Il ECEPARIS Prog. Orientée Objet / C++ INGE2 53
TDITP 2

Analyse de CDC
et conception de modeles objets :
diagrammes de classes UML

Objectifs, méthodes

L’objectif que nous nous donnons lors des 2 séances de ce TD/TP (3H en tout) est de mettre en
pratique les méthodes et outils conceptuels présentés au cours 2 : en partant d’une lecture attentive
d’un Cahier Des Charges on doit parvenir a un « modeéle objet » de 1’application, c’est a dire la
description précise de toutes les classes (Noms, attributs, méthodes) et de leurs relations
(associations, roles, multiplicités, navigabilité, composition éventuelle, héritage). Cette description
prendra la forme d’un diagramme de classes normalisé en notation UML. Un ou des diagrammes
d’objets pourront servir d’intermédiaires d’étude entre le CDC et les cas concrets qu’il présente et le
modele général « abstrait » du diagramme de classes. C’est en particulier le cas pour les exos
correspondants au fil conducteur « maillage triangulé » puisque nous avons étudié des diagrammes
d’objets de ce CDC lors du TD/TP 1. Nous introduirons 2 autres sujets respectivement thématique
« réseau bancaire » et thématique « flotte de véhicules ». Le fil conducteur sur le maillage reviendra
régulierement au cours des TPs successifs : rassurez-vous, nous allons bien coder une partie de ces
études papiers préliminaires. Gardez précieusement les archives de tout le travail fait en amont !
Nous entrerons dans le vif du code C++ la semaine prochaine.

Les diagrammes de classes demandés sont a réaliser selon les conventions UML normalisées
vues au cours 2. Dans le domaine de la modélisation il est fréquent que de nombreuses variantes
soient acceptables : il n’y a pas forcément une réponse juste, les modeles restent ouverts a la
discussion. De ce fait lors des évaluations d’exercices UML (suivi de TP, DS...) nous faisons un
effort de souplesse, nous essayons de voir en quoi votre modéle objet peut étre correct. Cependant
toute violation manifeste des concepts objets et/ou de leur représentation UML est sanctionnée

Fil conducteur : Sujet maillage 2D triangulé

7y

= -
L2, 'Av‘:"ﬂ
VAVAVAVAVAva)

L’équipe de développement en charge du projet est heureuse d’apprendre que le Cahier Des
Charges initial n’a pas évolué. Sans doute parce que c’est un CDC rédigé par des informaticiens qui
veulent une bibliotheque utilitaire de bas niveau : les informaticiens savent spécifier des exigences
informatiquement précises ! Pour 1’exercice qui suit veuillez vous référer au CDC complet sur
I’énoncé du TD/TP 1 : https://fercog.bitbucket.io/cpp/tdtp/OOP_C++ tdtp1.pdf

Et pour les plus courageux : voir complément sur composition/association, 2 derniéres pages de ce TD/TP 2

Robin Fercoq / ECE 1/7 TD/TP 2 : Diagrammes de classes

https://fercoq.bitbucket.io/cpp/tdtp/OOP_C++_tdtp1.pdf#page=5

1. Faire le diagramme de classes pour le sujet maillage 2D triangulé

En vous aidant des analyses et des diagrammes d’objets du TD/TP1, appliquez les concepts et
outils du cours 2 pour proposer un diagramme de classes du modéle objet qui vous semble le
meilleur. Si vous hésitez entre plusieurs solutions qui vous semblent également correctes, dessinez
ces différents diagrammes de classes en commentant vos doutes par écrit.

Sujet réseau bancaire

CDC

On souhaite réaliser un simulateur de réseau bancaire. I’application sera monoposte et mono-
utilisateur, aucun aspect réseau (transmission de paquets Internet) ne sera étudié, ni aucun aspect
base de données (SQL etc...). La persistance des données passera par sauvegarde/restauration d’une
simulation en cours (toutes données sauvées / toutes données restaurées, voir cours 1 page 22).
Les différentes opérations sur le réseau simulé se feront par la console avec un menu interactif.
Ce menu interactif permettra de visualiser tout ou partie des données qui seront décrites ci-apres.

L’utilisateur de I’application pourra, au cours d’une méme cession, s’identifier successivement
comme étant soit un employé du réseau bien précis, soit un client en particulier. Suite a quoi
I’application ne devra proposer que les actions correspondantes : par exemple, une fois identifié en
tant que client du réseau bancaire, 1’utilisateur du simulateur ne pourra plus voir que le(s) compte(s)
de ce client. Cependant a tout moment une option du menu permettra de changer d’identification :
’utilisateur du simulateur peut redevenir qui il veut, un autre client, un directeur d’agence... Dans
une 2eme phase du développement il est prévu qu’un moteur d’événements vienne interagir avec le
systéme en injectant des opérations aléatoires. L’utilisateur du simulateur pourra modifier 1’horloge
de la simulation et faire passer plusieurs semaines en quelques secondes réelles.

Le réseau correspond a une seule banque (comme on dirait que BNP est une seule banque). Le
réseau est constitué de guichets (agences physiques) et il est destiné a la « banque de détail ». On se
contentera de simuler des comptes courants pour particuliers. Un particulier pourra disposer dans ce
réseau bancaire d’autant de comptes qu’il le souhaite. Chaque compte sera rattaché a une agence.
Un client pourra changer un compte d’agence de rattachement mais un compte ne peut pas changer
de titulaire. Naturellement il sera possible d’enregistrer de nouveaux clients, d’ouvrir un nouveau
compte pour un client connu ou de cloturer un compte. Les comptes cloturés ne seront plus
utilisables mais on conservera la trace des opérations qui ont été effectuées dessus pendant au moins
1 an. Un client pourra évidemment consulter le relevé d’opérations d’un compte dont il est titulaire.

Les opérations a enregistrer sont I’ouverture, les débits, crédits, retraits liquide, dépots

liquide, cl6ture. Pour chaque opération sur un compte il faudra enregistrer date(année/mois/jour),
heure (heure/minute/seconde), montant et type (débit, crédit...). Pour simplifier on ne considére pas

Robin Fercoq / ECE 2/7 TD/TP 2 : Diagrammes de classes

https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours1_intro.pdf#page=22

le probleme de débits a découvert : les opérations de débits ou retraits liquide sont supposées
immédiates, soit la somme est présente sur le compte et I’opération est effectuée, soit la somme
n’est pas présente et 1’opération est refusée. Dans ce dernier cas 1’opération n’est pas ajoutée au
relevé d’opérations du compte. Seul le client titulaire d’un compte a le droit de faire des opérations
de débit et retraits. Lors d’un débit il peut verser la somme débitée sur un autre compte du réseau :
Mme Giroud "BNP Caen Sud" transfert 300000€ a Mme Hernandez "BNP agence du Stade Auvers"
Les employés de la banque n’ont pas le droit de faire des opérations (débiter ou créditer) sur
les comptes, sauf sur leur propre compte si ils ont un compte client (en tant que client). Comme
pour les sorties, un titulaire de compte déclare lui méme ses rentrées d’argent (crédits ou dépots
liquides). La simulation ne tenant pas compte d’une économie réelle (1’argent vient de nul part et
repart nul part) on tiendra une comptabilité séparée de toutes les sommes qui entrent et sortent du
systéeme sous forme de 2 caisses globales : totalEntrant et totalSortant. Il devra étre a tout moment
possible de vérifier la cohérence des flux financiers en faisant un bilan :
totalEntrant — totalSortant = ¥ (soldes comptes).

Les clients seront identifiés par nom(s) et prénom(s) (séparément) adresse (en 3 champs, rue,
ville, code postal) numéro de téléphone et date de naissance. Les homonymes (méme nom/prénom)
sont possibles, ils seront distingués par date de naissance (on supposera que 2 Paul Durand nés le
méme jour sont une seule et méme personne). Un client a un droit de consultation et de correction
sur toutes ses données (changements d’adresse, de numéro de téléphone...) sauf ses
nom/prénom/date naissance que seuls des employés de son agence pourront modifier. Chaque client
a un mot de passe unique pour accéder a tous ses comptes, un menu lui permet de choisir quel
compte il souhaite consulter/débiter/créditer.

Chaque agence portera un nom (par exemple « agence du Stade ») et aura une adresse et un
numéro de téléphone. Le staff de chaque agence sera suivi individuellement : chaque employé aura
ses informations personnelles nom(s) et prénom(s), adresse, numéro de téléphone, date de naissance
et dans quelle agence il travaille ainsi que son mot de passe pour faire des opérations en tant
qu’employé. Un employé aura aussi un grade parmi Stagiaire / Caissier / Directeur / DG.
Naturellement un employé peut aussi étre un client de la banque et disposer de compte(s). Pour
gérer ses comptes il se connectera en tant que client et comme un client devra donner un mot de
passe, ce mot de passe client sera distinct de son mot de passe employé : tout se passe comme si
Lucie Griezmann en tant qu’employée de banque était une personne différente de Lucie Griezmann
en tant que cliente, mais avec méme nom et méme adresse (et téléphone différent bien siir). Tous les
mois chaque agence verse un salaire sur les comptes de ses employés : ceci correspond a une
somme de 1€ prélevée sur chaque compte client géré (hors comptes des employés, pour lesquels les
frais de gestion sont offerts) le total est divisé en 3 puis réparti équitablement a chaque échelon.

Un directeur ou un DG a le droit d’embaucher/licencier un employé de grade inférieur ou égal.
Un directeur est rattaché a une agence (c’est le directeur de 1’agence) et n’a le droit de
recruter/licencier que dans son agence, il peut aussi opérer des mutations au départ de son agence
(transférer un employé de son agence dans une autre agence). Le DG recrute/licencie/mute des
directeurs au niveau national. Le DG est le seul employé qui n’est rattaché a aucune agence. Seul le
DG a le pouvoir de créer/fermer/modifier une agence. Au démarrage de 1’application on a juste un
DG et aucune agence, aucun employé, aucun client, aucun compte.

2. Défricher les classes, les attributs, les objets ou collections d'objets

A partir de la lecture du CDC repérez ce qui vous semble devoir étre des classes et leurs
attributs. Organisez vos classes avec un cadre en haut indiquant le nom que vous donnerez a la
classe (1°*° lettre en majuscule) et un cadre en dessous avec les attributs des objets de cette classe
(1 lettre en minuscule). A ce stade vous pouvez encore douter, c'est une phase préliminaire,
ajoutez des points d'interrogation a coté des éléments dont vous n'étes pas siir en précisant par écrit.

Robin Fercoq / ECE 3/7 TD/TP 2 : Diagrammes de classes

3. Diagramme de classes

Mettez en place le diagramme de classes en précisant les relations entre classes. Dans la

mesure ou le CDC est encore un peu vague d ce sujet, vous pouvez omettre des méthodes.

Sujet flotte de véhicules
[_re2 | o3 |

s B _

CDC incomplet

On souhaite réaliser une étude préliminaire pour la gestion d’une flotte de véhicules
d’entreprise. La société « Apogeo logistics », transporteur dans toute la France et au Luxembourg
des articles "sport, aventure et culture” de la SARL Culturisma et des produits coquins de la marque
Climaxeo dispose d’une importante flotte de véhicules : environ 30 camions pour les livraisons en
grosses quantités ou formats spécifiques (kayaks et catamarans vendus par Culturisma...), plus de
25 voitures pour les commerciaux, et une centaine de scooters (modeles 2-roues et 3-roues)
principalement pour la livraison urbaine et urgente des produits Climaxeo. Les usages ne sont pas
exclusifs, et certains employés ont négocié 1’usage de scooters pour leur trajets quotidien depuis et
vers leur domicile. Bien siir chaque véhicule est immatriculé et référencé par 1’entreprise.

Lors de la phase de contact préliminaire avec Apogeo, les commerciaux de la société SS2I
Culmineo dans laquelle nous travaillons comme architecte SI ont interviewé un directeur de
Apogeo. Le manager de la branche développement de Culmineo a besoin d’avoir notre avis sur le
modele objet qui découle de ces besoins pour faire une estimation de sa complexité et donc de son
colit et des délais de livraison, afin de proposer un devis a Apogeo logistics.

Charles Deschamps, directeur exécutif logistique Apogeo :
« Nous avons tous ces véhicules et un parking avec des places a attribuer. On veut savoir quel

véhicule est garé ou pour que les gars de la maintenance puissent le retrouver par rapport aux
signalements des utilisateurs. Les places sont numérotées, E15, B10 etc... On a des places de
parking adaptées aux camions, aux voitures et aux scooters. Pour chaque véhicule on veut pouvoir
dire a tout moment qui le conduit ou si il est au parking et a quelle place il est. Ce sont les
employés qui renseigneront directement les infos sur la borne (console!) a I’entrée du Parking. On
a un fichier avec tous les employés. Chaque employé peut avoir tout ou partie des permis
Voiture/Camion/Moto. Les scooters a 2-roues nécessitent un permis moto et une assurance spéciale
en plus (pour le conducteur et pour le véhicule), pas les scooters a 3-roues qui peuvent se conduire
avec un simple permis voiture. On a des modeles différents de véhicules mais on ne veut pas
ressaisir a chaque fois les méme infos (nom de modeéle, consommation...) quand on a plusieurs fois
un méme modele, en particulier pour les camions on veut connaitre hauteur/largeur/profondeur.
D’ailleurs les camions auront une info de cargaison (poids, description) quand ils ont un
chargement, pas les autre véhicules. Ah oui et on veut planifier : un employé pourra réserver
I’utilisation d’un véhicule pour telle date de telle heure a telle heure. »

Robin Fercoq / ECE 4/7 TD/TP 2 : Diagrammes de classes

4. Classes et diagramme de classes

Identifiez les classes, attributs, méthodes, et mettez en place le diagramme de classes en
précisant les relations entre classes. Dans la mesure ou le CDC est encore trés vague da ce sujet,
vous pouvez omettre des méthodes et méme des attributs en mettant « etcetera » ou « ... »
Précisez par écrit les infos manguantes, de quoi auriez vous besoin pour daffiner le modele ?

Robin Fercoq / ECE 5/7 TD/TP 2 : Diagrammes de classes

Complément d’explication sur la distinction entre valeur/référence et composition/association

Lors du TD/TP 1 nous avons vu la distinction extrémement importante en programmation C++
entre la sémantique par valeur et la sémantique par référence. Cette distinction est importante
spécifiquement en C++ parce que le C++ (comme le C#) fait la différence et que cette différence se
comprend par rapport a la facon dont les données s’organisent en mémoire. Avec une sémantique
par valeur les données d’un attribut de type classe se retrouvent dans le méme bloc de données
contigués que les données des autres attributs de 1’objet. Avec une sémantique par référence les
données d’un attribut de type classe se retrouvent dans un bloc séparé, et ce que contient le bloc de
données de I’objet référent c’est juste un pointeur (I’adresse) de ce bloc séparé.

Donc les données d’un attribut de type classe gérés par valeur ne peuvent pas étre partagées
par valeur par plusieurs objets : ils ne peuvent pas étre a la fois dans un bloc et dans un autre ! Par
contre les méme valeurs de données peuvent étre copiées facilement : les données d’un attribut de
type classe sont automatiquement clonés quand on clone I’objet englobant. Ces caractéristiques font
d’un attribut de type classe géré par valeur une traduction directe en C++ du sens qu’on donne a la
relation de composition en modélisation objet. Un attribut par valeur de type B dans une classe A
indique nécessairement une relation de composition entre A et B. B |

Les données d’un attribut de type classe gérés par référence peuvent étre référencés par
plusieurs objets qui pointent sur ce méme bloc séparé. Ils peuvent mais ce n’est pas obligé : on a le
choix, on peut décider que les données pointées sont la propriété principale d’un référent et que seul
lui est responsable de leur destruction, et dans ce cas on retrouve une relation de composition ! Un
attribut de type classe géré par référence (concrétement: par pointeur) n’implique pas
automatiquement association simple (ou agrégation) ou composition, tout dépendra de 1’usage
qu’on fera de ces données associées par rapport a la classe référente.

En conclusion : partant d’un diagramme de classes, une association simple (ou une agrégation)
entre classes doit nécessairement se traduire par un attribut par référence (concrétement pointeur).
Une composition pourra elle se traduire soit par un attribut par valeur soit par un attribut par
référence. Ca veut dire qu’on peut tout faire avec des attributs par référence ! Et les langages « haut
niveau » comme Java ne se génent pas : un attribut de type classe est automatiquement géré par
référence. En C++ on a le choix...

Diagramme de classes Diagramme d’objets Code C++
Composition Par valeur
A class A {
> attribut = 1-3- .tt but
8| T B aEEm
\ };
Association \\ Par référence

B* attribut;

A class A {
attribut = e /\
B

=] o]
\l

ou
A © ¥

Robin Fercoq / ECE 6/7 TD/TP 2 : Diagrammes de classes

Pourquoi souhaite-t-on gérer par valeur les attributs de type classe quand le modéle indique
une composition ? C’est généralement plus performant : on évite le poids non négligeable d’un
pointeur, on enléve un niveau d’indirection pour accéder a la donnée et on augmente la localité des
données (3 choses qui arrangent le processeur), et on permet a I’objet A d’étre cloné facilement et
d’emmener avec lui un clone des données de 1’attribut (ce qui est le genre de copie attendue avec
une composition).

Pourquoi ne pourrait-on pas systématiquement gérer par valeur les attributs de type classe
quand le modéle indique une composition ? Il y a souvent des contraintes qui 1’empéchent ou le
découragent... Nous en reparlerons bientot, mais en particulier les données qui sont stockées dans
les « vecteurs » qui sont des sortes de tableaux améliorés du C++ et qui peuvent augmenter de taille,
et bien ces vecteurs pour faire leur magie d’augmenter de taille doivent bouger leurs données en
mémoire. Or si on utilise un vecteur pour stocker une collection d’objets par valeur parce que ces
objets sont des composants d’une classe composite, alors ces objets composants vont changer de
place en mémoire et des objets tiers qui les pointeraient verront des adresses cassées, ce qui conduit
a un plantage complet du logiciel.

Scénario tiré par les cheveux et trop compliqué ? Et bien il se trouve que c’est justement ce qui
va arriver avec les classes Maillage, Triangle et Sommet. Les triangles partagent les objets sommet :
il est naturel de les associer et non de les composer. Un Triangle est associé a 3 Sommet. D’un autre
coté un Maillage est lui littéralement composé de ses Triangles et ses Sommets, et rien dans le CDC
ne laisse penser qu’il puisse les partager. Le modele naturel qui vient est donc une composition.
Mais si on implémente la collection de Sommets d’un Maillage sous forme d’un vecteur (ce qui est
la démarche « normale » en C++) et que ce vecteur est un vecteur de Sommet (par valeur) et non
pas un vecteur de Sommet* (par référence) alors des Sommets déja existants et déja reliés a des
Triangles vont bouger en mémoire quand on en ajoute : ceci va casser les pointeurs des Triangles
sur ces Sommets (anciens emplacements) et planter.

Finalement pour cette raison (et d’autres) on optera plutot pour une implémentation par
référence (probablement avec un vecteur de Sommet*) pour traduire en C++ la relation de
composition que le modéle donne entre la classe Maillage et la classe Sommet. On fera
probablement de méme pour la relation de composition entre Maillage et Triangle, ne serait-ce que
pour assurer un minimum de cohérence et de lisibilité.

Robin Fercoq / ECE 717 TD/TP 2 : Diagrammes de classes

	Objectifs, méthodes
	Fil conducteur : Sujet maillage 2D triangulé
	1. Faire le diagramme de classes pour le sujet maillage 2D triangulé
	Sujet réseau bancaire
	2. Défricher les classes, les attributs, les objets ou collections d'objets
	3. Diagramme de classes
	Sujet flotte de véhicules
	4. Classes et diagramme de classes

