JJI ECEPARIS Prog. Orientée Objet / C++ INGE2 S3
TD/TP 6

Classes, associations

Objectifs, méthodes

On a vu lors du cours 6 que les associations qu’on représente entre classes sur les diagrammes
UML se traduisent dans le code C++ le plus souvent (mais pas tout le temps) par des pointeurs.
Nous allons sur les 2 séances (3H) de ce TP implémenter une partie du cahier des charges du fil
conducteur Maillage. Je vous renvoie donc aux énoncés assez détaillés du TD/TP 1 et 2 et au travail
de conception que vous aviez alors réalisé (voir Maillage 2D triangulé du TD/TP 1, pages 5-6).

Ce TD/TP sera moins détaillé dans la démarche a suivre que les TD/TPs précédents. Quelques
conseils seront donnés mais pas sous forme d’une séquence de développement précise. Les
objectifs a atteindre seront donnés par rapport aux résultats concrets attendus lors de
P’exécution du programme, sous forme de captures écran/console. Un outil d’injection de saisies
(saisies simulées) vous permettra de tester votre application dans des situations complexes sans
avoir a rentrer vous méme 100 fois les mémes séquences au clavier.

Cet outil ne sera utile avec les fichiers de tests fournis que si votre programme respecte
scrupuleusement I’ordre des saisies et les numéros d’actions du menu.

Comme le theme du fil conducteur est la génération de maillages 2D triangulés nous allons
continuer d’utiliser la classe fournie Svgfile et la génération de fichiers en format vectoriel avec un
navigateur pour visualiser le résultat. Une version légerement complétée de Svgfile est donnée, elle
permet maintenant de faire les triangles.

Outre la classe technique Svgfile que vous devrez apprendre a utiliser mais pas nécessairement
comprendre (il n’est pas nécessaire d’entrer dans les détails de svgfile.cpp), le projet de départ
fourni comportera une classe Couleur (rouge vert bleu), une classe Coords (qu’on a déja étudiée !),
et une struct StyleDessin qui regroupera les options de dessin pour le rendu final. Cette derniere ne
fait pas partie du modeéle, elle pourra servir seulement de parameétre aux méthodes de dessin.
Aucune de ces 3 classes initiales fournies n’est obligatoire. En supposant que vous les utilisiez
alors le volume de code a produire pour aller au bout du TP de 3H est d’environ 300 lignes de code,
ce qui correspond a 50 lignes de I’heure pour chaque membre d’un binome. C’est
approximativement la production attendue pour du code de difficulté « moyenne ».

Les concepts du cours couverts par ce TP seront
* implémentation d’un modéle UML
* associations
* types valeurs, types entités
* classe gestionnaire de ressource
* new/delete pour ajouter/enlever dynamiquement des objets au systeme

1. Télécharger le projet de départ, le tester, comprendre main.cpp

https://fercoq.bitbucket.io/cpp/tdtp/tdtp6/maillage exo.zip

Robin Fercoq / ECE 1/5 TD/TP 6 : Classes, associations

https://fercoq.bitbucket.io/cpp/tdtp/tdtp6/maillage_exo.zip
https://fercoq.bitbucket.io/cpp/tdtp/OOP_C++_tdtp1.pdf#page=5

2. Application interactive maillage avec ajouts sommets/triangles

A partir du code fourni, mettre en place la machinerie orientée objet nécessaire pour obtenir
le résultat suivant : a droite le déroulement de la session interactive (en vert les saisies de
['utilisateur) et a gauche visualisation du fichier output.svg obtenu. Respectez scrupuleusements
les numéros d’action du menu : ceci sera utile pour la suite. Quelques indications suivent...

c & | filey/y/CEC E/cpp/tdtp_6/maillage/output.svg

B CAECE\cpp\tdtp_6\maillage\bin\Debug\maillage.exe

8/ Quitter
1/ Dessiner scene
2/ Afficher tous sommets
3/ Ajouter sommet
A/ Ajouter triangle
Choix menu : 3
Veuillez saisir x et y S
Choix menu : 3
Veuillez saisir x et y S
Choix menu : 3
Veuillez saisir x et y S
Choix menu : 2
0:(100, 100)
90, 200)
A, 100)
Choix menu : 4
Saisir 3 indices sommets : @ 1 2
Veuillez saisir rouge vert et bleu SVP : 2
Choix menu : 1
Opening SVG output file : output.svg
0K
Choix menu : @

Process returned @ (8x8) execution time :
Press any key to continue.

Meéme si le CDC de cet exercice n’est pas aussi complexe que celui proposé initialement il est
conseillé de se replonger dans les diagrammes d’objets et les diagrammes de classes que vous aviez
fait a I’époque avant d’attaquer le clavier : c’est bien a ¢a que sert la phase initiale de conception !

Si vous n’aviez pas envisagé sur vos diagrammes de classe de I’époque une classe Maillage je
vous suggere d’en envisager une maintenant. La classe maillage servira de classe englobant la
gestion des Sommets et Triangles alloués dynamiquement. Je vous recommande de bien séparer la
classe Coords (fournie) et la classe Sommet : la 1°* est de type valeur alors que la 2°™ est de type
entité. Il suffit d’avoir un attribut Coords dans la classe Sommet. Cet attribut peut s’appeler
m_position par exemple.Cette distinction oblige a faire plus de code de liaison mais fournit une
meilleure abstraction : identifiez d’une part toutes les classes de type valeur, toutes les classes de
type entité d’autre part. Les classes de type entité de cette application ne devraient méme pas
savoir que les coordonnées sont en 2D, elles pourraient étre en 3D (X, y, z) ca ne changerait
rien pour elles. Sauf au niveau des méthodes de dessin ot on n’a pas trop le choix puisque les
méthodes d’ajout de primitives de la classe Svgfile nous obligent a donner séparément un x et uny.
Anticipez que les sommets devront pouvoir étre sélectionnés.

Robin Fercoq / ECE 2/5 TD/TP 6 : Classes, associations

Il est évidemment souhaitable que les entrées soient blindées, au moins en intervalle (on a vu
que blinder en type est compliqué!). Le namespace util:: fourni propose une nouvelle fonction
videCin qui permet de vider le tampon de lecture du clavier si c’est nécessaire pour refaire
proprement une nouvelle saisie. Voir un exemple d’utilisation dans la fonction saisirCanal,
couleur.cpp, ligne 28. Blinder c’est indispensable mais ne passez pas trop de temps la dessus :
essayez d’arriver déja au résultat quand les données saisies sont correctes, et en utilisant des
approches orientées objets satisfaisantes (voir derniére page : Notes pour aller plus loin)

Pour tester votre application sans avoir a rentrer manuellement au clavier des données de test,
le code fourni propose 2 fonctions supplémentaires dans le namespace util:: startAutoCin et
stopAutoCin. Il n’est pas nécessaire de comprendre leur implémentation dans util.cpp pour pouvoir
les utiliser (heureusement!). Dés que vous aurez mis en place votre menu vous pourrez injecter
une simulation d’entrées au clavier a partir d’un fichier (voir fichier testl.txt") :

util::startAutoCin("testl.txt", 50);

int choix;

do
{
std::cout << "Choix menu : ";
std::cin >> choix;
switch(choix)
{
case 0:
break;
case 1:
break;
case 2:
break;
. etc ..
default:
std::cout << "Anomalie choix menu" << std::endl;
break;
}
}

while (choix!=0);
util: :stopAutoCin();

Vous devriez alors voir défiler automatiquement les commandes clavier comme si vous tapiez
vous méme. Sur Windows les entrées clavier simulées seront en vert. Pas de coloration pour les
autres OS pour I’instant. Vous pouvez changer le rythme de défilement : voir commentaires dans
util.h. Vous pouvez utiliser un autre fichier test : si testl.txt fonctionne correctement et donne bien
le résultat attendu (page 2) alors vous pouvez ouvrir a la place de testl.txt cocotte.txt et obtenir un
résultat graphique plus complexe. Si vous étes parmi les 1°° a obtenir la cocotte, faites valoriser
par votre chargé de TP (qui modulera le bonus en fonction de la qualité du code : vite et bien).

1 Pour Linux et macOS utiliser les versions avec linux dans le nom, testl_linux.txt etc ...
Pour macOS copier ces fichiers dans le répertoire d’exécution (Products...)

Robin Fercoq / ECE 3/5 TD/TP 6 : Classes, associations

3. Application interactive maillage avec sélection / translation

/

"

Robin Fercoq / ECE

CAECE\cpp\tdtp_6\maillage\bin\Debugimaillage.exe

" Quitter
' Dessiner scene
' Afficher tous sommets Cette session correspond
' Ajouter sommet au fichier test2.txt
' Ajouter triangle
' Selectionner sommet
" Deselectionner sommet
" Translater selection
Choix menu : 3
WVeuillez saisir x y SVP
Choix menu : 3
WVeuillez saisir x y SVP
Choix menu : 3
Veuillez saisir x y SVP
Choix menu : 3
Veuillez saisir x y SVP
Choix menu : 3
Veuillez saisir x y SVP
Choix menu : 4
Saisir 3 indices sommets : @ 1 2
Veuillez saisir rouge vert et bleu SVP : 165 195 255
Choix menu : 4
Saisir 3 indices sommets : 1 3 4
Veuillez saisir rouge vert et bleu SVP : 195 165 255
Choix menu : 1
Opening SVG output file : output.svg
0K
Choix menu : 5
Saisir indice sommet a selectionner
Choix menu : 5
Saisir indice sommet a selectionner
Choix menu : 1
Opening SVG output file : output.svg
OK
Choix menu : 7
Vecteur translation : Veuillez saisir x et y SVP : @ 50
Choix menu : 1
Opening SVG output file : output.svg
0K
Choix menu : 6
Saisir indice sommet a deselectionner
Choix menu : 7
Vecteur translation : Veuillez saisir x et y SVP
Choix menu : 1
Opening SVG output file : output.svg
0K
Choix menu : @

Process returned @ (@x®) execution time

4/5 TD/TP 6 : Classes, associations

Notes pour aller plus loin...
(si vous ne comprenez rien ici ne vous acharnez pas : faites a votre maniere)

Pour rappel : il est en général maladroit de manipuler les objets d’un certain niveau comme
des marionnettes depuis le niveau supérieur en réglant les détails. Par exemple ce n’est pas le role
d’une méthode de la classe Maillage de saisir les données d’un Triangle, logiquement la saisie des
données d’un triangle devrait se faire dans une méthode de la classe Triangle. Ceci peut poser
probleme si le composant a une vision trop locale et nécessite de connaitre le contexte. Sur cet
exemple : la saisie des sommets d’un triangle se fait par indice mais 1’objet Triangle va (en
principe) stocker des pointeurs sur 3 Sommets. Il faut passer d’un indice sommet au pointeur
correspondant. A son niveau la classe Triangle ne dispose pas de cette information. Une solution
normale (classique) a ce probleme est alors de passer le contexte en paramétre par exemple de
passer la classe composite Maillage en parameétre de 1’appel a la méthode de saisie d’un Triangle, ce
qui permet en retour a la méthode de saisie de Triangle d’appeler une méthode de la classe
composite Maillage qui trouve 1’adresse d’un sommet a partir de son indice.

maillage.cpp triangle.cpp
void Maillage::ajouterTriangle()
{
Triangle* t=new Triangle;
t->saisir(*this);)void Triangle::saisir(const Maillage&
m_triangles.push_back(t); maillage)
} {
std::cout << "Saisir 3 indices
Sommet* Maillage::trouverSommet() const sommets : ";
{
size_t idx; for (size_t i=@; i<3; ++i)
m_sommet[i] =
std::cin >> idx; maillage.trouverSommet();
while (idx>= m_sommets.size())
{ m_couleur.saisir();
std::cout << "Mauvais indice }
sommet, recommencer : ";
util::videCin();
std::cin >> idx;
}
return m_sommets[idx];
}

Ceci implique que la classe Triangle connaisse la classe Maillage pour pouvoir déclarer un
parameétre de type Maillage. Il faudrait faire #include "maillage.h" dans triangle.h mais comme on a
déja #include "triangle.h" dans maillage.h et que les inclusions circulaires sont interdites on va
utiliser ce qu’on appelle une déclaration « en avant » (forward declaration) :

/// Fichier triangle.h

.. PAS DE INCLUDE DE maillage.h

/// Forward declaration de la class Maillage
class Maillage;

class Triangle

{
public
void saisir(const Maillage& maillage); // OK, Maillage est une classe !

Robin Fercoq / ECE 5/5 TD/TP 6 : Classes, associations

	Objectifs, méthodes
	1. Télécharger le projet de départ, le tester, comprendre main.cpp
	2. Application interactive maillage avec ajouts sommets/triangles
	3. Application interactive maillage avec sélection / translation

