
1

Rappels sur les sous-programmes
et les passages de paramètres

Robin FERCOQ
 2016-2017

INGE3
S5

2

Entrées/sorties des sous-progs.

Entrées/sorties des sous-programmes

3

Entrées/sorties des sous-progs.

● Un sous-programme appelé peut utiliser des données
qui sont fournies par l'appelant : ses entrées

● Un sous-programme appelé peut renvoyer des
données à l'appelant : ses sorties

int triple(int x) // Appelé
{
 return 3*x;
}

int main() // Appelant (pas forcément le main)
{
 int b, a=4;
 b = triple(a); // b prend la valeur 12
 ...

4

Entrées/sorties des sous-progs.

● Dans le cas d'une fonction : la valeur retournée est
toujours une sortie

int triple(int x)
{
 return 3*x;
}

int main()
{
 int b, a=4;

 b = triple(a); // b prend la valeur 12

12

5

Entrées/sorties des sous-progs.

● Dans le cas d'une fonction, la valeur retournée est
toujours une sortie, utilisée ou pas...

int triple(int x)
{
 return 3*x;
}

int main()
{
 int b, a=4;

 triple(a); // 12 retourné : ignoré
 // On a le droit de ne pas
 // utiliser une sortie
 // mais il faut le savoir
a vaut toujours 4

12

?

6

Entrées/sorties des sous-progs.

● Dans le cas d'une fonction, la valeur retournée est
toujours une sortie, appel utilisable dans tout contexte
compatible avec le type de retour
int triple(int x)
{
 return 3*x;
}

int main()
{
 int b, a=4;

 printf("%d\n", triple(a)); // affiche 12

12

7

12

Entrées/sorties des sous-progs.

● Dans le cas d'une fonction, la valeur retournée est
toujours une sortie, 1) fonction évaluée 2) utilisation

int triple(int x)
{
 return 3*x;
}

int main()
{
 int a=4;

 a = triple(a); // a prend la valeur 12

 équivaut à a=3*a; ou encore a*=3;

valeur de a avant l'appel et l'affectation : 4

8

Entrées/sorties des sous-progs.

● Les données en entrées peuvent venir de toute
expression compatible avec le type attendu

int triple(int x)
{
 return 3*x;
}

int main()
{
 int b, c, a=4;

 b = triple(4); // b prend la valeur 12
 printf("%d\n", triple(4)); // affiche 12
 a = triple(2*a-1); // a prend la valeur 21
 c = triple(triple(2)); // c vaudra 18

9

Entrées/sorties des sous-progs.

● Cas d'un sous-programme avec paramètre passé par
adresse, utilisé en tant que sortie

void triple(int x, int *py)
{
 *py = 3*x;
}

int main()
{
 int b, a=4;

 triple(a, &b);

10

Entrées/sorties des sous-progs.

● Avant l'appel

void triple(int x, int *py)
{
 *py = 3*x;
}

int main()
{
 int b, a=4;

 triple(a, &b);

4

a
?

b

@150

11

Entrées/sorties des sous-progs.

● Au moment de l'appel

void triple(int x, int *py)
{
 *py = 3*x;
}

int main()
{
 int b, a=4;

 triple(a, &b);

4

x
@150

py

4

a
?

b

@150

12

Entrées/sorties des sous-progs.

● Au moment de l'affectation dans le sous-programme
 *py est un "alias" vers la variable de l'appelant

void triple(int x, int *py)
{
 *py = 3*x;
}

int main()
{
 int b, a=4;

 triple(a, &b);

4

x
@150

py

4

a

12

b

@150

*py

13

Entrées/sorties des sous-progs.

● Après l'appel

void triple(int x, int *py)
{
 *py = 3*x;
}

int main()
{
 int b, a=4;

 triple(a, &b);

 // b vaut 12 …
4

a

12

b

@150

14

Entrées/sorties des sous-progs.

● Dans cette situation :
 - le 1er paramètre est une copie de a, (a non modifié)
 - la valeur initiale de b, pointée par le 2ème paramètre
 est toujours ignorée

void triple(int x, int *py)
{
 *py = 3*x;
}

int main()
{
 int b, a=4;

 triple(a, &b);

15

Entrées/sorties des sous-progs.

● Définitions

 - Un paramètre utilisé par l'appelé pour accéder à (lire)
 la valeur d'une donnée de l'appelant est une entrée

 - Un paramètre utilisé pour modifier (écrire) la valeur
 d'une ressource de l'appelant correspond à une sortie

 - Un paramètre désignant une donnée de l'appelant
 dont la valeur reçue est ignorée et qui ne sera
 jamais modifiée par l'appelé est inutile

 - Un paramètre qui donne accès à la valeur initiale
 d'une ressource de l'appelant et qui la modifie
 est à la fois une entrée et une sortie

16

Entrées/sorties des sous-progs.

 - Un paramètre désignant une donnée de l'appelant
 dont la valeur reçue est ignorée et qui ne sera
 jamais modifiée par l'appelé est inutile

 Exemple : passage par valeur d'une variable
 devant être modifiée (code non correct)

17

Entrées/sorties des sous-progs.

● passage par valeur d'une variable
devant être modifiée (code non correct)

void saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
}

int main()
{
 int maths=0;
 saisie_note(maths);

0

maths

18

Entrées/sorties des sous-progs.

● passage par valeur d'une variable
devant être modifiée (code non correct)

void saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
}

int main()
{
 int maths=0;
 saisie_note(maths);

0

note

0

maths

19

Entrées/sorties des sous-progs.

● passage par valeur d'une variable
devant être modifiée (code non correct)

void saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
}

int main()
{
 int maths=0;
 saisie_note(maths);

14

note

0

maths

20

Entrées/sorties des sous-progs.

● passage par valeur d'une variable
devant être modifiée (code non correct)

void saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
}

int main()
{
 int maths=0;
 saisie_note(maths);
 ... 0

maths

la donnée de l'appelant
n'est pas modifiée !

21

Entrées/sorties des sous-progs.

 - Un paramètre désignant une donnée de l'appelant
 dont la valeur reçue est ignorée et qui ne sera
 jamais modifiée par l'appelé est inutile

 Exemple : passage par valeur d'une variable
 devant être modifiée en retour
 mais valeur de départ ignorée
 (code très maladroit)

22

Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note(maths);
 ...

0

maths

23

Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note(maths);
 ...

0

maths

0

note

24

Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note(maths);
 ...

0

maths

14

note

La valeur reçue
ne servait à rien !

la donnée de l'appelant
n'est pas modifiée !

25

Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note(maths);
 ...

0

maths

14

note

14

26

Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note(maths);
 ...

14

maths

14

la donnée de l'appelant
est bien modifiée, mais
par le retour, pas par
le paramètre entrant...

27

Entrées/sorties des sous-progs.

 - Attention aux confusions
 paramètres / variables locales

 Exemple : variable de l'appelant devant être modifiée
 en retour mais sa valeur de départ ignorée

28

Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
 int note;
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note();
 ...

0

maths

29

Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
 int note;
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note();
 ...

0

maths

?

notevariable locale

30

Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
 int note;
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note();
 ...

0

maths

14

note

31

Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
 int note;
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note();
 ...

0

maths

14

note

14

32

Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
 int note;
 do
 {
 scanf("%d", ¬e);
 } while (note<0 || note>20);
 return note;
}

int main()
{
 int maths=0;
 maths = saisie_note();
 ...

14

maths

14

33

Entrées/sorties des sous-progs.

● Un paramètre est entrée et sortie quand il correspond
à un passage par adresse et que
 - la valeur initiale pointée par le paramètre est utilisée
 - la valeur pointée par le paramètre est modifiée

void tripler(int *px)
{
 *px = 3 * *px;
}

int main()
{
 int a=4;

 tripler(&a);

34

Entrées/sorties des sous-progs.

 - la valeur initiale pointée par le paramètre est utilisée
 - la valeur pointée par le paramètre est modifiée

void tripler(int *px)
{
 *px = 3 * *px;
}

int main()
{
 int a=4;

 tripler(&a);

@100

px

4

a

@100

*px

 
*px vaut 4

35

Entrées/sorties des sous-progs.

 - la valeur initiale pointée par le paramètre est utilisée
 - la valeur pointée par le paramètre est modifiée

void tripler(int *px)
{
 *px = 3 * *px;
}

int main()
{
 int a=4;

 tripler(&a);

@100

px

12

a

@100

*px

 
*px prend valeur 12

36

Entrées/sorties des sous-progs.

Paramètres : le cas des tableaux

37

Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par
adresse, ils peuvent être utilisés

- En entrées

- En sorties

- A la fois en entrées et en sorties

38

Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par
adresse, ils peuvent être utilisés

- En entrée

int tab_somme(int tab[10])
{
 int i, s;

 s = 0;
 for (i=0; i<10; i++)
 s = s + tab[i];

 return s;
}

39

Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par
adresse, ils peuvent être utilisés

- En entrée

float tab_moyenne(int tab[10])
{
 return (float)tab_somme(tab)/10;
}

 float tab_moyenne(int tab[10])
 {
 int s;
 float moy;
 s = tab_somme(tab);
 moy = s/10.0;
 return moy;
 }

relayer le paramètre ...

version moins compacte

40

Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par
adresse, ils peuvent être utilisés

- En entrée

void tab_afficher(int tab[10])
{
 int i;

 for (i=0; i<10; i++)
 printf("%d\n", tab[i]);
}

41

Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par
adresse, ils peuvent être utilisés

- En sortie

void tab_initialiser(int tab[10])
{
 int i;

 for (i=0; i<10; i++)
 tab[i] = 0;
}

42

Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par
adresse, ils peuvent être utilisés

- En sortie

void tab_saisir(int tab[10])
{
 int i;

 for (i=0; i<10; i++)
 scanf("%d", &tab[i]);
}

43

Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par
adresse, ils peuvent être utilisés

- A la fois en entrée et en sortie

void tab_trier(int tab[10])
{
 int i, j, tmp;

 for (i=0; i<9; i++)
 for (j=0; j<9-i; j++)
 if (tab[j]>tab[j+1])
 {
 tmp = tab[j];
 tab[j] = tab[j+1];
 tab[j+1] = tmp;
 }
}

int notes[10];

tab_saisir(notes);

tab_trier(notes);

tab_afficher(notes);

printf("moy=%f\n",
 tab_moyenne(notes));

Appelant

44

Entrées/sorties des sous-progs.

● Un tableau n'est jamais retourné sauf si il n'existait
pas avant l'appel et qu'il est alloué pendant l'appel

int * tab_puissances(int b, int n)
{
 int e, p;
 int *tab;

 tab = (int *)malloc(n*sizeof(int));

 p = 1;
 for (e=0; e<n; e++)
 {
 tab[e] = p;
 p = b*p;
 }

 return tab;
}

int * conv;

conv = tab_puissances(2,8);

// conv[0] vaut 1
// conv[1] vaut 2
// conv[2] vaut 4
…
// conv[7] vaut 128

Appelant

45

Entrées/sorties des sous-progs.

● Un tableau n'est jamais retourné sauf si il n'existait
pas avant l'appel et qu'il est alloué pendant l'appel

int * tab_puissances(int b, int n)
{
 int e, p;
 // CECI N'EST PAS CORRECT, PAS D'ALLOC DYNAMIQUE
 // => espace de stockage non persistant
 int tab[n];

 p = 1;
 for (e=0; e<n; e++)
 {
 tab[e] = p;
 p = b*p;
 }

 return tab;
}

int * conv;

conv = tab_puissances(2,8);

Appelant

l'appelant récupère l'adresse d'un tableau
qui n'est plus valide après l'appel...

46

Entrées/sorties des sous-progs.

● De manière générale nous n'utiliserons pas la
possibilité du C99 de dimensionner de façon
variable des tableaux automatiques

● Cette possibilité est offerte aux programmeurs
expérimentés et comporte de nombreux pièges :
peu utilisé en pratique

 int n paramètre ou variable

 ...

 int tab[n]; // NON, même si "ça compile"

47

Entrées/sorties des sous-progs.

● Pour dimensionner de façon variable des tableaux on
utilisera donc forcément l'allocation dynamique

 int n paramètre ou variable

 int *tab;
 ...
 tab = (int *)malloc(n*sizeof(int));

 tab est utilisable comme un tableau usuel
 tab[0] tab[1] tab[i] avec i dans [0 … n-1]

 on peut le retourner à un appelant

 quand on a fini de l'utiliser on doit le libérer :
 free(tab);

n a une valeur connue
quand on arrive à l'alloc

48

Entrées/sorties des sous-progs.

● Les tableaux automatiques seront toujours
dimensionnés par une valeur constante

● Eventuellement il est possible d'utiliser un identifiant
symbolique pour indiquer la constante

const int taille=10; // variable constante !

...
int tab[taille]; // OK, équivaut à int tab[10];

...
int autre_tab[taille]; // même taille que tab

49

Entrées/sorties des sous-progs.

● Les tableaux automatiques seront toujours
dimensionnés par une valeur constante

● Eventuellement il est possible d'utiliser un identifiant
symbolique pour indiquer la constante

#define TAILLE 10 // constante symbolique

...
int tab[TAILLE]; // OK, équivaut à int tab[10];

...
int autre_tab[TAILLE]; // même taille que tab

50

Entrées/sorties des sous-progs.

● Les constantes symboliques permettent de
"synchroniser" toutes les utilisation d'une même valeur

#define NB_ENTIERS 10 // Avant les définitions

void tab_saisir(int tab[NB_ENTIERS])
{ … }
void tab_afficher(int tab[NB_ENTIERS])
{ … }
void tab_trier(int tab[NB_ENTIERS])
{ … }
int main()
{
 int notes[NB_ENTIERS];
 tab_saisir(notes);
 tab_trier(notes);
 tab_afficher(notes);
 ...

51

Entrées/sorties des sous-progs.

● On peut utiliser les tableaux pour regrouper des
informations jouant des rôles différents, et faciliter
le passage par adresse

#define POSLIG 0
#define POSCOL 1
#define DEPLIG 2
#define DEPCOL 3

void bouger_mobile(int mob[4])
{
 mob[POSLIG] = mob[POSLIG] + mob[DEPLIG];
 mob[POSCOL] = mob[POSCOL] + mob[DEPCOL];
 ...
}

 // dans la boucle de jeu...
 bouger_mobile(fantome);
 bouger_mobile(gorille);

52

Entrées/sorties des sous-progs.

● Pratique grâce au passage par adresse des tableaux
 mais c'est du bricolage

#define POSLIG 0
#define POSCOL 1
#define DEPLIG 2
#define DEPCOL 3

void bouger_mobile(int mob[4])
{
 mob[POSLIG] = mob[POSLIG] + mob[DEPLIG];
 mob[POSCOL] = mob[POSCOL] + mob[DEPCOL];
 ...
}

 // dans la boucle de jeu...
 bouger_mobile(fantome);
 bouger_mobile(gorille);

53

Entrées/sorties des sous-progs.

Paramètres : le cas des structs

54

Entrées/sorties des sous-progs.

● Regrouper des informations jouant des rôles différents
 struct

● Que les types soient distincts ou identiques

typedef struct mobile
{
 int poslig;
 int poscol;
 int deplig;
 int depcol;
} t_mobile;

55

Entrées/sorties des sous-progs.

● Les variables de types structs peuvent être passées
par valeur et retournée : comme de simples scalaires

t_mobile bouger_mobile(t_mobile mob)
{
 mob.poslig = mob.poslig + mob.deplig;
 mob.poscol = mob.poscol + mob.depcol;
 ...
 return mob;
}

int main()
{
 t_mobile fantome;
 t_mobile gorille;
 ...
 fantome = bouger_mobile(fantome);
 gorille = bouger_mobile(gorille);
 ...

Boucle
de jeu

56

Entrées/sorties des sous-progs.

● Le passage par valeur des structs est si possible
à éviter : mauvaises performances.

t_mobile bouger_mobile(t_mobile mob)
{
 mob.poslig = mob.poslig + mob.deplig;
 mob.poscol = mob.poscol + mob.depcol;
 ...
 return mob;
}

int main()
{
 t_mobile fantome;
 t_mobile gorille;
 ...
 fantome = bouger_mobile(fantome);
 gorille = bouger_mobile(gorille);
 ...

16 octets

16 octets

57

Entrées/sorties des sous-progs.

● Le passage par adresse des structs est à privilégier

void bouger_mobile(t_mobile *mob)
{
 mob->poslig = mob->poslig + mob->deplig;
 mob->poscol = mob->poscol + mob->depcol;
 ...
}

int main()
{
 t_mobile fantome;
 t_mobile gorille;
 ...
 bouger_mobile(&fantome);
 bouger_mobile(&gorille);
 ...

4 octets (exe 32 bits)
 ou
8 octets (exe 64 bits)

quelle que soit la
taille de la struct

58

Entrées/sorties des sous-progs.

● Donc autant déclarer des pointeurs directement...
mais ça implique d'allouer dynamiquement.

void bouger_mobile(t_mobile *mob)
{
 ...
}

int main()
{
 t_mobile *fantome;
 t_mobile *gorille;
 fantome = (t_mobile *)malloc(1*sizeof(t_mobile));
 gorille = (t_mobile *)malloc(1*sizeof(t_mobile));
 ...
 bouger_mobile(fantome);
 bouger_mobile(gorille);
 ...

59

Entrées/sorties des sous-progs.

● Mais on n'aime pas beaucoup faire des mallocs
dans le code utilisateur (appelant)

t_mobile * creer_mobile(paramètres initiaux...)
{
 t_mobile *mob;
 mob = (t_mobile *)malloc(1*sizeof(t_mobile));
 ... initialiser mob->poslig mob->poscol ...
 return mob;
}

int main()
{
 t_mobile *fantome;
 t_mobile *gorille;
 fantome = creer_mobile(dans la cave);
 gorille = creer_mobile(sur l'échafaudage);
 ...

60

Entrées/sorties des sous-progs.

● On arrive à une conception "objets"

t_mobile * creer_mobile(paramètres initiaux...);

void bouger_mobile(t_mobile *mob, t_carte *terrain);

void dessiner_mobile(t_mobile *mob, t_carte *ecran);

void detruire_mobile(t_mobile *mob);

...

61

Entrées/sorties des sous-progs.

● On arrive à une conception "objets"
int main()
{ t_carte *terrain, *ecran;
 t_mobile *fantome, *gorille;

 terrain = charger_terrain("new_york.txt");
 ecran = creer_ecran(terrain->nblig, terrain->nbcol);
 fantome = creer_mobile(dans la cave);
 gorille = creer_mobile(sur l'échafaudage);

 bouger_mobile(fantome, terrain);
 bouger_mobile(gorille, terrain);
 dessiner_terrain(ecran);
 dessiner_mobile(fantome, ecran);
 dessiner_mobile(gorille, ecran);
 afficher_ecran(ecran);

 detruire_mobile(fantome); detruire_mobile(gorille);
 detruire_terrain(terrain); detruire_ecran(ecran);

Boucle
de jeu

62

Contrats

Contrats

63

Contrats

● Conception → découpage en sous-programmes

● Sous-programme = sous-traitant spécialiste

● Prototype = nom + format d'appel du sous-programme
nom : résumé de la spécialité du sous-programme
paramètres in : nécessaires au job du sous-programme
paramètres out, retour : résultat(s) du job

● Prototype + Commentaires/Documentation

→ Définition du CONTRAT du sous-programme

64

Contrats

● Le contrat engage les 2 parties

– Appelant (prog. utilisateur du sous-programme)

– Appelé (le sous-programme)

● Il définit de manière explicite les entrées correctes
sous forme de conditions à respecter

● L'appelant s'engage à fournir à l'appelé
 des entrées correctes

● L'appelé s'engage à fournir en réponse à l'appelant
 des sorties correctes
 en réponse à des entrées correctes

65

Contrats

Sous-programme
correct

CORRECTE

CORRECTE

entrée

sortie

Sous-programme
non correct

CORRECTE

Plantage
Blocage

Non correcte

entrée

sortie

Le contrat définit les entrées correctes et les sorties correctes résultantes
Le sous-programme doit respecter le contrat pour être considéré correct
Le sous-programme est donc testé/validé sur des entrées correctes

66

Contrats

Sous-programme
correct

CORRECTE

CORRECTE

entrée

sortie

Sous-programme
correct

CORRECTE
Cas particulier

CORRECTE :
Traitement spécial

et / ou
Retour code erreur

entrée

sortie

Le contrat définit les entrées correctes et les sorties correctes résultantes
On peut définir des cas particuliers "à problèmes" comme faisant partie
des entrées "correctes" → correctes car correctement gérées

67

Contrats

Sous-programme
correct

CORRECTE

CORRECTE

entrée

sortie

Sous-programme
correct

NON CORRECTE

Plantage
Blocage

Non correcte
Subtilement N.C.

Effet de bord ailleurs
Correcte provisoirement

entrée

sortie

?

Le contrat définit les entrées correctes et les sorties correctes résultantes
Le contrat ne dit rien sur l'issue pour mauvaises données venant de l'appelant

68

Contrats

● La rédaction des contrats est un élément essentiel
de la conception
Il faut anticiper les besoins futurs...

● La bonne compréhension et le respect du contrat
est indispensable côté appelé pour implémenter
un sous-programme correct.
- La gestion des cas particulier est indispensable
- La gestion "correcte" des entrées non correctes n'est
 pas souhaitée et/ou pas possible

● La bonne compréhension et le respect du contrat
est indispensable côté appelant pour utiliser
correctement un sous-programme correct.

La lecture du code d'implémentation est inutile.

69

Contrats

Exemple : la fonction printf
● Contrat rédigé en 1978 (avec extensions ultérieures)

Depuis : printf("%d\n", x); → afficher l'entier x

● Côté appelé implémentations propres à chaque
système/compilateur.
Plus de 2000 lignes de code directement impliquées...

● Côté appelant : utilisez printf sur la base du contrat !
Conformité au contrat garantie :
 certification ANSI C89/C99

La lecture du code d'implémentation est inutile.

http://linux.die.net/man/3/printf
https://sourceware.org/git/?p=glibc.git;a=blob;f=stdio-common/vfprintf.c

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69

