JJI ECEPARIS Prog. Orientée Objet / C++ INGE2 S3
TD/TP 10

Exceptions & flots

Objectifs, méthodes

Les exceptions sont un mécanisme de rupture de la séquence d’exécution normale vers un
code de traitement d’erreurs (bloc catch) des qu’une anomalie est signalée (exception lancée :
throw) soit par notre code soit par le code des bibliothéques utilisées. Le mécanisme ne marche que
si I’exécution se fait dans ou depuis un bloc try. devant le bloc catch.

Les flots permettent de transformer des données complexes de différents types (entiers,
flottants, chaines, structures composites...) en données séquentielles de types flots d’octets (stream)
et réciproquement. Un stream peut étre vers/depuis une chaine ou vers/depuis un fichier ou
vers/depuis la console. Ces flots sont un outil indispensable de communication entre le logiciel et le
monde extérieur : les entrées/sorties.

Exceptions et flots n’ont pas de lien direct, mais ils ont été présentés dans le méme cours dans
la mesure ou la gestion des anomalies devient un probléeme inévitable des qu’on s’intéresse aux
entrées/sorties : le logiciel n’a pas le méme contréle sur le monde extérieur que sur son petit monde
intérieur.

L’objectif est de pratiquer ces mécanismes nouveaux (cin/cout ne sont pas nouveaux mais sont
maintenant considérés comme des instances particulieres de istream/ostream). Ce sujet essaye de
proposer des exercices simples et progressifs pour tous, ponctués de corrigés pour ne pas rester
bloqué ou pour confirmer votre approche ou si vous voulez voir une fagon « canonique » de faire.

Les concepts du cours couverts par ce TP seront (pas nécessairement dans cet ordre)
* exceptions
* flots fichiers
* flots chaines
* sérialisation (inévitablement long : facultatif)

1. Le caractere '\n', les chaines multi-lignes, std: :ostringstream

D’abord dissipons un malentendu qui risque de brouiller la compréhension des exos suivants :
nous sommes bien d’accord que quand on parle de « une chaine de caractére » ¢a n’est pas la méme
chose que « une phrase sur une seule ligne ». Une chaine est une séquence d’octets, parmi les octets
possiblesil yale "a' (ASCI197)le "A" (ASCII65) le '@" (ASCII 64) etc... et le "\n" (ASCII 10")

Le «retour ligne » est donc un caractere comme un autre, il se stocke trés bien au milieu/a la
suite des autres dans la séquence des octets d’une chaine. Sa spécificité n’apparait que lors d’un
affichage : le caractere ' \n' quand il est affiché est « invisible » mais fait passer la suite a la ligne.

1 En fait le '\n' a une correspondance ASCII qui dépend du systéme. Pour des raisons a la fois historiques et
d’absence de bonne volonté (abus de position dominante) la console et les fichiers Windows utilisent un doublet
d’octets (ASCII 13-ASCII 10) ce qui est une source constante de friction et d’incompatibilité. En interne dans nos
programme le '\n" est bien représenté par un seul octet de code ascii 10, il tient bien sur un seul char.

Robin Fercoq / ECE 1/10 TD/TP 10 : Exceptions & flots

Et du coté des entrées, quand il apparait dans une saisie il signale la validation de la saisie, il
est donc difficile de saisir un '\n" dans un char ou une chaine de la méme facon que les autres. On
verra qu’en C++ les espaces en général jouent le méme role de séparateur (mais pas de validateur !)

Je vous propose quelques codes de tests pour s’assurer qu’il n’y a aucune confusion par
rapport au role de '\n'

- spécifique dans les saisies/affichages : ce n’est pas un caractére comme un autre

- pas du tout spécifique dans les chaines : c’est un caractére comme un autre

Créez un nouveau projet C++, appelez le tests retours lignes par exemple...

D’abord testons que je ne raconte pas de bétises. Pour afficher le code ASCII et non pas le symbole
d’un caractere on peut le caster en type entier. Vérifier les codes indiqués page précédente pour le

a' le'A'le '@"' etle "\n" (des fois il faut le voir pour le croire) :

std::cout << (int)'a' << std::endl;

De ce point de vue '\n' est comme un autre. Mais si on essaye de le saisir on a une surprise,
dans ce code essayer successivement de saisirle 'a' le "A' le '@" et le retour ligne et I’espace :

char c;
std::cin >> c;
std::cout << (int)c << std::endl;

Retour ligne et espace sont des séparateurs, ils sont donc ignorés dans les entrées en tant que
valeurs a saisir, ils ne peuvent pas étre saisis, pas directement... Si on veut capter les espaces dans
une saisie, il faut saisir une phrase dans une chaine. Ce qui implique (bizarrement, je suis d’accord)
d’abandonner la syntaxe >> et d’utiliser la fonction getline. Tester le code ci-dessous a gauche avec
une phrase comme « Bonjour le monde ! », puis avec une phrase qui commence par des espaces «
Bonjour le monde ! ». Voyez que les espaces n’entrent par avec >> ils servent de séparateurs mais
ils sont ignorés en tant que valeur. De méme avec le code a gauche on ne peut pas entrer une phrase
vide, tester. Tester maintenant le code ci-dessous a droite avec les mémes phrases, vérifier que le
fait d’entrer une phrase vide (valider directement) conduit non pas a une chaine avec \n dedans mais
bien a une chaine vide. Le \n de validation est enlevé de la chaine saisie par getline !

std::string ligne; std::string ligne;
std::cin >> ligne; std::getline(std::cin, ligne);
std::cout << "\"" << ligne << "\"" << std::endl; std::cout << "\"" << ligne << "\"" << std::endl;

Revenons un instant sur \n dans une chaine. J’ai dit qu’on pouvait avoir un \n dans une chaine
comme un caractere normal. Afficher depuis le main la chaine retournée par cette fonction :
std::string foo()

{
}

return "Ligne 1 patati patata\nLigne 2 yodli yodla\n";

Pourrait-on remplacer directement les \n de cette chaine constante par des std::endl ?
Pourquoi ? Et si on voulait assembler cette chaine ligne pas ligne? On peut utiliser la
concaténation, partir d’une chaine vide et ajouter les lignes une par une : compléter la version 2 de
foo pour obtenir le méme résultat que précédemment depuis 1’appel du main.

std::string foo() // correction page suivante...

{

std::string lignel
std::string ligne2
a compléter !

"Ligne 1 patati patata";// utiliser, pas modifier
"Ligne 2 yodli yodla"; // utiliser, pas modifier

Robin Fercoq / ECE 2/10 TD/TP 10 : Exceptions & flots

Corrigé si vous étes coincé (sélectionner, copier, puis coller dans votre code) :

—=

La concaténation marche pour construire une chaine complexe, y compris une chaine multi-
lignes, a partir d’informations en morceaux. Mais en plus de nécessiter une syntaxe spécifique elle
présente 1’inconvénient de ne pas étre aussi souple qu’un affichage direct avec std::cout<<. En
particulier il serait plus difficile d’y injecter des valeurs numériques. Il peut donc étre intéressant de
traiter une chaine comme std::cout. Ce n’est pas possible directement dans une std::string mais
c’est possible avec un objet std::ostringstream, lequel peut ensuite facilement se convertir en string :

std::string tableDeSept()
{

std::ostringstream oss; // #include <sstream>

0ss << "Table de 7" << std::endl;

for (int i=1; i<=10; ++i)

0SS << "7 x " k< 1<« " =" << 7*1 << std::endl;

return oss.str(); // renvoie la chaine ci contre =>

}

Table de 7
x1=17
= 14
=21
= 28
= 35
= 42
= 49
= 56
= 63

ooNOTUVTPA,WN

NN NN N NN NN
X X X X X X X X X

=
(W)

= 70

Sur le méme principe, modifier le code de foo pour assembler la chaine résultante avec un

ostringstream. Utiliser std::endl a la place de \n. Le résultat, vu du main doit étre identique.

—

Corrigé si vous étes coincé (sélectionner, copier, puis coller dans votre code) :

Finalement, le but de ce 1* exercice est d’obtenir un sous-programme _gui assemble et renvoie

d ’appelant _une chaine « multi-lignes » qui_correspond d_une_séquence _de lignes saisies par

Lutilisateur, la fin de la saisie étant indiqué par une ligne vide. Exemple, avec ce que I’utilisateur

entre a gauche et la chaine saisie au milieu : c’est a dire exactement ce que 1’utilisateur a entré sauf

la derniére ligne vide qui sert juste a indiquer qu’on a terminé de saisir. A I’affichage on peut

ajouter des caracteres encadrant la chaine recue, par exemple " juste avant et juste aprés la chaine
our vérifier qu’on n’a pas un retour ligne en trop. A droite corrigé complet.

Résultat recu et
Saisie de I’utilisateur affiché par I’appelant Corrigé
encadré par des "
]
patati patata<d "patati patata F
yodli yodla<d yodli yodla
Robin Fercoq / ECE 3/10 TD/TP 10 : Exceptions & flots

Application « a la carte »

L’objectif qu’on se donne maintenant est une simulation de communication wifi entre un
terminal de saisie embarqué pour des commandes de boisson en terrasse d’une brasserie parisienne
et un terminal au bar, lu par fred le barman. Le terminal de saisie des commandes correspondra a la
fonction foo qu’on vient d’étudier, le terminal de réception sera un sous-programme qui s’appellera
logiquement bar, et le sous-programme barman sera fred. L’échange entre foo et bar se fait par un
paquet internet, il faut donc qu’il se fasse sous forme de flot de caractéres : foo envoie une chaine,
bar recgoit une chaine. La commande sera décomposée par bar en une succession d’appels a fred, un
appel par ligne, et pour chaque ligne fred trouvera le nombre et le nom de boisson, il affichera ce
nombre de fois le nom de la boisson entre crochets (dans un verre ou dans une tasse quoi !). On ne
traitera pas le probléme des pluriels : le serveur en terrasse est prié de ne pas mettre s a la fin des
noms de boissons.

Saisie par foo Chaine envoyée par foo | Envoyés successivement Servi (affiché)
en terrasse recue par bar a fred par bar par fred a chaque
ligne de commande
2 chocolatdd "2 chocolat "2 chocolat™ > |[chocolat]
3 diabolo menthe<J |3 diabolo menthe [chocolat]
1 planteurd 1 planteur "3 diabolo menthe" - |[diabolo menthe]
" [diabolo menthe]
[diabolo menthe]
"1 planteur" - |[planteur]

Créez un nouveau projet C++, appelez le a_La_carte par exemple...

2. Parsing de chaine, std: :istringstream

Commencons par fred le barman. Le but est de décomposer une chaine recue en morceaux,
pour y retrouver des valeurs numériques ou textuelles. On va traiter la chaine entrante comme
std::cin. Ce n’est pas possible directement depuis une std::string mais c’est possible avec un objet
std::istringstream, lequel peut étre initialisé facilement a partir d’une string. Si vous pensez avoir
compris le principe passez directement a la version 2, sinon faites la version 1 d’abord.

Version 1 : mise en place avec std::cin. On va avoir un sous programme sans parametre entrant
et sans return, qui lit a la console (avec std::cin) un nombre entier puis une chaine. Il affiche nombre
fois cette chaine entre crochets, séparé par des retours ligne. Par exemple quand on appelle ce sous
programme et qu’on saisi a la console « 2 » puis « chocolat » il affiche directement

[chocolat]

[chocolat]

Pas de corrigé ... c’est en principe assez simple. A ce stade on ne demande pas encore de gérer
les noms de boissons en plusieurs mots (diabolo menthe), on verra plus tard.

Version 2 : maintenant le sous-programme fred recoit un parameétre string ligne qui
contient, par exemple, « 2 chocolat », et il doit d’abord déclarer une istringstream iss avec
cette chaine en parameétre du constructeur puis tout se passe ensuite comme pour une saisie directe
avec std::cin sauf qu’on utilise iss a la place. C’est tout ! A ce stade on ne demande pas encore de
gérer les noms de boissons en plusieurs mots. Pour tester on fait I’appel suivant depuis le main :
fred("2 chocolat"); // Corrigé page suivante.

Robin Fercoq / ECE 4/10 TD/TP 10 : Exceptions & flots

Version 3 : maintenant le sous-programme fred va gérer les noms de boissons en plusieurs
mots (vous pouvez tester que la version 2 précédente ne marche pas bien dans ce cas). Il suffit de
remplacer la saisie du nom de la boisson qui se faisait avec iss >> nomBoisson; par un getline :

iss.ignore(); // Saute 1’espace qui séparait le nombre du nom de la boisson

std::getline(iss, nomBoisson); // Lire le reste de la ligne comme étant le nom de la boisson

Tester avec 1’appel depuis le main fred("3 diabolo menthe");

3. Lecture ligne par ligne d’un flot entrant

On va finaliser 1’application avec le sous-programme bar. Il recoit une chaine « multi-ligne »
et appel fred avec chaque ligne successivement. La lecture ligne par ligne d’un flot entrant se fait en
enchalnant des getline. Quand le flot se termine parce qu’on est a la fin d’un istringstream ou la fin
d’un ifstream la fonction getline échoue et renvoie false®. La lecture ligne par ligne d’un fichier ou
d’un istringstream prend donc en général la forme suivante :

std::string ligne;
while (std::getline(flotEntrant, ligne))
{

}

// faire quelque chose avec la ligne récupérée

Utiliser ce schéma de lecture ligne par ligne pour écrire le sous-programme bar. Le tester avec:
bar("2 chocolat\n3 diabolo menthe\nl planteur\n"); // depuis main

]
Finalement le main de I’application qui permet de saisir interactivement une commande et de

la passer au bar et de se faire servir (attention aux abus...) :
int main()

{
/// Récupération d'une commande sur le terminal du serveur
std::string commande = foo();
/// La commande est sous forme de chaine de caractere
std::cout << "Le paquet qui passe par le wifi :\n"
<< "<<\n" << commande << ">>\n\n";
/// La commande est envoyée au bar pour étre préparée...
bar(commande) ;
return 0;
}

2 Techniquement getline retourne une référence au flot entrant, mais dans un contexte de test cette référence est
implicitement convertie en pointeur qui est lui méme converti en bool. No comment.

Robin Fercoq / ECE 5/10 TD/TP 10 : Exceptions & flots

https://stackoverflow.com/a/4708462

4. Sauver fichier, std: :ofstream

A partir du code déja réalisé on n’est pas loin de pouvoir faire transiter la commande par un
fichier plutot que par une chaine. Supposons que la programmation de 1’envoi direct d’un paquet sur
le wifi s’avere trop compliquée et qu’on préfere passer par un lecteur réseau : la commande en
terrasse passera bien par le wifi mais en tant que fichier. On veut alors maintenant que foo en
terrasse écrive la commande dans un fichier et que bar lise ce fichier. Pour ne pas se mélanger
avec le projet précédent, créez un nouveau projet C++, appelez le fichier_en_terrasse par
exemple... Copiez-collez I’intégralité du code précédent.

Madifier foo pour qu’il écrive un fichier au lieu de retourner une chaine : foo ne retourne plus
rien et le nom du fichier sera recu en parameétre entrant. Dans foo, au lieu d’un ostringstream on
utilise un objet flot de sortie vers fichier ofstream. La déclaration (le constructeur) de ce dernier
nécessite un parametre nom de fichier : lui passer le nom recu par foo ! Le nom d’un ostringstream
est traditionnellement oss, pour un ofstring on pourra le renommer en ofs. Enfin comme 1’ouverture
d’un fichier est toujours un processus dont la réussite dépend du « monde extérieur » (le répertoire
n’existe pas, le fichier est verrouillé par une autre application, le lecteur réseau est inaccessible...) il
faut tester si il y a un probléme. Comment réagir ? Ca dépend de ce qu’on veut faire pour remédier
au probleme, pour I’instant on peut se contenter d’indiquer qu’il y a un probleme avec un message
std::cerr << ... et faire un return anticipé (ou mettre le reste du sous-programme dans un else). On
verra les exceptions a ’exo 7.

Tester avec ce code appelant dans le main : foo("commande.txt"); et vérifier que 2 ou 3
lignes de commandes saisies en terrasse arrivent bien dans le fichier « commande.txt » du répertoire
d’exécution (pour macOS avec Xcode c’est comme pour trouver output.svg...)

Tester avec ce code appelant dans le main : foo("inexistant/commande.txt"); C’est a
dire qu’on demande de créer et d’écrire un fichier dans un sous-répertoire qui n’existe pas. Vérifier
que la gestion d’erreur est correcte : la saisie n’a pas lieu et on a bien le message d’erreur prévu en
cas de Rrobléme, faire en sorte que le chemin/nom du fichier apparaisse dans le message.

—r
 ——

5. Charger fichier, std: :ifstream

Modifier bar pour qu’il lise un fichier au lieu de parser une chaine : au lieu d’une chaine
contenant la commande, le nom du fichier sera recu en parameétre entrant. Dans bar, au lieu d’un
istringstream on utilise un objet flot d’entrée depuis fichier ifstream. La déclaration (le
constructeur) de ce dernier nécessite un parametre nom de fichier : lui passer le nom recu par bar !
Le nom d’un istringstream est traditionnellement iss, pour un ifstring on pourra le renommer en ifs.
Enfin comme 1I’ouverture d’un fichier est toujours un processus dont la réussite dépend du « monde
extérieur » (le fichier a lire n’existe pas ou est inaccessible...) il faut tester si il y a un probléme.
Comment réagir ? Ca dépend de ce qu’on veut faire pour remédier au probléme, pour I’instant on
peut se contenter d’indiquer qu’il y a un probléme avec un message std::cerr << ... et faire un return
anticipé (ou mettre le reste du sous-programme dans un else). On verra les exceptions a I’exo 7.

Robin Fercoq / ECE 6/10 TD/TP 10 : Exceptions & flots

Neutraliser dans le main I’appel a foo pour tester séparément bar avec ce code appelant
bar("commande.txt"); et vérifier que la commande saisie en terrasse lors de 1’exécution
précédente est bien lue depuis le fichier « commande.txt ». Vérifier que la gestion d’erreur est
correcte : si on remplace "commande.txt" par un nom de fichier qui n’existe pas alors fred n’est pas
appelé (pas de boisson servie) et on a bien le message d’erreur prévu en cas de probléme, faire en
sorte ﬁue le chemin/nom du fichier apparaisse dans le message.

r—

6. Facultatif : gestion avancée des anomalies

L’énoncé de cet exo est une indication de ce qu’on pourrait vouloir faire pour aller au dela en
matiére de gestion des anomalies pour I’application « fichier_en_terrasse ». A moins d’étre trés
productif et gravement motivé il est recommandé d’étudier la gestion des exceptions a I’exo 7, plus
simple et plus détaillé.

Il faudrait pour étre plus complet dans la couverture des anomalies remplacer la gestion des
problémes d’ouvertures des fichiers par le lancement d’exceptions (runtime_error). D’autre part il
n’est pas évident que le format recu soit correct : dans fred tester la bonne lecture des éléments dans
la ligne en vérifiant .fail() sur le flot istringstream, lancer une exception si nécessaire. Il est
préférable de traiter les problémes en amont, et il est préférable de ne pas lancer une exception
quand on peut I’éviter. Lors de la saisie de la commande (dans foo) il serait souhaitable de faire une
vérification du bon format de chaque ligne saisie (a mesure qu’elles arrivent). Une fonction
commune utilisée par foo et par fred pour valider/parser une ligne serait utile. Mais quand un
probléme de parsing de ligne de commande arrive dans foo, plutot que de lancer une exception on
peut re-demander une nouvelle saisie selon le « blindage » classique. Sauf que contrairement a un
blindage classique on voudra autoriser le client qui fait la saisie a ne pas rester bloqué : il a le droit
d’indiquer qu’il veut annuler sa commande et « aller dans un bar plus sympa ». Dans ce cas on s’en
sort avec une exception. Enfin plutét que de « servir » (afficher) une partie de la commande avant
de se rendre compte qu’il y a un probleme (fichier corrompu...), le bar devrait attendre que le
plateau soit complet : ceci implique que fred ne travaille plus directement dans std::cout mais vers
un ostringstream& plateau recu en parametre par référence de bar, lequel ne livre la commande
(affiche le plateau) que si la totalité de la transaction s’est bien déroulée ! Naturellement il ne suffit
pas de lancer des exceptions, encore faut-il les gérer, donc prévoir un/des blocs try/catch appropriés.

7. Exceptions : gestion des cafards

Créez un nouveau projet C++, oggy et les cafards par exemple, collez le code suivant:

#include <iostream>
#include <string>

std::string preparerDinerRomantique();
std::string recupererCave(std::string quoi);

int main()
std::string tableSalon;
tableSalon = preparerDinerRomantique();
std::cout << tableSalon << std::endl;

return 0;

std::string preparerDinerRomantique()

std::string table;

table += recupererCave("vin") + "\n";

table += recupererCave("decoration") + "\n";
table += recupererCave("legumes") + "\n";
return table;

Robin Fercoq / ECE 7/10 TD/TP 10 : Exceptions & flots

std::string recupererCave(std::string quoi)
if (quoi=="vin") return "Bouteille de Bordeaux";
if (quoi=="legumes") return "Poireaux";
return "Cafards";

}

Remettre en forme (Code::Blocks menu Plugins => Source code formatter (AStyle) Tester...

Constater que notre diner romantique aux chandelles est ruiné ! Bien siir on ne veut pas

juste ajouter if (quoi=="decoration") return "chandelles"; c¢a résoudrait cette

utilisation particuliére mais pas une autre. Le probléme général c’est de demander une chose qui n’a

pas de correspondance : dans ce cas la valeur de retour spéciale "Cafards" n’est qu’un symptome.

On ne résout pas un probleme en effacant un symptome : essayer de neutraliser la ligne avec le
return "Cafards"; et tester : ¢ca donne quoi ? Est-ce plus satisfaisant ?

On pourrait traiter le probleme en détectant la valeur spécial Cafards dans le code de plus haut
niveau et en tirer les conséquences (annuler proprement le diner) mais nous sommes la pour
apprendre a utiliser le mécanisme idéal pour ce genre de situation : les exceptions !

A la place de return "Cafards"; lancer une exception de type logic_error avec un
message associé expliquant que la chose recherchée n’est pas dans la cave. Ne pas oublier le
#include <stdexcept>.

Correction de recuRererCave :

Histoire de voir ce que ca fait : voyez ce qui se passe quand une exception est lancée mais que
I’appel ne vient pas d’un bloc try/catch. Et en mode debug ? (Dans Code::Blocks le triangle rouge
ou menu Debug => Start / Continue. Croix rouge ou menu Debug => Stop debugger pour arréter
proprement. Le debugger peut s’arréter ou pas sur les exceptions : en cours de debug voir menu
Debug => Information => Catch throw)

Maintenant faire comme il convient avec les exceptions : mettre le code appelant dans un bloc
try/catch avec une interception de [’exception et un affichage du message remonté. On doit sortir
proprement de la situation, avec un code d’erreur nul (c’est a dire qu’on pourrait continuer le
programme si on voulait) :

On annule le diner, raison : decoration pas dans la cave

Process returned 0 (0x90) execution time : 0.016 s
Press any key to continue.

Correction du main ;
|]

F

Robin Fercoq / ECE 8/10 TD/TP 10 : Exceptions & flots

8. Facultatif : sérialisation / dé-sérialisation de composites

Cet exo est long, c’est inévitable pour écrire du code de sérialisation/dé-sérialisation : c’est
aussi pourquoi on préfere utiliser des bibliotheques ou frameworks pour traduire nos objets en
fichiers, mais ceci dépasserait ce module POO/C++ sur un seul semestre! D’autant que certains
problemes de sauvegarde de situations complexes (entités avec double navigation) nécessitent des
concepts de théorie des graphes (2éme semestre). Si toutefois vous étes curieux de savoir comment
faire « en manuel », voici quelques indications pour un simple modéle composite par valeur.

En partant et en s’inspirant du code présenté au slide 66 du cours 10 on peut écrire le code de
sérialisation/dé-sérialisation pour les objets d’une classe AspectSphere. En s’appuyant sur ces
méthodes des classes composantes on va pouvoir écrire les méthodes équivalentes dans une classe
composite Astre pour arriver au modele suivant (utilisé au TD/TP 5) :

Astre

Coords
position = | x = 150

y = 30
masse = 18

AspectSphere

aspect = | rayon = 20

couleur = "green"

Tester au fur et a mesure. Grace aux types polymorphes istream et ostream on peut
indifféremment utiliser ces méthodes avec std::cin pour tester en manuel, ou un istringstream pour
ne pas avoir a retaper a chaque fois mais sans avoir a accéder a un vrai fichier ce qui est commode,
et enfin sans modification du code des classes tester sur fichier. Voir slide 67.

Modifier les méthodes de sérialisation si nécessaire (remplacer des std::cout par de simples
espaces) pour que les données sérialisées d’un seul Astre soient sur une méme ligne (pas de \n), ceci
nous donnera un fichier nettement plus lisible. Mettre en place une classe composite de plus haut
niveau : Systeme. Un objet de la classe Systeme encapsulera un vecteur ou une liste d’objets Astre
(gérés par valeur ou par adresses obtenues dynamiquement avec new). Coder les méthodes de
sérialisation de la classe systeme. En ignorant la gestion d’erreurs on peut arriver a la structure
suivante pour le main qui permet de retrouver le méme systéme de session en session :

int main()

{
std::ifstream ifs{"systeme.txt"};
Systeme principal{ifs}
ifs.close();

int choixMenu;
do

{
}

/// faire choix menu, switch, ajouter/editer des Astres...

std: :ofstream ofs{"systeme.txt"};
principal.serialize{ofs};
ofs.close();

return 0;

Robin Fercoq / ECE 9/10 TD/TP 10 : Exceptions & flots

https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours10_exceptions_streams_serialization.pdf#page=66

Dans le fichier on trouvera une ligne par objet de type Astre. Avec ce genre de liste d’objets,
c’est souvent une approche efficace d’avoir prévu (a la sauvegarde) dans le fichier le nombre des
objets avant les données de ces objets.

Cette structure du main reste rudimentaire. Il convient d’ajouter une gestion d’erreurs solide
avec les exceptions, en particulier au chargement, et de ne pas écraser systeme.txt avec les données
d’un systeme principal « par défaut » c’est a dire vide ou presque (le remede serait pire que le mal!)

Il existe de nombreuses variantes. Dans les classes on peut avoir un constructeur par défaut et
une méthode unserialize plutot que de faire la dé-sérialisation directement dans le constructeur (ce
qui peut poser des problemes d’ordre, de logique de controle trop difficile a faire dans une liste
d’initialisation...). On peut surcharger les opérateurs << et >> pour donner a nos types un usage
similaire aux types de la bibliotheque standard : on pourra alors sauver ou afficher un objet avec un
simple ofs << astre[i] ou std::cout << astre[i] (voir cours 4 surcharge d’opérateurs, avec des structs
sur I’exemple, avec une classe il convient de déclarer friend I’opérateur dans la classe)

Robin Fercoq / ECE 10/10 TD/TP 10 : Exceptions & flots

https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours4_C++_pratique_2.pdf#page=93
https://www.geeksforgeeks.org/overloading-stream-insertion-operators-c/

	Objectifs, méthodes
	1. Le caractère 'n', les chaînes multi-lignes, std::ostringstream
	Application « à la carte »
	2. Pa rsing de chaîne, std::istringstream
	3. Lecture ligne par ligne d’un flot entrant
	4. Sauver fichier, std::ofstream
	5. Charger fichier, std::ifstream
	6. Facultatif : gestion avancée des anomalies
	7. Exceptions : gestion des cafards
	8. Facultatif : sérialisation / dé-sérialisation de composites

