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Entrées/sorties des sous-progs.

Entrées/sorties des sous-programmes
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Entrées/sorties des sous-progs.

● Un sous-programme appelé peut utiliser des données
qui sont fournies par l'appelant : ses entrées

● Un sous-programme appelé peut renvoyer des 
données à l'appelant : ses sorties

int triple(int x) // Appelé
{
    return 3*x;
}

int main()  // Appelant (pas forcément le main)
{
    int b, a=4;
    b = triple(a);  // b prend la valeur 12
    ...



4

Entrées/sorties des sous-progs.

● Dans le cas d'une fonction : la valeur retournée est 
toujours une sortie

int triple(int x)
{
    return 3*x;
}

int main()
{
    int b, a=4;

    b = triple(a);  // b prend la valeur 12

12
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Entrées/sorties des sous-progs.

● Dans le cas d'une fonction, la valeur retournée est 
toujours une sortie, utilisée ou pas...

int triple(int x)
{
    return 3*x;
}

int main()
{
    int b, a=4;

    triple(a);      // 12 retourné : ignoré
                    // On a le droit de ne pas
                    // utiliser une sortie 
                    // mais il faut le savoir
a vaut toujours 4

12

?
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Entrées/sorties des sous-progs.

● Dans le cas d'une fonction, la valeur retournée est 
toujours une sortie, appel utilisable dans tout contexte 
compatible avec le type de retour
int triple(int x)
{
    return 3*x;
}

int main()
{
    int b, a=4;

    printf("%d\n", triple(a)); // affiche 12

12
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12

Entrées/sorties des sous-progs.

● Dans le cas d'une fonction, la valeur retournée est 
toujours une sortie, 1) fonction évaluée  2) utilisation

int triple(int x)
{
    return 3*x;
}

int main()
{
    int a=4;

    a = triple(a);  // a prend la valeur 12 

    équivaut à  a=3*a;  ou encore  a*=3;

valeur de a avant l'appel et l'affectation : 4
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Entrées/sorties des sous-progs.

● Les données en entrées peuvent venir de toute 
expression compatible avec le type attendu

int triple(int x)
{
    return 3*x;
}

int main()
{
    int b, c, a=4;

    b = triple(4);  // b prend la valeur 12
    printf("%d\n", triple(4)); // affiche 12
    a = triple(2*a-1); // a prend la valeur 21 
    c = triple( triple(2) ); // c vaudra 18
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Entrées/sorties des sous-progs.

● Cas d'un sous-programme avec paramètre passé par
adresse, utilisé en tant que sortie 

void triple(int x, int *py)
{
    *py = 3*x;
}

int main()
{
    int b, a=4;

    triple(a, &b);
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Entrées/sorties des sous-progs.

● Avant l'appel

void triple(int x, int *py)
{
    *py = 3*x;
}

int main()
{
    int b, a=4;

    triple(a, &b);

4

a
?

b

@150
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Entrées/sorties des sous-progs.

● Au moment de l'appel
 

void triple(int x, int *py)
{
    *py = 3*x;
}

int main()
{
    int b, a=4;

    triple(a, &b);

4

x
@150

py

4

a
?

b

@150
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Entrées/sorties des sous-progs.

● Au moment de l'affectation dans le sous-programme
     *py est un "alias" vers la variable de l'appelant 

void triple(int x, int *py)
{
    *py = 3*x;
}

int main()
{
    int b, a=4;

    triple(a, &b);

4

x
@150

py

4

a

12

b

@150

*py
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Entrées/sorties des sous-progs.

● Après l'appel

void triple(int x, int *py)
{
    *py = 3*x;
}

int main()
{
    int b, a=4;

    triple(a, &b);

    // b vaut 12 … 
4

a

12

b

@150



14

Entrées/sorties des sous-progs.

● Dans cette situation :
   - le 1er paramètre est une copie de a, (a non modifié)
   - la valeur initiale de b, pointée par le 2ème paramètre 
     est toujours ignorée

void triple(int x, int *py)
{
    *py = 3*x;
}

int main()
{
    int b, a=4;

    triple(a, &b);
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Entrées/sorties des sous-progs.

● Définitions

   - Un paramètre utilisé par l'appelé pour accéder à ( lire )
      la valeur d'une donnée de l'appelant est une entrée

   - Un paramètre utilisé pour modifier ( écrire ) la valeur
     d'une ressource de l'appelant correspond à une sortie

   - Un paramètre désignant une donnée de l'appelant
     dont la valeur reçue est ignorée et qui ne sera 
     jamais modifiée par l'appelé est inutile 

   - Un paramètre qui donne accès à la valeur initiale
     d'une ressource de l'appelant et qui la modifie 
     est à la fois une entrée et une sortie
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Entrées/sorties des sous-progs.

   - Un paramètre désignant une donnée de l'appelant
     dont la valeur reçue est ignorée et qui ne sera 
     jamais modifiée par l'appelé est inutile 

   Exemple : passage par valeur d'une variable 
                    devant être modifiée (code non correct)
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable 
devant être modifiée (code non correct)

void saisie_note(int note)
{
    do 
    {
       scanf("%d", &note);
    } while ( note<0 || note>20 );
}

int main()
{
    int maths=0;
    saisie_note(maths);

0

maths
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable 
devant être modifiée (code non correct)

void saisie_note(int note)
{
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
}

int main()
{
    int maths=0;
    saisie_note(maths);

0

note

0

maths
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable 
devant être modifiée (code non correct)

void saisie_note(int note)
{
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
}

int main()
{
    int maths=0;
    saisie_note(maths);

14

note

0

maths
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable 
devant être modifiée (code non correct)

void saisie_note(int note)
{
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
}

int main()
{
    int maths=0;
    saisie_note(maths);
    ... 0

maths

la donnée de l'appelant
n'est pas modifiée !
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Entrées/sorties des sous-progs.

   - Un paramètre désignant une donnée de l'appelant
     dont la valeur reçue est ignorée et qui ne sera 
     jamais modifiée par l'appelé est inutile 

   Exemple : passage par valeur d'une variable 
                    devant être modifiée en retour 
                    mais valeur de départ ignorée 
                    (code très maladroit)
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée 
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note(maths);
    ...

0

maths
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée 
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note(maths);
    ...

0

maths

0

note
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée 
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note(maths);
    ...

0

maths

14

note

La valeur reçue
ne servait à rien !

la donnée de l'appelant
n'est pas modifiée !
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée 
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note(maths);
    ...

0

maths

14

note

14
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Entrées/sorties des sous-progs.

● passage par valeur d'une variable devant être modifiée 
en retour mais valeur de départ ignorée (très maladroit)

int saisie_note(int note)
{
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note(maths);
    ...

14

maths

14

la donnée de l'appelant
est bien modifiée, mais
par le retour, pas par 
le paramètre entrant...



27

Entrées/sorties des sous-progs.

   - Attention aux confusions 
       paramètres / variables locales

   Exemple : variable de l'appelant devant être modifiée
                    en retour mais sa valeur de départ ignorée 
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Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
    int note;
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note();
    ...

0

maths
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Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
    int note;
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note();
    ...

0

maths

?

notevariable locale
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Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
    int note;
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note();
    ...

0

maths

14

note
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Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
    int note;
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note();
    ...

0

maths

14

note

14
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Entrées/sorties des sous-progs.

● Approche correcte

int saisie_note()
{
    int note;
    do
    {  
       scanf("%d", &note);
    } while ( note<0 || note>20 );
    return note;
}

int main()
{
    int maths=0;
    maths = saisie_note();
    ...

14

maths

14
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Entrées/sorties des sous-progs.

● Un paramètre est entrée et sortie quand il correspond 
à un passage par adresse et que 
   - la valeur initiale pointée par le paramètre est utilisée
   - la valeur pointée par le paramètre est modifiée

void tripler(int *px)
{
    *px = 3 * *px;
}

int main()
{
    int a=4;

    tripler(&a);
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Entrées/sorties des sous-progs.

   - la valeur initiale pointée par le paramètre est utilisée
   - la valeur pointée par le paramètre est modifiée

void tripler(int *px)
{
    *px = 3 * *px;
}

int main()
{
    int a=4;

    tripler(&a);

@100

px

4

a

@100

*px

  
*px vaut 4
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Entrées/sorties des sous-progs.

   - la valeur initiale pointée par le paramètre est utilisée
   - la valeur pointée par le paramètre est modifiée

void tripler(int *px)
{
    *px = 3 * *px;
}

int main()
{
    int a=4;

    tripler(&a);

@100

px

12

a

@100

*px

  
*px prend valeur 12
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Entrées/sorties des sous-progs.

Paramètres : le cas des tableaux
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Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par 
adresse, ils peuvent être utilisés 

-  En entrées

-  En sorties

-  A la fois en entrées et en sorties 
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Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par 
adresse, ils peuvent être utilisés 

-  En entrée

int tab_somme(int tab[10])
{
    int i, s;

    s = 0;
    for (i=0; i<10; i++)
        s = s + tab[i];

    return s;
}
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Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par 
adresse, ils peuvent être utilisés 

-  En entrée

float tab_moyenne(int tab[10])
{
    return (float)tab_somme(tab)/10;
}
 
              float tab_moyenne(int tab[10])
              {   
                  int s;
                  float moy;
                  s = tab_somme(tab);
                  moy = s/10.0;
                  return moy;
              }

relayer le paramètre ...

version moins compacte
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Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par 
adresse, ils peuvent être utilisés 

-  En entrée

void tab_afficher(int tab[10])
{
    int i;

    for (i=0; i<10; i++)
        printf("%d\n", tab[i]);
}
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Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par 
adresse, ils peuvent être utilisés 

-  En sortie

void tab_initialiser(int tab[10])
{
    int i;

    for (i=0; i<10; i++)
        tab[i] = 0;
}
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Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par 
adresse, ils peuvent être utilisés 

-  En sortie

void tab_saisir(int tab[10])
{
    int i;

    for (i=0; i<10; i++)
        scanf("%d", &tab[i]);
}
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Entrées/sorties des sous-progs.

● Les paramètres tableaux sont toujours passés par 
adresse, ils peuvent être utilisés 

-  A la fois en entrée et en sortie

void tab_trier(int tab[10])
{
    int i, j, tmp;

    for (i=0; i<9; i++)
        for (j=0; j<9-i; j++)
            if ( tab[j]>tab[j+1] ) 
            {
                tmp = tab[j]; 
                tab[j] = tab[j+1];
                tab[j+1] = tmp;
            }
}

int notes[10];

tab_saisir(notes);

tab_trier(notes);

tab_afficher(notes);

printf("moy=%f\n",
 tab_moyenne(notes));

Appelant
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Entrées/sorties des sous-progs.

● Un tableau n'est jamais retourné sauf si il n'existait 
pas avant l'appel et qu'il est alloué pendant l'appel

int * tab_puissances(int b, int n)
{
    int e, p;
    int *tab;

    tab = (int *)malloc(n*sizeof(int));
    
    p = 1;
    for (e=0; e<n; e++)
    {
        tab[e] = p;
        p = b*p;
    }

    return tab;
}

int * conv;

conv = tab_puissances(2,8);

// conv[0] vaut 1
// conv[1] vaut 2
// conv[2] vaut 4
… 
// conv[7] vaut 128

Appelant
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Entrées/sorties des sous-progs.

● Un tableau n'est jamais retourné sauf si il n'existait 
pas avant l'appel et qu'il est alloué pendant l'appel

int * tab_puissances(int b, int n)
{
    int e, p;
    // CECI N'EST PAS CORRECT, PAS D'ALLOC DYNAMIQUE
    //      => espace de stockage non persistant 
    int tab[n]; 
    
    p = 1;
    for (e=0; e<n; e++)
    {
        tab[e] = p;
        p = b*p;
    }

    return tab;
}

int * conv;

conv = tab_puissances(2,8);

Appelant

l'appelant récupère l'adresse d'un tableau
qui n'est plus valide après l'appel... 
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Entrées/sorties des sous-progs.

● De manière générale nous n'utiliserons pas la 
possibilité du C99 de dimensionner de façon 
variable des tableaux automatiques 

● Cette possibilité est offerte aux programmeurs 
expérimentés et comporte de nombreux pièges :
peu utilisé en pratique

    int n  paramètre ou variable

    ...

    int tab[n]; // NON, même si "ça compile"
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Entrées/sorties des sous-progs.

● Pour dimensionner de façon variable des tableaux on 
utilisera donc forcément l'allocation dynamique

    int n  paramètre ou variable

    int *tab;
    ...
    tab = (int *)malloc(n*sizeof(int));
    
      tab est utilisable comme un tableau usuel
          tab[0]  tab[1]    tab[i] avec i dans [0 … n-1]

      on peut le retourner à un appelant

      quand on a fini de l'utiliser on doit le libérer :
    free(tab);
    

n a une valeur connue
quand on arrive à l'alloc
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Entrées/sorties des sous-progs.

● Les tableaux automatiques seront toujours 
dimensionnés par une valeur constante

● Eventuellement il est possible d'utiliser un identifiant 
symbolique pour indiquer la constante

const int taille=10;   // variable constante !

...
int tab[taille]; // OK, équivaut à int tab[10];

...
int autre_tab[taille]; // même taille que tab
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Entrées/sorties des sous-progs.

● Les tableaux automatiques seront toujours 
dimensionnés par une valeur constante

● Eventuellement il est possible d'utiliser un identifiant 
symbolique pour indiquer la constante

#define TAILLE 10      // constante symbolique

...
int tab[TAILLE]; // OK, équivaut à int tab[10];

...
int autre_tab[TAILLE]; // même taille que tab
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Entrées/sorties des sous-progs.

● Les constantes symboliques permettent de 
"synchroniser" toutes les utilisation d'une même valeur

#define NB_ENTIERS 10 // Avant les définitions

void tab_saisir(int tab[NB_ENTIERS])
{ … }
void tab_afficher(int tab[NB_ENTIERS])
{ … }
void tab_trier(int tab[NB_ENTIERS])
{ … }
int main()
{
    int notes[NB_ENTIERS];
    tab_saisir(notes);
    tab_trier(notes);
    tab_afficher(notes);
    ...
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Entrées/sorties des sous-progs.

● On peut utiliser les tableaux pour regrouper des 
informations jouant des rôles différents, et faciliter 
le passage par adresse

#define POSLIG 0
#define POSCOL 1
#define DEPLIG 2
#define DEPCOL 3

void bouger_mobile(int mob[4])
{
    mob[POSLIG] = mob[POSLIG] + mob[DEPLIG];
    mob[POSCOL] = mob[POSCOL] + mob[DEPCOL];
    ...
}

    // dans la boucle de jeu...
    bouger_mobile(fantome);
    bouger_mobile(gorille);
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Entrées/sorties des sous-progs.

● Pratique grâce au passage par adresse des tableaux
                      mais c'est du bricolage

#define POSLIG 0
#define POSCOL 1
#define DEPLIG 2
#define DEPCOL 3

void bouger_mobile(int mob[4])
{
    mob[POSLIG] = mob[POSLIG] + mob[DEPLIG];
    mob[POSCOL] = mob[POSCOL] + mob[DEPCOL];
    ...
}

    // dans la boucle de jeu...
    bouger_mobile(fantome);
    bouger_mobile(gorille);    
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Entrées/sorties des sous-progs.

Paramètres : le cas des structs
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Entrées/sorties des sous-progs.

● Regrouper des informations jouant des rôles différents
                                    struct

● Que les types soient distincts ou identiques

typedef struct mobile
{
    int poslig;
    int poscol;
    int deplig;
    int depcol;
} t_mobile;
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Entrées/sorties des sous-progs.

● Les variables de types structs peuvent être passées 
par valeur et retournée : comme de simples scalaires

t_mobile bouger_mobile(t_mobile mob)
{
    mob.poslig = mob.poslig + mob.deplig;
    mob.poscol = mob.poscol + mob.depcol;
    ...
    return mob;
}

int main()
{
    t_mobile fantome;
    t_mobile gorille;
    ...
        fantome = bouger_mobile(fantome);
        gorille = bouger_mobile(gorille);
        ...

Boucle
de jeu
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Entrées/sorties des sous-progs.

● Le passage par valeur des structs est si possible 
à éviter : mauvaises performances.

t_mobile bouger_mobile(t_mobile mob)
{
    mob.poslig = mob.poslig + mob.deplig;
    mob.poscol = mob.poscol + mob.depcol;
    ...
    return mob;
}

int main()
{
    t_mobile fantome;
    t_mobile gorille;
    ...
        fantome = bouger_mobile(fantome);
        gorille = bouger_mobile(gorille);
        ...

16 octets

16 octets
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Entrées/sorties des sous-progs.

● Le passage par adresse des structs est à privilégier

void bouger_mobile(t_mobile *mob)
{
    mob->poslig = mob->poslig + mob->deplig;
    mob->poscol = mob->poscol + mob->depcol;
    ...
}

int main()
{
    t_mobile fantome;
    t_mobile gorille;
    ...
        bouger_mobile(&fantome);
        bouger_mobile(&gorille);
        ...

4 octets (exe 32 bits)
     ou
8 octets (exe 64 bits)

quelle que soit la 
taille de la struct
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Entrées/sorties des sous-progs.

● Donc autant déclarer des pointeurs directement...
mais ça implique d'allouer dynamiquement.

void bouger_mobile(t_mobile *mob)
{
    ...
}

int main()
{
    t_mobile *fantome;
    t_mobile *gorille;
    fantome = (t_mobile *)malloc(1*sizeof(t_mobile));
    gorille = (t_mobile *)malloc(1*sizeof(t_mobile));
    ...
        bouger_mobile(fantome);
        bouger_mobile(gorille);
        ...
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Entrées/sorties des sous-progs.

● Mais on n'aime pas beaucoup faire des mallocs 
dans le code utilisateur (appelant)

t_mobile * creer_mobile(paramètres initiaux...)
{
    t_mobile *mob;
    mob = (t_mobile *)malloc(1*sizeof(t_mobile));
    ... initialiser mob->poslig mob->poscol ...
    return mob;
}

int main()
{
    t_mobile *fantome;
    t_mobile *gorille;
    fantome = creer_mobile(dans la cave);
    gorille = creer_mobile(sur l'échafaudage);
    ...
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Entrées/sorties des sous-progs.

● On arrive à une conception "objets"

t_mobile * creer_mobile(paramètres initiaux...);

void bouger_mobile(t_mobile *mob, t_carte *terrain);

void dessiner_mobile(t_mobile *mob, t_carte *ecran);

void detruire_mobile(t_mobile *mob);

... 
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Entrées/sorties des sous-progs.

● On arrive à une conception "objets"
int main()
{   t_carte *terrain, *ecran;    
    t_mobile *fantome, *gorille;

    terrain = charger_terrain("new_york.txt");
    ecran = creer_ecran(terrain->nblig, terrain->nbcol);
    fantome = creer_mobile(dans la cave);
    gorille = creer_mobile(sur l'échafaudage);

        bouger_mobile(fantome, terrain);
        bouger_mobile(gorille, terrain);
        dessiner_terrain(ecran);
        dessiner_mobile(fantome, ecran);
        dessiner_mobile(gorille, ecran);
        afficher_ecran(ecran);

    detruire_mobile(fantome); detruire_mobile(gorille);
    detruire_terrain(terrain); detruire_ecran(ecran);

Boucle
de jeu
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● Conception → découpage en sous-programmes

● Sous-programme = sous-traitant spécialiste

● Prototype = nom + format d'appel du sous-programme
nom : résumé de la spécialité du sous-programme 
paramètres in : nécessaires au job du sous-programme
paramètres out, retour : résultat(s) du job

● Prototype + Commentaires/Documentation

→ Définition du CONTRAT du sous-programme
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● Le contrat engage les 2 parties

– Appelant (prog. utilisateur du sous-programme)

– Appelé (le sous-programme)

● Il définit de manière explicite les entrées correctes
sous forme de conditions à respecter

● L'appelant s'engage à fournir à l'appelé 
    des entrées correctes

● L'appelé s'engage à fournir en réponse à l'appelant 
     des sorties correctes  
     en réponse à des entrées correctes
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Sous-programme
correct

CORRECTE

CORRECTE

entrée

sortie

Sous-programme
non correct

CORRECTE

Plantage
Blocage

Non correcte

entrée

sortie

Le contrat définit les entrées correctes et les sorties correctes résultantes
Le sous-programme doit respecter le contrat pour être considéré correct
Le sous-programme est donc testé/validé sur des entrées correctes
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Sous-programme
correct

CORRECTE

CORRECTE

entrée

sortie

Sous-programme
correct

CORRECTE
Cas particulier

CORRECTE :
Traitement spécial

et / ou
Retour code erreur

entrée

sortie

Le contrat définit les entrées correctes et les sorties correctes résultantes
On peut définir des cas particuliers "à problèmes" comme faisant partie 
des entrées "correctes" → correctes car correctement gérées
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Sous-programme
correct

CORRECTE

CORRECTE

entrée

sortie

Sous-programme
correct

NON CORRECTE

Plantage
Blocage

Non correcte
Subtilement N.C.

Effet de bord ailleurs
Correcte provisoirement

entrée

sortie

?

Le contrat définit les entrées correctes et les sorties correctes résultantes
Le contrat ne dit rien sur l'issue pour mauvaises données venant de l'appelant
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● La rédaction des contrats est un élément essentiel 
de la conception 
Il faut anticiper les besoins futurs...

● La bonne compréhension et le respect du contrat 
est indispensable côté appelé pour implémenter 
un sous-programme correct.
- La gestion des cas particulier est indispensable
- La gestion "correcte" des entrées non correctes n'est 
           pas souhaitée   et/ou    pas possible

● La bonne compréhension et le respect du contrat 
est indispensable côté appelant pour utiliser  
correctement un sous-programme correct.

La lecture du code d'implémentation est inutile.
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Exemple : la fonction printf
● Contrat rédigé en 1978 (avec extensions ultérieures)

Depuis :  printf("%d\n", x);  → afficher l'entier x

● Côté appelé implémentations propres à chaque
système/compilateur. 
Plus de 2000 lignes de code directement impliquées...

● Côté appelant : utilisez printf sur la base du contrat !
Conformité au contrat garantie : 
                              certification ANSI C89/C99  

La lecture du code d'implémentation est inutile.

http://linux.die.net/man/3/printf
https://sourceware.org/git/?p=glibc.git;a=blob;f=stdio-common/vfprintf.c
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