-programme avec parametre passe par
adresse, utilisé en tant que sortie

I void triple(int x, int *py)

{
*PYy = 3*x;

}

int main|()

{
int b, a=4;

triple(a, &b);

I Entrées/sorties des sous-progs.

I * Avant ['appel

I void triple(int x, int *py)

{
*py = 3*x;
}

int main|()

{
int b, a=4;

triple(a, &b);

@150

10

I Entrées/sorties des sous-progs.

I Au moment de l'appel

I void triple(int x, int *py)
{ X

*py = 3*x; 4

}

int main|()

{
int b, a=4;

triple(a, &b);

Entrées/sorties des sous-progs.

 Au moment de ['affectation dans le sous-programme
*ny est un "alias"” vers la variable de I'appelant

void triple(int x, int *py)

{ x

*PYy = 3*x; 4

PY

}

int main|()

{
int b, a=4;

triple(a, &b);

@150

b Y *PY

12

@150

12

I Entrées/sorties des sous-progs.
I « Apres |'appel

I void triple(int x, int *py)
{
*PY = 3%x;
}

int main|()

{
int b, a=4;

triple(a, &b);

// b vaut 12 ..

@150

I Entrées/sorties des sous-progs.

I * Dans cette situation :
- le 1°" parametre est une copie de a, (a hon modifie)

- la valeur initiale de b, pointée par le 2°™ paramétre
est toujours ignoree

void triple(int x, int *py)

{

*PYy = 3*x;

}

int main ()

{

int b, a=4;

triple(a,

&b) ;

14

I Entrées/sorties des sous-progs.

I o Définitions

la valeur d'une donnée de l'appelant est une entrée

I - Un parametre utilisé par l'appelé pour accéder a (lire)

- Un parametre utilisé pour modifier (écrire) la valeur

d'une ressource de l'appelant correspond a une sortie

- Un parametre désignant une donnée de l'appelant

dont la valeur recue est ignorée et qui ne sera
Jjamais modifiee par I'appele est inutile

- Un parametre qui donne acces a la valeur initiale

d'une ressource de I'appelant et qui la modifie
est a la fois une

15

Entrées/sorties des sous-progs.

- Un parametre désignant une donnée de l'appelant
dont la valeur recue est ignorée et qui ne sera
Jamais modifiee par I'appelé est inutile

Exemple : passage par valeur d'une variable
devant étre modifiee (code non correct)

16

Entrées/sorties des sous-progs.

e passage par valeur d'une variable
devant étre modifiee (code non correct)

void saisie note(int note)

{
do

{
scanf ("%d", ¬e) ;
} while (note<0 || note>20);

}

int main ()

{
—» int maths=0; maths

saisie note (maths) ; 0

17

Entrées/sorties des sous-progs.

devant étre modifiee (code non correct)

-—b»VOld saisie note(int note)

I * passage par valeur d'une variable

note
do 0
{
scanf ("%d", ¬e) ;
} while (note<0 || note>20);
}
int main ()
{
int maths=0; maths

saisie note (maths) ;

18

Entrées/sorties des sous-progs.

e passage par valeur d'une variable
devant étre modifiee (code non correct)

void saisie note(int note)
{ note
do 14

{
—» scanf ("%d", ¬e);

} while (note<0 || note>20);
}

int main ()

{

int maths=0; maths

saisie note (maths) ;

Entrées/sorties des sous-progs.

e passage par valeur d'une variable
devant étre modifiee (code non correct)

void saisie note(int note)

{

do
{

scanf ("%d", ¬e) ;
} while (note<O0 || note>20);

}

int main ()

{ la donnée de I'appelant
Dt ths=0 n'est pas modifiée !
int maths=0;

’ th
saisie note (maths) ; mao =

20

Entrées/sorties des sous-progs.

- Un parametre désignant une donnée de l'appelant
dont la valeur recue est ignorée et qui ne sera
Jamais modifiee par I'appelé est inutile

Exemple : passage par valeur d'une variable
devant étre modifiee en retour
mais valeur de départ ignoree
(code tres maladroit)

21

Entrées/sorties des sous-progs.

» passage par valeur d'une variable devant étre modifiee
en retour mais valeur de départ ignoree (tres maladroit)

int saisie note(int note)

{
do

{

scanf ("%d", ¬e) ;
} while (note<0 || note>20);
return note;

}

int main ()
{
—p-int maths=0;

maths = saisie note(maths); o

maths

Entrées/sorties des sous-progs.

en retour mais valeur de départ ignorée (tres maladroit)

I » passage par valeur d'une variable devant étre modifiée
I _;>1nt saisie note(int note)

note
do 0

{

scanf ("%d", ¬e) ;
} while (note<0 || note>20);
return note;

}

int main ()

{

maths

int maths=0;

maths = saisie note(maths); on

I Entrées/sorties des sous-progs.

I » passage par valeur d'une variable devant étre modifiée
en retour mais valeur de départ ignoree (tres maladroit)

I int saisie note(int note)
{ note
do 14
{
mo g . La valeur regue
—> Sc_‘.anf ("%d", é¬e); ne servait a rien !
} while (note<O0 || note>20);

return note;

}

la donnée de I'appelant

Tnt main () n'est pas modifiée !
_ maths
int maths=0; 0
maths = saisie note (maths) ; oa

Entrées/sorties des sous-progs.

» passage par valeur d'une variable devant étre modifiee
en retour mais valeur de départ ignoree (tres maladroit)

int saisie note(int note)

{ note
do 14

scanf ("%d", ¬e) ;
ote<0 || note>20) ;

—preturn

}

int main ()

{

maths

int maths=0_;

maths = saisie note(maths); o

I Entrées/sorties des sous-progs.

I » passage par valeur d'une variable devant étre modifiée
en retour mais valeur de départ ignoree (tres maladroit)

I int saisie note(int note)
{
do
{
scanf ("%d", ¬e) ;
} while (note<O0 || note>20);
return note;
} la donnée de I'appelant
14 est bien modifiée, mais
. . par le retour, pas par
:I{.nt main ()) le paramétre entrant...
_ maths
int maths=0; 14

—»maths ¥ saisie note (maths) ; o5

Entrées/sorties des sous-progs.

- Attention aux confusions
parametres / variables locales

Exemple : variable de I'appelant devant étre modifiee
en retour mais sa valeur de départ ignoréee

27

I Entrées/sorties des sous-progs.

I * Approche correcte

I int saisie note()
{

int note;
do

{

scanf ("%d", é¬e);
} while (note<0 || note>20) ;
return note;

}

int main ()

{

maths

—»int maths=0;
maths = saisie note();

28

Entrées/sorties des sous-progs.

* Approche correcte

—»int saisie note()

{

int note; :lvarlable locale note

do ?

{

scanf ("%d", é¬e);
} while (note<0 || note>20) ;
return note;

int main ()

maths

int maths=0;
maths = saisie note();

29

I Entrées/sorties des sous-progs.

I * Approche correcte

int saisie note()

{
int note; note
do 14

{
—®»scanf ("%d", ¬e)

} while (note<0 || note>20) ;
return note;

}

int main ()

{

maths

int maths=0;
maths = saisie note();

I Entrées/sorties des sous-progs.

I * Approche correcte

int saisie note()
| {
int note; note
do 14
{

scanf ("%d", é¬e);
} while note<0 || note>20) ;

—» return @

}

14

int main ()

{

maths

int maths=0;

aisie note() ; 0 rvem

Entrées/sorties des sous-progs.

I * Approche correcte

int saisie note()

{

}

{

int main ()
int maths=0; 4_,:>

int note;
do

{

scanf ("%d", é¬e);
} while (note<O || note>20);
return note;

14

—pmaths = saisie note() ;

maths

14

32

Entrées/sorties des sous-progs.

* Un est guand il correspond
a un passage par adresse et que
- la valeur initiale pointée par le est utilisée
- la valeur pointée par le est modifiee
void tripler ()

{

*px = 3 * *px;

}

int main ()

{

int a=4;

tripler (&a) ;

33

Entrées/sorties des sous-progs.

- la valeur initiale pointée par le est utilisée
- la valeur pointée par le est modifiee
void tripler ()
{ px
*px = 3 * (*px) @100
} @
*px vaut 4

int main ()

{

int a=4;

tripler (&a) ; 4
@100 .

Entrées/sorties des sous-progs.

- la valeur initiale pointee par le est utilisée
- la valeur pointée par le est modifiée
void tripler ()
{ 122
= 3 * *px; @100
]} @

*px prend valeur 12
int main ()

{

int a=4;

tripler (&a) ; 12
@100 o

Entrées/sorties des sous-progs.

Parametres : le cas des tableaux

36

I Entrées/sorties des sous-progs.

I * Les parametres tableaux sont toujours passeés par
adresse, ils peuvent étre utilisés

I - En entrées
- En sorties
- A la fois en entrées et en sorties

37

I Entrées/sorties des sous-progs.

I * Les parametres tableaux sont toujours passeés par
adresse, ils peuvent étre utilisés

I - En entrée

{

int tab somme (int tab[10])
int 1, s;
s = 0;

for (1=0; i<10; i++)
s = s + tab[i];

return s;

38

I Entrées/sorties des sous-progs.

I * Les parametres tableaux sont toujours passeés par

adresse, ils peuvent étre utilisés

I - En entrée

float tab moyenne (int tab[10])

{

relayer le parametre ...

return (float)tab somme (tab)/10;

}

version moins compacte

{

float tab moyenne(int tab[10])

int s;

float moy;

s = tab somme (tab) ;
moy = s/10.0;
return moy;

39

Entrées/sorties des sous-progs.

* Les parametres tableaux sont toujours passeés par
adresse, ils peuvent étre utilisés

- En entrée

void tab afficher (int tab[10])
{

int 1i;

for (i=0; i<10; i++)
printf ("%d\n", tab[i]);

40

Entrées/sorties des sous-progs.

* Les parametres tableaux sont toujours passeés par
adresse, ils peuvent étre utilisés

- En sortie

void tab initialiser(int tab[10])
{

int 1i;

for (i=0; i<10; i++)
tab[i] = 0;

41

Entrées/sorties des sous-progs.

* Les parametres tableaux sont toujours passeés par
adresse, ils peuvent étre utilisés

- En sortie

void tab saisir(int tab[10])
{

int 1i;

for (i=0; i<10; i++)
scanf ("%d", &tab[i])

42

Entrées/sorties des sous-progs.

* Les parametres tableaux sont toujours passeés par
adresse, ils peuvent étre utilisés

- A la fois en entrée et en sortie

void tab trier(int tab[10])

{
int 1, j, tmp;

for (1=0; i<9; i++)
for (jJ=0; 3<9-i; J++)
if (tab[j]l>tab[j+1])
{
tmp = tab[]j];
tab[j] = tab[j+1];
tab[j+1] = tmp;

Appelant

int notes[10];
tab saisir(notes);

tab trier(notes);

tab afficher (notes) ;

printf ("moy=%£f\n",

tab moyenne (notes)) ;

43

I Entrées/sorties des sous-progs.

I * Un tableau n'est jamais retourné sauf si il n‘existait
pas avant lI'appel et qu'il est alloué pendant I'appel

I int * tab puissances(int b, int n)
{
int e, p;
int *tab;
tab = (int *)malloc(n*sizeof (int));
p =1; - Appelant
for (e=0; e<n; e++) int * conv;
{
tab[e] = p; conv = tab puissances(2,8);
p = b*p;
} // conv[0] vaut 1
// conv[l] vaut 2
return tab; // conv[2] wvaut 4
} .
// conv[7] vaut 128

Entrées/sorties des sous-progs.

* Un tableau n'est jamais retourné sauf si il n‘existait
pas avant lI'appel et qu'il est alloué pendant I'appel

int * tab puissances(int b, int n)

{

int e, p;

// CECI N'EST PAS CORRECT, PAS D'ALLOC DYNAMIQUE

// => espace de stockage non persistant

int tab[n];

p=1; Appelant

for (e=0; e<n; e++) int * conv;

{
tab[e] = p; I'appelant récupére I'adresse d'un tableau
p = b*p; qui n'est plus valide apres l'appel...

}

return tab;

tab_puissances (2,8) ;

45

Entrées/sorties des sous-progs.

* De maniere générale nous n'utiliserons pas la
possibilite du C99 de dimensionner de facon
variable des tableaux automatiques

» Cette possibilite est offerte aux programmeurs
expeérimentes et comporte de nhombreux pieges :
peu utilisé en pratique

int n parametre ou variable

int tab[n]; // NON, méme si '"g¢a compile"

46

Entrées/sorties des sous-progs.

* Pour dimensionner de facon variable des tableaux on
utilisera donc forcément l'allocation dynamique

int n parametre ou variable

int *tab; n a une valeur connue
quand on arrive a l'alloc
tab = (int *)malloc(n*sizeof (int));

tab est utilisable comme un tableau usuel
tab[0] tab[1] tab[i] avec i dans [0 .. n-1]

on peut le retourner a un appelant

quand on a fini de 1'utiliser on doit le libérer :

free (tab) ;

47

Entrées/sorties des sous-progs.

Les tableaux automatiques seront toujours
dimensionnés par une valeur constante

Eventuellement il est possible d'utiliser un identifiant
symbolique pour indiquer la constante

const int taille=10; // variable constante !
int tab[taille]; // OK, équivaut a int tab[1l0];

int autre tab[taille]; // méme taille que tab

48

I Entrées/sorties des sous-progs.

I * | es tableaux automatiques seront toujours
dimensionnés par une valeur constante

* Eventuellement il est possible d'utiliser un identifiant
symbolique pour indiquer la constante

#define TAILLE 10 // constante symbolique
int tab[TAILLE]; // OK, équivaut a int tab[10];

int autre tab[TAILLE]; // méme taille que tab

49

Entrées/sorties des sous-progs.

* [es constantes symboliques permettent de
"synchroniser"” toutes les utilisation d'une méme valeur

##define NB ENTIERS 10 // Avant les définitions

void tab saisir(int tab[NB ENTIERS])
{ ..}
void tab afficher (int tab[NB ENTIERS])
{ ..}
void tab trier(int tab[NB ENTIERS])
{ ..}
int main ()
{

int notes[NB ENTIERS];

tab saisir (notes) ;

tab trier (notes);

tab afficher (notes);

50

Entrées/sorties des sous-progs.

* On peut utiliser les tableaux pour regrouper des
Informations jouant des roles difféerents, et faciliter
le passage par adresse

#define POSLIG O
#define POSCOL 1
#define DEPLIG 2
#define DEPCOL 3

void bouger mobile (int mob[4])
{
mob [POSLIG]
mob [POSCOL]

mob [POSLIG] + mob[DEPLIG];
mob [POSCOL] + mob[DEPCOL] ;

// dans la boucle de jeu...
bouger mobile (fantome) ;
bouger mobile (gorille);

51

I Entrées/sorties des sous-progs.

I * Pratique grace au passage par adresse des tableaux
mais c'est du bricolage

I #define POSLIG O
#define POSCOL 1
#define DEPLIG 2
#define DEPCOL 3

void bouger mobile (int mob[4])
{
mob [POSLIG]
mob [POSCOL]

mob [POSLIG] + mob[DEPLIG];
mob [POSCOL] + mob[DEPCOL] ;

// dans la boucle de jeu...
bouger mobile (fantome) ;
bouger mobile (gorille); 52

Entrées/sorties des sous-progs.

Parametres : le cas des structs

53

I Entrées/sorties des sous-progs.

I * Regrouper des informations jouant des roles difféerents
struct

I * Que les types soient distincts ou identiques

typedef struct mobile
{

int poslig;

int poscol;

int deplig;

int depcol;
} t mobile;

54

Entrées/sorties des sous-progs.

Les variables de types structs peuvent étre passees
par valeur et retournée : comme de simples scalaires

t mobile bouger mobile(t mobile mob)

{
mob.poslig = mob.poslig + mob.deplig;
mob .poscol = mob.poscol + mob.depcol;

return mob;

}

int main ()

{

t mobile fantome;
t mobile gorille;

Boucle fantome = bouger mobile (fantome) ;
de jeu gorille = bouger mobile(gorille); B

95

Entrées/sorties des sous-progs.

* | e passage par valeur des structs est si possible
a eviter : mauvaises performances.

t mobile bouger mobile(t mobile mob)

{
mob .poslig = mob.poslig + mob.deplig;
mob .poscol = mob.poscol + mob.depcol;

return mob;

}

16 octets
int main ()

{

16 octets

t mobile fantome;
t mobile gorille;

fantome
gorille

bouger mobile (fantome) ;
bouger mobile (gorille) ;

56

Entrées/sorties des sous-progs.

I * Le passage par adresse des structs est a privilegier

void bouger mobile(t mobile *mob)

{

mob->poslig = mob->poslig + mob->deplig;
= mob->poscol + mob->depcol;

mob->poscol

int main ()

{
t mobile fantome;
t mobile gorille;

bouger mobile (&fantome) ;
bouger mobile (&gorille);

o7

Entrées/sorties des sous-progs.

* Donc autant déclarer des pointeurs directement...
mais ca implique d'allouer dynamiquement.

void bouger mobile(t mobile *mob)

{
}

int main ()

{
t mobile *fantome;
t mobile *gorille;
fantome = (t mobile *)malloc(l*sizeof(t mobile)) ;
gorille = (t mobile *)malloc(l*sizeof(t mobile));

bouger mobile (fantome) ;
bouger mobile (gorille) ;

58

I Entrées/sorties des sous-progs.

I * Mais on n'aime pas beaucoup faire des mallocs
dans le code utilisateur (appelant)

I t mobile * creer mobile(parametres initiaux...)

{
t mobile *mob;
mob = (t mobile *)malloc(l*sizeof(t mobile));

initialiser mob->poslig mob->poscol ...
return mob;

}

int main ()
{
t mobile *fantome;
t mobile *gorille;
fantome = creer mobile(dans la cave);
gorille = creer mobile (sur l1l'échafaudage);

59

Entrées/sorties des sous-progs.

On arrive a une conception "objets"

t mobile * creer mobile(parametres initiaux...);
void bouger mobile(t mobile *mob, t carte *terrain);
void dessiner mobile(t mobile *mob, t carte *ecran);

void detruire mobile(t mobile *mob) ;

60

Entrées/sorties des sous-progs.

* On arrive a une conception "objets"

int main ()

{

Boucle
de jeu

t carte *terrain, *ecran;
t mobile *fantome, *gorille;

terrain = charger terrain("new york.txt");

ecran = creer ecran(terrain->nblig, terrain->nbcol)
fantome = creer mobile (dans la cave);

gorille = creer mobile (sur 1l'échafaudage);

bouger mobile (fantome, terrain);
bouger mobile (gorille, terrain);
dessiner terrain(ecran);
dessiner mobile (fantome, ecran);
dessiner mobile (gorille, ecran);
afficher ecran(ecran);

detruire mobile (fantome); detruire mobile(gorille) ;

detruire terrain(terrain); detruire ecran(ecran);

.
4

61

Contrats

Contrats

Contrats

Conception — decoupage en sous-programmes
Sous-programme = sous-traitant spécialiste

Prototype = nom + format d'appel du sous-programme
nom : resume de la spécialité du sous-programme
parametres in : nécessaires au job du sous-programme
parametres out, retour : résultat(s) du job

Prototype + Commentaires/Documentation

— Définition du CONTRAT du sous-programme

63

Contrats

Le contrat engage les 2 parties

- Appelant (prog. utilisateur du sous-programme)
- Appeleé (le sous-programme)

Il définit de maniere explicite les entrées correctes
sous forme de conditions a respecter

L'appelant s'engage a fournir a I'appelé
des entrées correctes

L'appelé s'engage a fournir en réponse a l'appelant
des sorties correctes
en reponse a des entrées correctes

64

Contrats

e contrat définit les entrées correctes et les sorties correctes résultantes

Le sous-programme doit respecter le contrat pour étre considere correct
Le sous-programme est donc testé/valide sur des entrées correctes

CORRECTE

entrée

Sous-programme
correct

CORRECTE

sortie

CORRECTE

entrée

Sous-programme
non correct

Plantage
Blocage
Non correcte

sortie

Contrats

e contrat définit les entrées correctes et les sorties correctes résultantes

On peut définir des cas particuliers "a problémes"” comme faisant partie
des entrées "correctes" — correctes car correctement gérées

CORRECTE

entrée

~

Sous-programme
correct

CORRECTE

sortie

~

CORRECTE
Cas particulier

entrée

~

Sous-programme
correct

CORRECTE
Traitement spécial
et/ ou
Retour code erreur

sortie

~

Contrats

e contrat définit les entrées correctes et les sorties correctes résultantes
Le contrat ne dit rien sur l'issue pour mauvaises donnees venant de l'appelant

CORRECTE NON CORRECTE
entrée entrée

Sous-programme Sous-programme

% ”) >
correct correct
Plantage
Blocage
CORRECTE Non correcte)

Hi Subtilement N.C. °
sortie Effet de bord ailleurs
Correcte provisoirement

sortie

Contrats

La rédaction des contrats est un éléement essentiel
de la conception
Il faut anticiper les besoins futurs...

La bonne comprehension et le respect du contrat

est indispensable coté appelé pour implementer

un sous-programme correct.

- La gestion des cas particulier est indispensable

- La gestion "correcte" des entrées non correctes n'est
pas souhaitée et/ou pas possible

La bonne compréhension et le respect du contrat
est indispensable coté appelant pour utiliser
correctement un sous-programme correct.

La lecture du code d'implémentation est inutile.

I Contrats

I Exemple : la fonction printf

e Contrat redigé en 1978 (avec extensions ultérieures)
I Depuis : printf("%d\n", x), - afficherl'entier x

« CoOté appelé implementations propres a chaqgue
systeme/compilateur.
Plus de 2000 lignes de code directement impliquées...

« Coté appelant : utilisez printf sur la base du contrat !
Conformité au contrat garantie :
certification ANSI C89/C99

La lecture du code d'implémentation est inutile.

69

http://linux.die.net/man/3/printf
https://sourceware.org/git/?p=glibc.git;a=blob;f=stdio-common/vfprintf.c

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69

