Il ECEPARIS Prog. Orientée Objet / C++ INGE2 53
TD/TP 5

Classes, les bases

Objectifs, méthodes

Enfin vous arrivez au vif du sujet : implémenter vos propres classes C++ correspondant aux
classes d’un modele objet adapté a une application. La traduction en C++ des associations UML
entre entités posent des problemes spécifiques qu’on abordera au cours 6 et TD/TP 6. Pour I’instant
on va se concentrer sur 1’aspect le plus simples et le « plus bas niveau » de la relation entre classes :
la composition entre types valeurs (value types). Pour se faire nous reprendrons la struct Sphere du
TD/TP 4 et nous la convertirons en classe, en la dotant d’une structure hiérarchique de composition.
On veut une application avec les mémes fonctionnalités que les exos 2 a 7 du TD/TP 4, mais en
utilisant des classes et des méthodes a la place de la struct et des fonctions (sous-programmes)

Pour aborder confortablement les 3H de ce TD/TP il est indispensable d’avoir bien suivi et
probablement relu le cours 5 sur les classes en C++

Les concepts du cours couverts par ce TP seront
* classes simples avec des attributs types « élémentaires »
* constructeurs pour des classes simples
* méthodes pour des classes simples
* opérateurs pour des classes simples
* diagramme de classes et composition composants/composite chapitre H cours 5
* classe composite avec des attributs de type classe composante
* constructeurs pour une classe composite
* méthodes pour une classe composite
* new/delete pour ajouter/enlever dynamiquement des objets composites d’une collection

1. Structure hiérarchique de composition : réflexion, modéles UML

Pour rappel au TD/TP 4 on étudiait la réalisation d’une application de gestion d’objets
sphériques massifs dans le plan (2D) et du calcul de leur barycentre. On voulait en particulier
pouvoir illustrer graphiquement le centre de gravité de systemes de corps astronomiques (planetes,
satellites, exoplanétes, étoiles a neutrons...) réels ou imaginaires. Pour grouper les données d’un
méme objet céleste nous utilisions une simple struct Sphere ce qui techniquement en C++ est
une classe avec des attributs publiques, et nous n’avions pas de méthodes mais des fonctions
prenant des (références) a des objets de type Sphere en paramétre. Pas trés « orienté objet » ...

Sphere
X = 150 —
y = 30
masse = 18
rayon = 20 >X<: _
couleur = "green"

Robin Fercoq / ECE 1/10 TD/TP 5 : Classes, les bases

https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours5_classes_bases.pdf
https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours5_classes_bases.pdf#page=118

Le diagramme page précédente est un diagramme d’objets reprenant les conventions des
diagrammes d’objets du TD/TP 1. Avec les diagrammes d’objets spécifiquement je me permets de
prendre quelques libertés par rapport a la norme UML en me rapprochant de « schémas mémoire ».
Pour rappel dans un diagramme d’objets le nom des classes est souligné.

Pour les diagramme de classes nous essayons de suivre la norme a la lettre. Dans les
diagrammes de classes le nom des classes n’est pas souligné, et bien siir dans un diagramme de
classes aucune valeur concréte d’instance particuliére n’apparait. Aucune confusion n’est donc
possible. Nous allons maintenant discuter de 1’art et la maniere d’accommoder a la sauce objet les
données de I’instance « boule verte » : concréetement {150, 30, 18, 20, "green"}

Ce simple « agrégat de données », qui ne fait sens que pris ensemble (la valeur 30 a elle seule,
isolée de son contexte, est inexploitable) peut adopter bien des formes selon la facon dont nous
allons le structurer. C’est notre travail de concepteur d’envisager les différentes options :

* Il peut rester « a plat » avec les données dans un seul bloc. En gros on reprend la déclaration

du TD/TP 4, on remplace struct Sphere par class Sphere et voila! Pourquoi pas !
Sauf que si vous testez vous allez voir que ca ne passe pas au compilateur : les attributs se
retrouvent privés donc inaccessibles par les fonctions qui traitaient des parametres de type
Sphere. 11 va falloir transformer ces fonctions en méthodes. Plus tard !
Car avant de se lancer dans un gros travail de mécanique de code réfléchissons : est-il
vraiment satisfaisant d’avoir au méme niveau un attribut y, qui ne fait vraiment sens
qu’avec X, et un attribut couleur, qui n’a de sens que lors du dessin final mais ne jouera
aucun role durant les calculs géométriques ? En informatique on aime bien séparer les
aspects traitements des aspects présentation... D’autre part il est probable que si nous faisons
de la mécanique céleste (en 2D dans le plan de 1’écliptique, par soucis de simplification)
nous aurons biens d’autres occasions d’utiliser des couples (X, y). Il serait scandaleux de
devoir manipuler/recoder des opérations vectorielles spécifiquement pour des (x,y) de
Sphere, pour des (x,y) de vecteur vitesse, pour des (x,y) de vecteur accélération, pour des
(x,y) de foyers d’ellipses orbitales etc... On comprend qu’un type « vecteur 2D » se dégage
dans I’analyse de ce genre d’application, et qu’on va vouloir exploiter ce type dans le type
Sphere. Méme si pour I’instant le CDC (un peu vague) ne nous parle que d’un seul type...

* Un développeur senior aura peut étre I’envie de voir les choses de la facon suivante :
en utilisant un type « vecteur 2D » (que nous appellerons Coords en référence au cours) pour
la position des spheres, un type Barycentre pour grouper les données « physiques » et
d’autre part un type spécifique pour encapsuler les aspects de présentation sous forme de
sphéres de couleur mais qui ne jouent aucun réle dans la mécanique des calculs, qui
s’appellerait AspectSphere par exemple.

Astre

Barycentre

cg = Coords
position 150

30

X
y

| masse = 18

AspectSphere

aspect = | payon 20
couleur = "green"

1.1 Faites le diagramme de classes UML correspondant a ce diagramme d’objets

Robin Fercoq / ECE 2/10 TD/TP 5 : Classes, les bases

https://fr.wikipedia.org/wiki/%C3%89cliptique#Plan_de_l'%C3%A9cliptique

* Dans ’hypothése ou nos spheres devraient étre utilisées pour faire une simulation de
billard, ou de pétanque, ou de modele simplifié de mélanges de gaz mono-atomiques, donc
des modeéles dans lesquels non seulement la position et la masse des sphere est importante
pour les calculs, mais aussi leur rayon (pour savoir quand elles sont en collision), alors la
donnée rayon sortirait du cadre de la présentation (aspect) et rentrerait dans le cadre de la
mécanique. Ne resterait que la seule couleur a la rubrique présentation, ce qui ne justifierait
pas un type a part (a moins qu’on envisage d’avoir a ajouter plus tard d’autres données de
présentation : texture, brillance, transparence...). Naturellement il faudrait aussi des données
cinématiques (vecteur vitesse). Ci dessous a gauche un diagramme d’objets correspondant a
cette problématique différente : noter que le rayon se retrouve maintenant dans le
méme bloc de données que la masse. Noter également que cette proposition a gauche sous
forme de composition ne serait sans doute pas la solution choisie : dans ce cas précis on
utiliserait plutot un héritage car clairement une BouleCouleur est juste une Boule avec un
truc en plus, ce qui correspondrait au diagramme de classes a droite.

BouleCouleur
Boule o
Boul position
Coords ou'e ‘_1 Coords
position = - - masse : Real . - x : Real
X _ 150 - rayon : Real vitesse| y : Real
y = 30 |‘_1
boule =
Coords
vitesse =y - -7.3
y = 2.5
BouleCouleur
masse = 18 - -
rayon = 20 - couleur : String
couleur = "green"

1.2 Eaites le diagramme de classes UML correspondant au diagramme d’objets a gauche
Le diagramme de classes a droite est une alternative avec héritage, il est différent de celui demandé

* Finalement, pour le probléme qui nous concerne de modéliser de centres de gravité de corps
céleste je vous propose un modele un peu moins complexe que celui page précédente :

Astre

Coords >
position = | x = 150

y = 30
masse = 18

AspectSphere

aspect = | rayon = 20

couleur = "green"

1.3 Eaites le diagramme de classes UML correspondant a ce diagramme d’objets

C’est cette derniére structuration des données que nous adopterons pour coder ce TP.
Elle résulte d’un ajustement entre les impératifs de la programmation objet (grouper des unités
sémantiques et opérationnelles cohérentes), les limites du CDC implicite (travailler avec des corps
célestes, pas des boules de bowling), une anticipation de futurs projets (on nous a parlé de maillages
2D comme fil conducteur, une classe « vecteur 2D » sera silirement utile) et les besoins
pédagogiques (pas trop de niveaux de composition, pas trop de classes).

Robin Fercoq / ECE 3/10 TD/TP 5 : Classes, les bases

Sauter sur le clavier et entrer directement 5 attributs « en vrac » dans une classe, sans faire ce
travail de réflexion, ce serait mal faire le travail. Méme si on peut arriver dans un contexte
particulier (prototypage, urgence a livrer, CDC tres circonscrit) a la conclusion que, finalement,
I’approche « la plus simple » de mettre tous les attributs ensemble au méme niveau est la meilleure,
il faut avoir envisagé des alternatives. Nous verrons qu’une structuration composant/composites

» impose immédiatement un travail supplémentaire : plus grande complexité, mise en place
des classes composantes, forwarding des parametres dans les constructeurs...

» permet un bénéfice sur le long terme :code conceptuellement plus propre, responsabilités
limités de classes plus petites donc individuellement plus faciles a développer et tester,
classes extensibles sans tout casser, classes ré-utilisables, code des couches intermédiaires
plus expressif, meilleures abstractions...

Au final, ces classes composants que nous utiliserons comme types d’attributs, seront utilisées
comme de simples types scalaires : les objets de ces classes n’auront pas d’existence propres, en fait
ils se comportent exactement comme des valeurs'. Ils ne seront pas pointés, il ne seront pas
partagés, et si 2 objets entités (2 Astres par exemple) se trouvent avoir la méme couleur et le méme
rayon il s’agit bien des méme couples de valeurs dupliqués en 2 exemplaires en mémoire. Le C++
est un langage orienté objet particulierement bien adapté aux « types valeurs » puisque la
sémantique par défaut des attributs objets, des passages de parametres objets et des affectations
entre objets est une sémantique par valeur (la nouvelle valeur écrase 1’ancienne). Dés que nous
serons familiarisés avec les « types valeurs » d’une application nous pourrons les éliminer des
schémas UML et ne plus les représenter graphiquement reliés par des associations de composition
mais directement en tant qu’attributs :

Astre
Coords AspectSphere —
- position : Coords
-X : Real -rayon : Real _ masse . Real
-y : Real -couleur : String _ aspect . AspectSphere
Etape 1 : Etape 2 :
Diagramme des classes des types valeur Diagramme de classes des types entités

Un mot sur les identifiants. Trouver des noms appropriés pour les identifiants informatiques
est une activité extrémement sérieuse, ceci ne doit pas étre pris a la légere et doit faire I'objet d'un
temps de réflexion et de délibération si on est en équipe : l'identifiant informatique doit étre
sémantiquement cohérent avec ce qu'il désigne (Personne # Identité) précis (Client # Personne) et
si possible court (Client # PersonneClienteDuSysteme) d'autant plus qu'il est utilisé souvent et
localement (int i) mais pas trop court non plus (ipc # idxPersonneCree) et sans accents ce qui pose
des problemes avec les infinitifs en frangais (trouvé # trouve). Tout ceci est d'autant plus important
quand on identifie des types (cad le nom des classes) : le nom de la classe est comme une
promesse de ce que les objets de cette classes pourront faire.

Et il faut aussi respecter les conventions suivantes : parametres, variables locales et attributs
commencent par une minuscule (avec m_ pour les attributs), les types commencent par une
majuscule (sauf les types de la bibliothéque standard std::string etc...). Il est naturel d’avoir envie de
s’approprier des énoncés qui sont trés guidés, et les identifiants ressemblent a un des derniers
espaces de liberté ou on peut exprimer sa « créativité ». Mais jouer avec les identifiants des classes
est sans doute une mauvaise idée.

1 Une des approche en conception objet briévement abordée au cours 6, Domain Driven Design, distingue les entités
qui ont une identité (Mercure, Vénus, Mars...) et les objets valeur qui n’ont pas d’identité propre (la position
x=150, y=30, I’apparence rayon=20 couleur="green").

Robin Fercoq / ECE 4/10 TD/TP 5 : Classes, les bases

https://en.wikipedia.org/wiki/Domain-driven_design

Ces réflexions et analyses papier initiales peuvent sembler excessive et vous pouvez vous
demander quand-est qu’on commence a coder... Aprés tout un bon développeur n’est-il pas
rémunéré pour taper sur des touches de clavier dans un éditeur de code source ? Sans doute un
développeur senior peut aborder un projet simple comme celui-ci en attaquant directement le code,
mais c’est bien parce qu’il est capable de mener ces réflexions « dans sa téte » en amont du code.
Vous n’imaginez pas ce qu’une bonne réflexion initiale peut faire gagner a un projet logiciel, ni ce
qu’une mauvaise réflexion peut lui faire perdre. C’est la raison d’étre de 1’ingénieur ou architecte
logiciel : proposer de bons modeéles objets en amont du code.

Un défaut du modeéle objet proposé : le centre de gravité obtenu par le calcul sera toujours
stocké dans un type Astre. Mais que faire avec les attributs d’aspect pour un tel Astre « centre
de gravité » ? Dans la suite je propose de "neutraliser" ses attributs en leur donnant des
valeurs par défaut (rayon nul, couleur "black") comme au TP précédent.

Ce n’est pas sémantiquement satisfaisant, mais la facon correcte d’aborder ca passerait par le
modele plus complexe en bas de la page 2 et par I’héritage et le polymorphismes d’une classe
abstraite Aspect, techniques pas encore abordées. Ou alors il faudrait revoir complétement le
modele : avec Barycentre en classe mére et Astre en classe fille qui ajoute un Aspect.

1.4 Eaites le diagramme de classes UML correspondant d une version héritage de ce qui est
proposé avec une composition sur le diagramme d’objets en bas de la page 2 (remplacer la
composition par un héritage « équivalent »). L’objectif serait d’utiliser le type Barycentre pour
stocker les objets « centre de gravité ». Discussion : est-ce que dire « un Astre est un Barycentre »
vous semble sémantiquement valable ? Et dire « un Astre a un Barycentre » ? Et si au lieu
d’appeler la classe mere Barycentre on I’appelle CentreDeMasse ? Conclusion(s) ?

2. Méthodes : ce que ces données vont faire pour nous !

Au fait on veut faire quoi avec cette application ? On n’a encore pas parlé des méthodes et il
n’y a pas une seule méthode dans les diagrammes de classes proposés ! Quelles sont les actions
proposées associées a ces données si soigneusement structurées ?

Pour rappel I’application doit nous permettre d’avoir un menu interactif qui propose :

- ajouter un astre (saisir ses parameétres) - > new

- dessiner la situation actuelle dans un nouveau fichier output.svg (écraser I’ancien)
dans le dessin on peut voir tous les astres en place, et leur centre de gravité indiqué

- afficher tous les astres (leurs attributs) a la console, numérotés

- enlever un astre en saisissant son numéro - > delete

- quitter

On peut faire une « analyse descendante » pour connaitre les besoins en méthodes et

opérateurs des objets : partant des opérations (méthodes) des classes composites quels seront les
opérations de classes composantes ?

Robin Fercoq / ECE 5/10 TD/TP 5 : Classes, les bases

Ne serait-ce que pour tester, il va falloir pouvoir construire des objets avec des valeur initiales
pour tous les attributs, et ce pour toutes les classes. Souvent (mais ce n’est pas systématique) le
client de la classe composite préférera donner tous les attributs sous forme de liste non structurée.
Avec la surcharge on pourra proposer les 2 formes, au choix, au code client.

// Déclaration d’un objet de type Astre avec liste "non structurée"
Astre terre{ 200, 400, 6, 63, "blueball" };

// Déclaration d’un objet de type Astre avec liste de composants
Astre terre{ {200, 400}, 6, {63, "blueball"} };

// Cette 2éme forme est équivalente a ce code avec intermédiaires
Coords positionTerre{ 200, 400 };

AspectSphere aspectTerre{ 63, "blueball" };

Astre terre{ positionTerre, 6, aspectTerre };

La construction avec parametres exhaustifs pour les objets de la classe composite Astre
implique qu’on doit aussi avoir des constructeurs avec parameétres exhaustifs pour les objets des
classes composantes Coords et AspectSphere.

Le CDC implique qu’on doit pouvoir saisir les données d’un Astre. On peut faire ¢ca en amont
de la création de I’objet, au niveau du code client, et injecter les valeurs saisies dans 1’appel au
constructeur paramétré. Ou alors on peut prévoir une méthode saisir dans chaque classe. Dans ce
cas les classes doivent disposer d’un constructeur par défaut. Ce constructeur par défaut est appelé
par le client pour créer un objet « vide » c’est a dire un objet avec des valeurs par défaut, puis la
méthode de saisie est appelée et les attributs sont renseignés a 1’intérieur de la classe. Ca permet au
code client de déléguer les détails des opérations de saisie aux méthodes des classes concernées’.

Un objet Astre devra pouvoir étre affiché en console : méthode afficher pour Astre et pour ces
composantes. Un objet Astre devra pouvoir étre dessiné dans output.svg : méthode dessiner pour
Astre en utilisant ces composantes (besoin probable d’accesseurs en lecture). Un objet Astre devra
pouvoir étre détruit, mais le cours indique qu’il n’y a pas besoin de destructeur pour des classes
avec des attributs qui ont des sémantiques par valeur ce qui est le cas ici. Destructeurs pas
absolument indispensables donc, mais on les mettra quand méme pour vérifier qu’on comprend bien
le cycle de vie des objets (la encore, dans le composite et dans ses composantes).

Enfin le cceur du sujet, le calcul de centre de gravité, se fera par une méthode Astre::sommer
qui prend en parametre un 2eme objet Astre (le 1* étant I’objet cible this) et qui retourne un Astre
représentant le centre de gravité. Cet Astre « centre de gravité » pourra a nouveau étre sommé etc...
jusqu’a obtention de la « somme » (le barycentre) de tous les Astres du systéme. On voudra
rapidement améliorer le confort au niveau du code appelant en surchargeant 1’opérateur operator+
dans sa version symétrique (nous y reviendrons) qui n’est pas une méthode et ne pourra donc pas
accéder aux attributs private. Mais plut6t que de mettre en place moult mutateurs inutiles sur les
attributs on préférera donner a Astre operator+(const Astre&, const Astre&) qui n’est pas
une méthode une intimité avec la classe Astre en la déclarant amie (friend). Des indications seront
fournies.

2 Entre la déclaration de 1’objet initialement « vide » et ’appel a la méthode de saisie 1’objet existe dans un état « non
utile » ou « non utilisable » ce qui est généralement a éviter. Cependant les alternatives semblent pour 1’instant trop
compliquées : on pourrait par exemple prévoir un constructeur qui recoit une (référence) a un flot std::istream et qui
va chercher les données initiales de 1’objet dans ce flot, qui peut correspondre aussi bien a un fichier qu’a une saisie
console si I’appelant passe std::cin en parameétre du constructeur. Ceci sera évoqué au cours 10, slide 66.

Robin Fercoq / ECE 6/10 TD/TP 5 : Classes, les bases

Et pour que le calcul proprement dit du barycentre (dans Astre::sommer ou dans operator+)
s’exprime dans un langage avec un haut niveau d’abstraction, sans entrer dans des détails de bas
niveau comme par exemple est-ce qu’on est en 2D ou en 3D, il faudra que la classe Coords mette a
notre disposition 2 opérateurs de calcul vectoriel, somme vectorielle et multiplication par un réel
(voir Cours 4 surcharge d’opérateurs qui est aussi bien valable pour une classe Coords que pour une
struct a condition de déclarer ces opérations amies de la classe Coords)

2. Reprenez les 2 diagrammes de classes UML de la page 4 en les complétant par les méthodes.
Maintenant nous pouvons coder en partant du bas (les composants) vers le haut (le composite) !

3. Mise en place d’une classe Coords

Je vous suggere de développer la classe Coords dans un 1* temps dans un projet a part, puis
d’intégrer les fichiers coords.h et coords.cpp au projet barycentres seulement quand la classe
Coords est au point. Le projet peut s’appeler coords (faites simple!).

Développez une classe Coords qui regroupe 2 réels x et y (utiliser double, plus précis que float
pour les simulation scientifiques ou techniques) en respectant les conventions et consignes données
en cours. Mettre en place un constructeur a 2 parametres x et y qui initialise les 2 attributs. Tester.
Comme les attributs sont privés on ne peut pas « voir » ce qui se passe dans la classe depuis le
code client, immédiatement le réflexe est de se donner de la visibilité sur ce qu’on manipule :
mettre en place une méthode dfficher qui dffiche les attributs en console. Tester : vous pouvez
déclarer 2 objets Coords avec des valeurs initiales (quelconques, par exemple 20, 30 et 70, 80) et
dfficher ces 2 objets depuis le code client (le main) en appelant la méthode afficher.

Grdce a la méthode dfficher vous avez de la visibilité sur les objets Coords créés : vous allez
pouvoir enrichir la classe. Développez un constructeur par défaut (sans parametre) qui quand il est
utilisé (un objet est déclaré sans paramétre) construit un objet Coords avec des valeurs par défaut.
En général pour des attributs numériques on choisit simplement 0. Il est possible de déléguer
I’initialisation par défaut au constructeur paramétré : voir slide 86 du cours 5.

On pourra remplir ces objets par défaut avec un appel a une méthode de saisie : demander a
I’utilisateur d’entrer les coordonnées avec std::cin. On ne demande pas de « blindage » a ce
niveau mais vous aurez la politesse d’dfficher a I’utilisateur un message lui indiquant ce qu’on veut
de lui par exemple : « veuillez entrer x et y SVP : ». Tester : dans le main déclarer 2 objets sans
paramétres et appeler leur méthode de saisie puis leur méthode d’affichage.

Pour des raisons d’apprentissage (pas par nécessité technique) nous allons vouloir
comprendre le cycle de vie des objets en définissant un destructeur. Dans ce destructeur nous
dfficherons en console que nous détruisons un objet de type Coords, et les valeurs de cet objet. Bien
siir on ne veut pas re-coder dans le destructeur les std::cout des attributs : on appelle la méthode
dfficher. Tester avec 2 objets déclarés dans le main, I’un étant initialisé avec des valeurs «en dur»
et I’autre saisi. Afficher un message « Fin du main » juste avant le return 0; qui termine le main :
les destructeurs sont-ils appelés avant ou apres ce message ? Est-ce cohérent avec le cycle de vie
des objets automatique : voir slide 66 du cours 5. Pouvez vous prévoir ce qui va se passer avec un
objet déclaré dans un bloc { } ? Tester :

for (int i=0; i<10; ++1i)
{

Coords c;
c.afficher();

Robin Fercoq / ECE 7/10 TD/TP 5 : Classes, les bases

https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours5_classes_bases.pdf#page=66
https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours5_classes_bases.pdf#page=86
https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours4_C++_pratique_2.pdf#page=87

Implémenter les 2 opérateurs de calcul vectoriel : somme vectorielle et multiplication par un
réel (voir Cours 4 surcharge d’opérateurs). Compiler. Que se passe-t-il ? Pour donner un acces
aux membres privés nous pouvons définir des accesseurs publiques getX et getY, ou si nous
considérons que les opérateurs doivent étre aussi intimes avec la classe que si ils étaient des
méthodes nous pouvons déclarer ces opérateurs amis de la classe : dans coords.h, a Pintérieur de
la classe, par exemple a la fin de la déclaration des méthodes publiques, ajouter les déclarations
d’amitié :

friend Coords operator+(const Coords& cl, const Coords& c2);

friend Coords operator*(double m, const Coords& c);

Tester en déclarant 2 objets Coords dans le main et en dffichant le résultat de calculs
vectoriels avec eux. Tester un calcul manuel de barycentre de 2 objets Coords a et b qui auraient
comme poids 3 et 2 en dffichant le résultat du calcul (1.0/(3+2))*(3*a+2*b). La notation
(3*a+2*b)/(3+2) marcherait-elle ? Pourquoi ? Comment faire ? Faite le !

Enfin pour injecter les données séparément x et y dans les méthodes de la classe Svgfile (qui
ne connait pas le type Coords : void Svdgfile::addDisk(double x, double y, ...) il faut prévoir deux
accesseurs en lecture getX et getY. Implémentez les et testez les depuis le main en affichant
séparément le x et le y d’un objet Coords.

4. Mise en place d’une classe AspectSphere

Cette classe est moins excitante que la précédente... Si vous débutez en C++ / POO c’est votre
2°m classe et vous allez tout de suite vous rendre compte que le développement objet n’est pas
dénué de répétition, voir parfois franchement fastidieux (boilerplate code : beaucoup de tuyaux a
brancher). Suivez un protocole de développement similaire pour implémenter et tester cette classe
utilitaire. Bien siir dans le cas de la classe AspectSphere il n’y a pas d’opérateurs a surcharger
parce que sommer ou multiplier des objets AspectSphere n’aurait pas beaucoup de sens ni d’utilité.

5. Mise en place de la classe Astre dans le projet définitif

Vous pourrez vous inspirer du code du TD/TP 4 pour faciliter I’intégration des classes Coords
et AspectSphere a la classe Astre mais il est fortement recommandé de ne pas essayer de repartir
du projet du TD/TP 4 et de le transformer : repartez avec un nouveau projet initial propre. Il est
possible d’avoir plusieurs projets ouverts dans CodeBlocks mais ne vous embrouillez pas !

Re-téléchargez le projet de départ qui contient la « bibliothéque » de dessin vectoriel

https://fercog.bitbucket.io/cpp/tdtp/tdtp4/baryvcentres exo.zip

Dézippez, ouvrez le projet (.cbp) si vous utilisez Code::Blocks ou faites un projet qui inclut les
3 fichiers sources sinon, compilez, exécutez. Vous devez obtenir dans le répertoire d’exécution’
(macOS : voir note de bas de page) un nouveau fichier output.svg qui a été généré par I’exécution.

C’est le méme projet de départ que pour le TD/TP 4, vous devriez retrouvez vos marques !
Ajoutez au projet les fichiers coords.h et coords.cpp et aspectsphere.h et aspectsphere.cpp : pour
CodeBlocks il suffit de copier ces fichier source dans le répertoire du nouveau projet barycentres,
puis dans CodeBlocks de faire un clic droit sur le nom du projet et Add files... Ensuite sélection

3 Pour Code::Blocks c’est le répertoire de projet. Avec d’autres systémes ¢a peut étre ailleurs. Pour macOS avec
Xcode c’est remarquablement difficile a trouver, Google « xcode console execution directory » -> ici ou la

Robin Fercoq / ECE 8/10 TD/TP 5 : Classes, les bases

https://fercoq.bitbucket.io/cpp/tdtp/tdtp4/barycentres_exo.zip
https://en.wikipedia.org/wiki/Boilerplate_code#In_object-oriented_programming
https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours4_C++_pratique_2.pdf#page=87
https://stackoverflow.com/a/33933096
https://stackoverflow.com/a/28201719

multiple (Maintenir Ctrl) des 4 fichiers cible, puis Ouvrir et OK. Vérifier que ¢a compile, inclure
les .h, vérifier qu’au niveau du main on peut utiliser des objets des classes Coords et AspectSphere.

CllC drOIt SEIEGE R 2t main.cpp > | svgfile.h
4| Projects | Symbols | Files | W a0 L

b Workspace 41
—ee barycentras - ok
L Save project T

Close project

5 Hel Add files.. L
i Add files recursively...

Créer 2 nouveaux fichiers (I’interface .h et I’implémentation .cpp) pour la classe Astre.
Déclarer la classe composante Astre en utilisant les types composites... Vérifier que ¢a compile
(avez-vous bien inclus les .h des classes composites dans astre.h?). Compléter la classe Astre avec
un constructeur avec tous les parameétres. Voir chapitre H du Cours 5 en particulier slide 121, la
syntaxe par liste d’initialisation est recommandée. Tester le code suivant :

Astre terre{ 200, 400, 6, 63, "blueball" };

Ca doit compiler, mais on ne sait pas si les valeurs sont bien en place. Immédiatement le
réflexe est de se donner de la visibilité sur ce qu’on manipule : mettre en place une méthode
Astre::afficher qui dffiche les attributs en console. Pour les attributs composants on voudra éviter
de passer par les accesseurs en lecture et on préférera appeler les méthodes dfficher de ces
composants. Si elles font des retours ligne en trop vous pouvez modifier ces méthodes
Coords::dfficher et AspectSphere::dfficher en enlevant des std::endl, ou optionnellement ajouter un
parametre booléen retourLigne, avec valeur par défaut, permettant a I’utilisateur de la méthode de
choisir si il veut les retours ligne. Tester.

Ajouter un constructeur par défaut pour Astre (penser a déléguer au constructeur paramétreé).
Tester en déclarant un objet Astre sans paramétre et en I’affichant. Ajouter une méthode de saisie
dans la classe Astre. Comme pour I’affichage on délégue aux composants : la saisie des attributs
composants se fera en appelant la méthode de saisie des composants ! Tester en appelant la
méthode saisie sur un objet Astre construit par défaut, puis afficher le résultat.

Comme pour les classes composantes, dotez la classe composite d’un destructeur explicite qui
dffiche (les données de I’) objet détruit. Tester : la destruction d’un objet composite implique-t-il
bien la destruction de ces composants ?

Développer la méthode Astre::dessiner qui prend en parametre une référence a un Svdfile et
qui ajoute le disque correspondant a I’astre dans le dessin si le rayon n’est pas nul, ou bien dessine
une croix sinon (représentation d’un objet « centre de gravité »). L’utilisation des accesseurs en
lecture des attributs des composants est nécessaire. Tester avec le systéeme :

Astre terre{ 200, 400, 6, 63, "blueball" };
Astre lune{ 584, 400, 2.7, 27, "greyball"};
Astre cgtest{400, 400, 10, 0, "black"};

Développer la méthode Astre::sommer qui prend en parametre un (référence constante a)
2eme objet Astre (le 1¢ étant I’objet cible this) et qui retourne un Astre représentant le centre de
gravité des 2. Bien entendu dans cette méthode on veut utiliser les opérateurs de calcul vectoriel
proposés par le composant position de type Coords : on fera le calcul selon I’une des notation en
haut de la page 8 en utilisant directement / et * et + de maniere appropriée entre réels (type
double) et vecteurs (type Coords). Tester (code page suivante) :

Robin Fercoq / ECE 9/10 TD/TP 5 : Classes, les bases

https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours5_classes_bases.pdf#page=118

Astre cgtest = terre.sommer(lune);
cgtest.dessiner(svgout) ;

Cette syntaxe n’est pas assez symétrique au goiit du codeur client : en effet pourquoi la terre
devrait-elle avoir cette position d’objet cible alors que la lune ne serait qu’un vulgaire parameétre ?
Implémenter et tester une surcharge de [’opérateur operator+ entre Astres. Il n’est pas
indispensable de le rendre ami de la classe Astre pour qu’il soit intime des attributs privés car il
pourra faire appel a la méthode sommer ! Il est juste prototypé en dehors de la classe dans astre.h:

Astre operator+(const Astre& al, const Astre& a2);

De cette facon le client doit pouvoir écrire :

Astre cgtest = terre + lune;
cgtest.dessiner(svgout);

6. Collection de Spheres : allocation dynamique

On reprend ici a peu pres le méme énoncé que 1’exo 7 du TD/TP 4 mais cette fois ci avec une
classe Astre au lieu d’une struct Sphere. On veut pouvoir ajouter/enlever des astres a une collection,
de facon interactive. Les objets astres sont a la fois suffisamment légers et isolés (il n’y a pas
d’autres objets qui pointent sur un objet Astre) pour pouvoir étre traités par valeur : on pourrait
gérer une collection d’astres sous forme d’un vecteur d’ Astres std::vector<Astre> directement, sans
allocation dynamique, de la méme facon qu’on peut gérer interactivement une collection d’entier
std::vector<int>.

Mais quand on commencera a avoir des objets plus gros (en octets) et surtout qui sont
référencés (pointés) par d’autres objets cette approche posera probléeme, par exemple les vecteurs
grossissent automatiquement (push_back...) mais ¢a implique de bouger en mémoire les données
stockées, une donnée pointée devient alors invalide ... Il devient rapidement nécessaire de faire de
I’allocation dynamique et de stocker les collections non pas sous la forme « objets valeurs » mais
sous la forme « pointeurs sur entités stables ».

On aura donc un stockage de type std::vector<Astre*>. Le but de cet exercice est de
s’entrainer a traiter ce genre de collection. Le slide 108 du cours 4 montre le principe général, avec
des sous-programmes de gestion de la collection qui prendront en parameétre une référence a un
tableau de pointeurs sur les objets. Les méthodes valables pour traiter un objet a la fois trouveront
une correspondance avec des sous-programmes acceptant ce type de vecteur. Ces sous-programmes
ne sont pas des méthodes de la classe Astre (une méthode gere un seul objet a la fois!) mais comme
ils manipulent des Astres ils seront prototypés dans astre.h et codés dans astre.cpp.

Astre Astre::sommer (const Astre& s) const; // Méthode 1 seul
Astre sommer (const std::vector<Astre*>& wvec); // Sous-prog plusieurs

Idem pour afficher (a la console) et dessiner (sur svgout...). Les sous-progs qui prennent la
collection d’objets en paramétre appelleront les méthodes qui traitent un objet a la fois. Penser au

const pour les parameétres invariants et les méthodes qui n’altérent pas 1’objet cible.

Implémenter tout ca : arriver a I’application telle que décrite en bas de la page 5 (menu...)

Pour effacer le i®™ élément d’un vecteur vec : vec.erase(vec.begin()+i);
Attention : le pointeur est effacé, pas I’objet pointé. Appeler delete vec[i]; avant !

Robin Fercoq / ECE 10/10 TD/TP 5 : Classes, les bases

https://fercoq.bitbucket.io/cpp/cours/OOP_C++_cours4_C++_pratique_2.pdf#page=108
http://www.cplusplus.com/reference/vector/vector/erase/
http://www.cplusplus.com/reference/vector/vector/erase/
http://www.cplusplus.com/reference/vector/vector/erase/

	Objectifs, méthodes
	1. Structure hiérarchique de composition : réflexion, modèles UML
	2. Méthodes : ce que ces données vont faire pour nous !
	3. Mise en place d’une classe Coords
	4. Mise en place d’une classe AspectSphere
	5. Mise en place de la classe Astre dans le projet définitif
	6. Collection de Spheres : allocation dynamique

