Il ECEPARIS Prog. Orientée Objet / C++ INGE2 53
TD/TP 3

C++ pratique 1
Les techniques courantes

Objectifs, méthodes

Enfin du code ! En cours différents « outils » du C++ ont été présentés comme un catalogue.
Lors de ce TP vous apprendrez a les utiliser et a les combiner. Nous n’avons pas encore assez de
bagage C++ a notre disposition pour attaquer I’implémentation des modeles objets étudiés sur les 2
1°* TD, en particulier le développement de classes sera couvert aux cours 5 et 6. Mais nous pouvons
tout de suite étre utilisateurs de classes :

* std::istream avec I’objet « saisies » cin

* std::ostream avec I’objet « affichage » cout

* std::string pour les chaines de caractéres, avec ses nombreuses méthodes pratiques
* std::vector<> pour les collections : les « tableaux élastiques »

Outils, plateformes, format

Dans ce TD/TP nous allons travailler sur machine. L’environnement de développement
utilisé pour rédiger mes TPs est Code::Blocks 17.12 et son compilateur GCC (TDM-GCC 5.1.0)
le tout sur Windows. Il est possible de faire les TPs avec un autre environnement a condition de
disposer d’un compilateur C++ récent (C++14), en particulier si_vous développez sur Xcode
(macOS) vous n’étes pas obligés de passer en Windows/VirtualBox etc... : vous pouvez rester en
natif sur macOS ou votre Linux distro préférée. Pour les quelques manipulations commencant par
« Sur Code::Blocks allez dans le menu Machin — Truc — Bidule ... » il faudra trouver 1’équivalent.
La conséquence de cette portabilité est que nous nous limitons a des programmes en console.
Il y a bien siir des bibliotheques d’interfaces graphiques portables (cross-platform) en C++ mais
leur technicité ne permet pas de les utiliser en méme temps que 1’apprentissage du C++.

Les TD/TPs sont au format .pdf ce qui garantit que les documents gardent leur mise en page.
Malheureusement le copier-coller de code depuis un pdf souffre d’une perte de formatage
y compris les sauts de ligne. Afin de faciliter ’utilisation des codes donnés en exemple dans les
énoncés, vous trouverez en correspondance un lien vers un service d’hébergement de code
avec le code source bien formaté, par exemple : http://cpp.sh/25p46
Vous pouvez récupérer le code avec Ctrl-A puis Ctrl-C (tout copier), et Ctrl-V (coller) dans 1’éditeur
ou vous travaillez (par exemple Code::Blocks). Le service permet également de compiler/tester
directement de courts extraits de code, mais préférez un IDE complet comme Code::Blocks qui
deviendra vite indispensable (projets multi-fichiers...)

- Dans les exercices vous trouverez un texte d’introduction, en écriture droite.

- La tdche principale a réaliser est décrite en italique souligné.

- Suivent souvent des explications sur la facon de réaliser cette tache, en écriture droite :
si vous ne savez pas comment réaliser la tache demandée dans le texte en italique
souligné, lisez la suite !

Robin Fercoq / ECE 1/11 TD/TP 3 : C++ pratique 1

http://cpp.sh/25p46

1. Testez votre environnement de développement

Dans Code::Blocks ou dans votre environnement de développement préféré créez un nouveau
projet console en C++ bien siir.

Dans Code::Blocks menu File - New — Project... puis « Console application » puis C++.
Sélectionner un répertoire (ne pas mettre tout en vrac sur le bureau !) et préciser un Project title
(éviter les espaces, les accents, utiliser lettres, chiffres, et underscore_) valider pour le reste :
boutons Next puis Finish. Ouvrir main.cpp, voir le code par défaut qui est proposé (vous devriez
tout comprendre!) exécuter, ca doit marcher.

Vérifier dans menu Help — About... la derniére version est 17.12 et il est préférable d’avoir
cette derniere version. Pour rappel, sous Windows le package Code::Blocks a installer se trouve au
4eéme lien de la rubrique Windows : sur http://www.codeblocks.org/downloads/26 c’est le fichier
codeblocks-17.12mingw-setup.exe

Le code par défaut proposé par Code::Blocks est le suivant (si vous n’avez pas CodeBlocks,
recopiez ce code) vérifiez qu’il compile et s’exécute :

#includ iost
nerude <lostrean http://cpp.sh/4wud

using namespace std;

int main()

{

cout << "Hello world!" << endl;
return 0;

2. Namespace std

Ca marche. Pourtant si vous avez suivi le cours, quelque chose doit vous choquer...
En effet on annule I’intérét d’encapsuler les identifiants de la bibliothéque standard dans un
namespace en utilisant un « using namespace ». Imaginons que nous sommes dans une application
scientifique de simulation. Un chercheur (pas spécialiste du C++) a déclaré des variables au début
du main, 3 coefficients a, b et c et leurs futurs logarithmes alog, blog et clog :

double a, b, c, alog, blog, clog;

Tout se passe bien mais un jour il y a un bug qui nécessite 1’intervention d’une collegue plus
calée en C++. La collegue voit le using namespace au début mais pas les déclarations qui sont
noyées dans le main{...} qui est devenu trop grand. Pour faire du debug elle est habituée a
afficher des infos avec clog (character log, log = archive des événements) au lieu de cout (character
output) parce qu’on peut par exemple facilement rediriger ces messages vers un fichier (ce qui évite
d’encombrer la console). Elle gjoute la ligne suivante vers la fin du main :

clog << "Point de controle 175 Ok" << endl;

FEaites les manips en vert. Compiler. Que se passe-t-il ? Le message d’erreur est-il sympathique ?
Corriger le probleme en supprimant le « using namespace_». Préciser pour chaque utilisation d’un
objet de la bibliotheque standard (cout, endl et clog) en préfixant par std:: puis compiler / exécuter

A partir de maintenant a chaque ouverture de projet votre 1* réflexe devrait étre de supprimer
la ligne using namespace proposée « par commodité » par Code::Blocks. On prend vite 1’habitude
de préfixer par std:: et c’est la facon normale (sérieuse) de faire du C++.

Robin Fercoq / ECE 2/11 TD/TP 3 : C++ pratique 1

http://www.codeblocks.org/downloads/26
http://cpp.sh/4wud

3. Configurer le compilateur pour utiliser C++14 sous Code::Blocks

Nous n’allons pas immédiatement étudier toutes les fonctionnalités les plus récentes du C++
mais nous voulons quand méme utiliser une version « a jour » du langage et de ses bibliothéques.
La version par défaut remonte au C++98, il est temps de mettre a la retraite cet ex-teenager !

Sur Code::Blocks aller dans le menu Settings -> Compiler... et cocher ’option -std=c++14

Compiler settings |Linker settings I Search directories | Toolchain executables I Custom v

Policy:

Compiler Flags | Other compiler options | Other resource compiler options | #deﬁnes|

B General
Have g++ follow the 1995 IS0 C++ language standard [-std=c++83] []

Have g++ follow the C++11 IS0 C++ language standard [-std e ™~
Have g++ follow the C++14 IS0 C++ language standard [-ste =c++14] b
Have g++ follow the coming C++0x (Mg c++11) C++ [anguadErmhee=r—|

Have g++ follow the coming C++1y (aka 14) IS0 C++ language star []
Have g++ follow the coming C++1z (#fa C++1 O C++ language star [

T R i | PR MY N F P S R S S [SOOI T)| (RO SR

i

Une fois confirmé veérifier que ca recompile bien (menu Build -> Rebuild ou Ctrl + F11)
et que vous avez I’option voulue dans le « Build log » sous la fenétre d’édition :

4| Jj Code::Blocks 3| () Search resuits ¥ | ficee x| £ Buidlog X

______________ Build: Debug in defaut pEedslay - CGHU GCC Compile:
mingw3Z-gt++.exe -Wall -fexceptions - @ -c C:WECEh\cpp\t
mingw3z-gt++_.exe -o bkin\Debughdefaut_el = g\main_o

Cutput £file is kin“Debughdefzut.exe with size 1.51 MB

al=3-pc rminated with status 0 (0 minute(s), 0 sscondis))
1

‘ O srroris} @ warning (s}

)}, 0 secondis))

Si vous n’étes pas sur Code::Blocks (xCode ou autre...) vérifiez les options de compilation et
trouvez le parameétre équivalent si nécessaire.

4. Nombres parfaits : affichages, vecteurs d’entiers, fonctions

Un colléegue du département maths, chercheur en théorie des nombres, nous demande si nous
pouvons lui faire un programme qui permet de « trouver les nombres parfaits inférieurs a 10000
et les afficher sous la forme de la somme de leurs diviseurs stricts ». Nous venons tout juste
d’apprendre les bases du C++ pratique et nous avons hate d’appliquer les outils vus en cours !

Un nombre parfait est un entier naturel qui est égal a la somme des ses diviseurs stricts
(lui méme exclu). Par exemile 6 est un nombre parfait, il est divisible par 1 et par 2 et par 3 et on a

Notre collegue souhaite donc une application qui affiche de cette facon tous les nombres parfaits
trouvés jusqu’a 10000. Bien siir on n’ira pas chercher la liste de ces nombres déja connus pour les
afficher de facon fixe avec juste std::cout, on veut écrire 1’algorithme de recherche de ces nombres !
Et comme on est la pour apprendre les bases du C++ on va utiliser des vecteurs d’entiers pour
contenir les listes de diviseurs, et on utilisera ce type pour communiquer avec les sous-programmes.

Eaire un nouveau projet console C++ nombres parfaits et écrire ce programme !
Consignes et indications page suivante...

Robin Fercoq / ECE 3/11 TD/TP 3 : C++ pratique 1

https://fr.wikipedia.org/wiki/Nombre_parfait

Vous utiliserez au moins 3 sous programmes :
* recupDiviseurs qui prend en parametre entrant un entier et qui retourne un vecteur d’entiers
avec tous les diviseurs stricts
* sommeEntiers qui prend en parameétre entrant un vecteur d’entiers et qui retourne la somme
» afficherSommeEntiers qui prend en parametre entrant un vecteur d’entiers et qui les affiche
séparés par des ‘+’

A I’aide de ces 3 sous-programmes il sera ensuite facile d’écrire I’algorithme principal :

Pour chaque entier e de 1 a 10000
appeler recupDiviseurs et récupérer la liste des diviseurs de cet entier
appeler sommeEntiers avec cette liste, récupérer la somme
Si la somme est égal a e alors
afficher e ‘=’
appeler afficherSommeEntiers avec la liste des diviseurs
FinSi
FinPour

A moins que ce 1* programme vous semble trivial il est fortement conseillé d’adopter une
stratégie de développement incrémentale avec validation successives des sous-programmes par des
tests. L’ordre de développement/validation n’est pas nécessairement 1’ordre logique d’utilisation des
sous-programmes. Je suggere de développer d’abord celui qui semble le plus facile sommeEntiers,
puis celui qui « donne de la visibilité » afficherSommeEntiers, et enfin recupDiviseur. Pour un petit
programme comme celui-ci il n’est pas nécessaire de faire un projet différent pour chaque étape :
dans un 1* temps on peut se contenter de développer les sous-programmes directement au dessus du
main et le main sert de zone de test (code temporaire d’appel) qui sera mis au propre plus tard.

4.1 Développer et valider sommeEntiers

Ce sous-programme doit étre tel que le main de test suivant ...

#tinclude <iostream>
#tinclude <vector>

http://cpp.sh/7nyf

Ici développez sommeEntiers

int main()

{
std::vector<int> testVec{7, 3, 5};
std::cout << "7 + 3 +45 ="
<< sommeEntiers(testVec) << std::endl;
std::cout << "1 + 2 +3 +4 ="
<< sommeEntiers({1, 2, 3, 4}) << std::endl;
return 0;
}

doit afficher

Robin Fercoq / ECE 4/11 TD/TP 3 : C++ pratique 1

http://cpp.sh/7nyf

4.2 Développer et valider afficherSommeEntiers

Sur le méme principe, ce sous-programme doit étre tel que le main de test suivant ...

std::vector<int> testVec{7, 3, 5};

http://cpp.sh/2vocp

afficherSommeEntiers(testVec);
std::cout << std::endl;

afficherSommeEntiers({1, 2, 3, 4});
std::cout << std::endl;

doit afficher

4.3 Développer et valider recupDiviseurs

Sur le méme principe, ce sous-programme doit étre tel que le main de test suivant ...

std: :vector<int> testVec;
http://cpp.sh/6g4kn

testVec = recupDiviseurs(6);
afficherSommeEntiers(testVec);
std::cout << std::endl;

testVec = recupDiviseurs(60);
afficherSommeEntiers(testVec);
std::cout << std::endl;

doit afficher

1+2+ 3
1+2+3+4+5+6+ 10 + 12 + 15 + 20 + 30

4.4 Intégration des sous-programmes validés séparément

Les 3 exercices précédents vous ont donné une (petite) idée d’une méthode de développement
qu’on qualifie de « test driven » : on écrit les tests avant d’écrire le code a développer. Apres cette
phase de validation de « tests unitaires » il faut maintenant intégrer c’est a dire assembler les sous-
programmes et faire des « tests d’intégration ».

Vider le main des codes de test et écrire a la place la traduction en C++ de 1’algorithme
principal indiqué page précédente. Tester. Vous pouvez vérifier que la sortie de votre application est
conforme a ce que votre collégue matheux attend : Exemples nombres parfaits sur wikipedia.

4.5 Mise au propre, projet multi-fichiers

Cet exercice va se conclure mais on ne peut pas laisser le code dans cet état. Méme si ¢a ne
change rien « pour le client» on va pour notre satisfaction personnelle et 1’efficacité d’une
hypothétique ré-utilisation ultérieure mettre les sous-programmes la ou ils doivent étre : basculer les
3 sous-programmes dans un nouveau fichier source de projet, par exemple theorie_nombres.cpp,
prototyper dans un nouveau fichier d’en-téte theorie_nombres.h, inclure ce dernier dans main.cpp.

Robin Fercoq / ECE 5/11 TD/TP 3 : C++ pratique 1

https://fr.wikipedia.org/wiki/Nombre_parfait#Exemples
http://cpp.sh/2vocp
http://cpp.sh/6g4kn

4.6 Améliorer la lisibilité du code appelant

Et si on devait montrer le code au collegue matheux qui ne sait pas programmer ? Pour lui qui
est habitué a la pureté conceptuelle de 1’algebre, 1’algorithme principal n’est pas super-clair, ca sent
la graisse d’atelier. Il serait plus clair si il s’écrivait comme ¢a :

Pour chaque entier e de 1 a 10000
Si estUnEntierParfait(e) alors
afficher e ‘=’
afficherSommeEntiers(recupDiviseurs(e))
FinSi
FinPour

(Ca nécessite d’écrire _un nouveau sous-programme estUnEntierParfait, qui appellera
recupDiviseur et sommeEntiers et retournera un booléen (type retour bool). Puis ré-écrire le
main pour implémenter cet algorithme plus clair.

On notera que pour les entiers parfaits le travail de déterminer les diviseurs sera fait 2 fois, une
1¥* fois par estUnEntierParfait pour savoir si I’entier est parfait et une 2°™ fois par le main pour
afficher ces diviseurs. En 1’occurrence ce n’est pas trop pénalisant vu la faible fréquence des
nombres parfait (il y en a peu dans I’intervalle considéré). On peut considérer que cette nouvelle
version est un progres méme si elle est un tout petit peu moins performante : le code appelant est
nettement amélioré et, a résultat égal, c’est un aspect important. En programmation objet on veut
fournir des « composants » faciles a utiliser : on se met autant que possible au service du code
appelant méme si ¢a implique de fournir un travail supplémentaire au niveau du code appelé.

5. Filtrage divisibles : saisies, affichages, vecteurs d’entiers, fonctions

Le collegue du département maths, chercheur en théorie des nombres, impressionné par la
vitesse de développement dont nous faisons preuve nous demande si nous pouvons lui faire un autre
programme qui permet de « filtrer successivement par divisibilité une liste de nombre entiers,
initialement entrés au clavier ». Le colléegue ne nous fourni pas de CDC, mais il a rédigé une
cession typique d’utilisation du logiciel qu’il souhaite, voir page suivante avec en vert les
saisies utilisateur.

Apres avoir saisie successivement au clavier des entiers (aucun « blindage » demandé)
’utilisateur termine la saisie de sa liste de nombre en entrant 0 (ou négatif). A partir de la on entre
dans la phase de filtrages successifs : 1’utilisateur entre un diviseur et seuls les nombre de la liste
divisibles par ce diviseur seront conservés a 1’étape suivante. Etc... jusqu’a ce que I’utilisateur
termine la cession en entrant 0 (ou négatif).

En suivant la démarche générale détaillée a ’exo 4, coder ce programme en C++ dans un

nouveau projet console filtrage divisibles. Remarque si vous avez déja eu le cours 4 : on fera

des transmissions du vecteur par valeur (en entrée et en retour). On pourrait faire par référence...

Découpage en sous-programmes suggeére :

* Un sous-programme afficherAccueil qui affiche le message d’accueil

* Un sous-programme saisirEntiers qui retourne la liste(vecteur) des nombres saisis

* Un sous-programme afficherEntiers qui affiche la liste(vecteur) des nombres recus

* Un sous-programme trouverDivisibles qui recoit un vecteur d’entiers et un entier diviseur et
qui retourne un nouveau vecteur « filtré » (uniquement les valeurs de la liste recue qui sont
divisibles par le diviseur).

* L’algo principal directement dans le main ou dans un sous-programme filtragesSuccessifs

Robin Fercoq / ECE 6/11 TD/TP 3 : C++ pratique 1

Bienvenue dans 1'application "filtrage divisibles"

Entrer © ou negatif pour terminer la saisie
Puis © ou negatif pour quitter 1'application

Veuillez entrer des entiers
5

21
15

liste de vos 5 entiers

entrer un diviseur

liste de vos 4 entiers

entrer un diviseur

liste de vos 2 entiers

Veuillez entrer un diviseur

2

Voici la liste de vos 1 entiers
1 -> 30

Veuillez entrer un diviseur
2

Process returned 0 (0x0) execution time : 58.157 s
Press any key to continue.

Robin Fercoq / ECE 7/11 TD/TP 3 : C++ pratique 1

6. Générateur de phrases : chaines, vecteurs de chaines

Sur le campus c’est maintenant une étudiante en linguistique qui prépare une thése en
« compositionnalité du langage et générativité gestaltiste » qui a besoin de nos talents : elle souhaite
générer des séquences de phrases sur des patrons grammaticaux comme « adverbe GN verbe GN »
ou GN est un groupe nominal, en remplacant chaque élément de cette structure par un représentant
tiré au hasard dans une des listes correspondantes (liste d’adverbes, liste de noms, liste de verbes).
Saurons-nous relever le défi ?

Par exemple, sur le patron grammatical « adverbe GN verbe GN »
- on pourrait tirer au hasard dans la liste des adverbes : loin

- on pourrait tirer au hasard dans la liste des GN : le ministre
- on pourrait tirer au hasard dans la liste des verbes : intéresser
- on pourrait tirer au hasard dans la liste des GN : la passion

Ce qui apres accord au présent donnera la phrase « Loin le ministre intéresse la passion ».

La thésarde Oulipienne souhaite disposer d’échantillons de 1’ordre de quelques milliers de
phrases types de ce genre pour les soumettre a des eebayes volontaires et enregistrer leurs
électroencéphalogrammes devant des phrases grammaticalement correctes mais vides de sens
comparativement a des textes de poésie contemporaine et des discours de politique générale. Elle
nous fournira des listes de mots (lexiques) par catégories, déja au format « vecteur de strings et
vecteur de vecteur de strings » car en effet elle touche aussi sa bille en langages de programmation.

Téléchargez ce projet de départ

https://fercoq.bitbucket.io/cpp/tdtp/tdtp3/phrase generator exo.zip pour Windows
https://fercog.bitbucket.io/cpp/tdtp/tdtp3/phrase generator exo utf8.zip autres OS

(source du lexique : 1500 mots les plus fréquents de la langue francaise, par catégorie)

Vérifier que ca compile, essayer de comprendre ce que c¢a fait, ou sont les informations
lexicales, dans quel format. Essayer d’afficher d’autres mots précis. Veérifier gue les accents
passent. (la console Windows est peu compatible avec la norme Unicode UTF-8 2%%)

Vous disposez dans la bibliothéque utilitaire util.h et util.cpp d’une fonction de tirage aléatoire
uniforme telle qu’on aimerait 1’avoir quand on débute (pas de srand bizarroide, pas de max-min+1)
juste un intervalle fermé alea(min, max), on obtient un entier « aléatoire » entre min et max, bornes
incluses. Le hasard en programmation est un sujet délicat parce que le modele de conception des
machines programmables est intrinsequement déterministe. Des progrés ont été faits dans le
domaine de I’exploitation de 1’entropie numérique du systeme (device dev/random sur Linux...).
J’espérais vous conduire a explorer la doc pour mettre en ceuvre les innovations récentes de la
bibliotheque C++ en matiere de hasard (rand/srand sont obsoleétes) mais malheureusement la
nouvelle norme est outrageusement paramétrable et compliquée.

Donc pour faire simple on a emballé le probleme dans une fonction (wrapper) dans util.cpp,
elle méme emballée dans un namespace util:: pour éviter toute confusion avec std::
Vous écrirez util::alea pour I’utiliser, par exemple util::alea(1, 6) simule un lancé de dé. Tester en
affichant une 20™ de tirages successifs avec une boucle. Attention pour tirer aléatoirement un
indice dans un vecteur il faudra prévoir qu’un vecteur de 10 cases (vecteur.size() retourne 10)
a des cases numérotées de 0 a 9, donc la borne max sera vecteur.size()-1

Tester en affichant une 10°™ de conjonctions au hasard avec une boucle
(les exemples donnés sont aléatoires donc vous n’aurez pas exactement le méme résultat!)

et mais car comment ou or or que ou quand

Robin Fercoq / ECE 8/11 TD/TP 3 : C++ pratique 1

https://fercoq.bitbucket.io/cpp/tdtp/tdtp3/phrase_generator_exo_utf8.zip
https://fercoq.bitbucket.io/cpp/tdtp/tdtp3/phrase_generator_exo.zip
https://en.cppreference.com/w/cpp/numeric/random
https://fr.wikipedia.org/wiki//dev/random
https://fr.wikipedia.org/wiki//dev/random
https://fr.wikipedia.org/wiki//dev/random
http://eduscol.education.fr/cid47916/liste-des-mots-classee-par-frequence-decroissante.html
https://fr.wikipedia.org/wiki/Oulipo

Encapsuler le code de tirage aléatoire de conjonction en faisant un Ssous-programme
faireConjonction de telle sorte que le résultat précédent puisse étre obtenu avec le code de test
suivant. Au lieu d’afficher elle méme, la fonction faireConjonction retourne a ’appelant une des
chaine du vecteur conjonctions, choisie au hasard. C’est I’appelant qui affiche :

for (size_t i=0; i<10; ++i)
std::cout << faireConjonction() << " ";

Sur le méme principe développer un sous-programme faireAdverbe qui retourne une chaine
adverbe au hasard. C’est un peu plus difficile, regardez bien dans adverbes.cpp, on a un vecteur de
vecteur de string. Vous voudrez peut-étre utiliser un alias de type VecVecStr par exemple (mais ce
n’est pas du tout obligatoire). En tout cas il faudra 2 tirage aléatoire, un 1 tirage pour déterminer la
catégorie d’adverbe (de maniére, de quantité, de temps...) puis un 2°™ tirage pour en sélectionner un
seul dans la catégorie. Tester, valider.

Un peu plus difficile encore, développer un sous-programme faireGN (groupe nominal) qui
retourne une chaine en juxtaposant un déterminant et un substantif qui s’accordent en genre. On
laissera de c6té pour I’instant les probléemes de liaisons (le ami — I’ami, ta habitude — ton habitude)
Gérer informatiquement une langue comme le francais est notoirement difficile, on s’autorise
quelques accidents ! On restera sur du singulier...

son monde

un instinct
ton éclat
votre fonction

aucun haut

le ami

chaque patron
leur choix
notre image

Nous voulons maintenant générer des verbes. La on va choisir la facilité : on ne va garder que
les verbes en « er » (manger, bouger, tourner ...) qui sont les verbes transitifs (sujet verbe COD !)
du 1% groupe faciles a conjuguer. On se limite pour ’instant & la 3°™ personne du singulier au
présent : il suffit donc d’enlever le r (il mange, elle bouge, ca tourne). Ca ne marche pas a tous les
coups, par exemple avec aller : « il alle » au lieu de « il va ». Bon, on s’en contentera. Le probleme
c’est que la liste des verbes (voir fichier source lexique_verbes.cpp) ne fait pas le tri entre différents
genre de verbe.

Ecrire une procédure void initialiserVerbesT1() qui remplit le vecteur global verbesT1 (déja
déclaré dans lexique verbes.cpp, initialement vide) avec les verbes du vecteur verbes qui se
terminent en «er», en supprimant le r final (pour obtenir la conjugaison attendue). Aprés avoir
appelé ce sous-programme dans le main, on pourra vérifier que le vecteur verbesT1 contient bien :

trouve
donne
parle

passe
regarde
aime
Etc...

Robin Fercoq / ECE 9/11 TD/TP 3 : C++ pratique 1

Enfin développer un sous-programme _faireVerbeT1 qui retourne une chaine verbeTl au
hasard. Tester, valider.

Ecrire un sous-programme fairePhrasel qui génere une phrase « adverbe GN verbe GN »
en appelant successivement les sous-programmes _correspondant et en concaténant les résultats
dans une chaine (sans oublier les espaces pour séparer). Appeler ce sous programme 10 fois et
dfficher les résultats. On doit obtenir des choses dans ce style :

quelquefois notre secret doute le fusil

avant toute seconde installe tout instrument
assurément ton demain engage telle histoire
plutét notre ville marque tout exemple

bien chaque mur étouffe notre jardin
soit quelque rayon trouve mon cheval
assurément ma dame réve votre membre
loin leur commencement dure nul éclat
au-devant tout horizon sépare votre réponse

Améliorer en ajoutant un point d la fin des phrases et une majuscule au début. Attention les
adverbes commencent parfois par un « d » qui n’est pas dans l’intervalle ASCII habituel. Pour
simplifier ne convertir que les minuscules non accentuées (entre ‘a’et ‘z’)

Sur le méme principe écrire un sous-programme_fairePhrase2 qui génére une phrase de la
forme « Adverbe GN verbe GN, conjonction GN verbe GN ! ». Appeler ce sous programme 10 fois
et dfficher les résultats. On doit obtenir des choses dans ce style :

Derechef toute folie salue un désespoir, donc notre chien étudie tel officier !
En vérité nulle ligne dresse notre tache, quand ma folie inspire son livre !
Gratis ce empire étale chaque trésor, ni ce cours observe le jour !

Mieux toute valeur prouve tel début, si une salle aborde une vague !

Proche quelque fer efface nul mort, si leur ami éloigne sa voiture !

Premierement sa mine veille votre bureau, or tel blanc affirme tout tour !
Non ce vol importe toute chute, et votre nouveau présente la chemise !
Impromptu nul commencement mérite nul oeil, or aucun hotel joue son genou !
Ci notre mari évite nulle mode, parce que cette guerre change notre argent !
Précisément le honneur noye ma rose, si notre fille remplace telle douleur !

Finalement on s’approche d’une grammaire générative en utilisant un systéeme de balises et en
décrivant les formats de phrases de facon plus simple qu’en les codant : un sous-programme général
fairePhrasePatron fabrique une phrase aléatoire en suivant le patron qu’on lui donne en parameétre,
les patrons peuvent étre regroupés en vecteurs de chaines. Cette suite est facultative.

std: :vector<std: :string> patrons {
"<ADV> <GN> <VERBET1l>e <GN>.",
"<ADV> <GN> <VERBET1>e <GN>, <CONJ> <GN> <VERBET1>e <GN> !",
"<GN> <VERBET1>ait <GN> ...",
"<GN> <VERBET1>era <GN> ?"

¥
for (size_t i=0; i<20; ++i)
{
std::cout << fairePhrasePatron(patrons[util::alea(®, patrons.size()-1)])
<< std::endl;
}

Robin Fercoq / ECE 10/11 TD/TP 3 : C++ pratique 1

Ma poussiére respirera mon patron ?

Tellement toute révolution discute nulle poitrine.

Au-dela telle morte dresse chaque chemin, ou ton bruit trompe son voile !

Aucun paysage penchera quelque sommeil ?

Davantage un vers juge quelque toit, comment chaque désert profite notre bras !
Joliment son genre salue sa fatigue.

Pas ta terreur enleve ton nombre.

Tel aspect menera aucun combat ?

Tout objet inquiétait cette famille ...

Parfois ma cuisine étudie ma montagne, puisque chaque année trace tel étranger !
Nul cas retirait la demande ...

Guere telle cour réveille notre dame, ni notre titre prie quelque loi !

Toute mine versera leur chose ?

Tout intérét tirait sa faveur ...

Mon soin élevera tout vide ?

Nul mariage rassurait nul regard ..

Votre peine demeurera telle paysanne ?

a demi tout hasard habite nul désir, comment telle habitude compose leur louve !
La vue rencontrera leur esprit ?

Céans chaque chair assiste quelque instant, ou ce signe forme une chasse !

Robin Fercoq / ECE 11/11 TD/TP 3 : C++ pratique 1

	Objectifs, méthodes
	Outils, plateformes, format
	1. Testez votre environnement de développement
	2. Namespace std
	3. Configurer le compilateur pour utiliser C++14 sous Code::Blocks
	4. Nombres parfaits : affichages, vecteurs d’entiers, fonctions
	5. Filtrage divisibles : saisies, affichages, vecteurs d’entiers, fonctions
	6. Générateur de phrases : chaînes, vecteurs de chaînes

