JJJ ECEPARIS Prog. Orientée Objet / C++ INGE2 S3

ECOLE D'INGENIEURS
TD/TP 7
Facultatif (complément au TD/TP 6)

Maillage épisode 2 : L'attaque des cocottes mutantes

C'est tres sérieux puisqu'il y sera question d'opérateurs de mutations morphologiques et
colorimétriques sur des maillages clonés. Nous procéderons par irradiation stochastique directe
des phénotypes des objets.

Objectifs, méthodes

L’objectif principal est d’abord d’avoir terminé le TD/TP 6. Une fois le TD/TP 6 terminé vous
pouvez approfondir d’une part le développement du fil conducteur (maillage 2D triangulé) et
d’autre part mettre en ceuvre les conteneurs set et map dans un contexte ou ils brillent par leur
efficacité qui est celui du clonage total ou partiel de composites complexes. Je veux parler bien siir
du clonage de la classe Maillage.

Lors du cours 6 (un cours difficile conceptuellement et techniquement) j’ai indiqué que les
objets de type-entités sont non copiables ou difficilement copiables. Le probléme est d’une part
conceptuel : que signifie copier un objet qui a vocation a étre 1’unique représentant d’une entité du
modele ? Les entités ne sont souvent pas « clonables », on ne clone pas une Personne, un Compte
en Banque, un Véhicule d’entreprise... Le probléme est aussi technique : comment cloner un objet
qui se trouve relié a d’autres objets dans un réseau : est-ce qu’on se contente de copier les attributs
de I’objet et de copier les liens mais pas les objets liés (copie superficielle) ? Souvent ¢a n’a pas de
sens de copier les liens. Mettre les liens a nullptr ? Alors le clone devient inutilisables si il nécessite
le contexte. Ou est-ce qu’on commence a copier les objets reliés (copie profonde) ? Mais alors les
objets liés eux méme vont vouloir se copier en copiant leurs relation etc... dans une réaction en
chaine I’ensemble du réseau se verra répliqué (comme un ADN se réplique : entierement). Ceci se
formalise par la notion de composante fortement connexe d’un graphe, notion qui sera abordée 2™
semestre en théorie des graphes avec toute la rigueur mathématique nécessaire.

En résumé quand un objet est lié au milieu d’un réseau, soit on ne copie pas cet objet (1’objet
est déclaré non copiable) soit on copie le réseau en entier (tout le systeme). Dans ce dernier cas
c’est le plus souvent le role d’une classe englobante de coordonner la copie. C’est précisément ce
que je vous propose de faire sur ce TD/TP 7 avec la classe Maillage. Les objets Sommet et Triangle
apporteront leur aide en proposant des méthodes de construction par copie spécifiques, mais cette
copie ne fera sens que dans le contexte plus large du clonage de la classe composite complexe
Maillage dans son ensemble : les objets Sommet et Triangle ne sont pas copiables « séparément ».

Ce TD/TP facultatif est d’un haut niveau. Ne vous découragez pas si vous n’y arrivez pas ou
pas du 1* coup. Je donnerai les consignes sous forme de résultats a obtenir (captures d’écran) et
quelques indications sur la facon de procéder. Un nouveau projet de départ est fourni... Ce nouveau
projet de départ fournit de nombreuses fonctionnalités complémentaires prétes a étre utilisées, en
particulier une classe Transformation incluant toutes les transformations affines du plan.

1. Télécharger le projet de départ, tester, comprendre la structure
https://fercog.bitbucket.io/cpp/tdtp/tdtp7/maillage v3 exo.zip

Robin Fercoq / ECE 1/9 TD/TP 7 : Map, set, copies complexes

https://fercoq.bitbucket.io/cpp/tdtp/tdtp7/maillage_v3_exo.zip

2. Intégrer le code que vous aviez fait dans la nouvelle architecture

Vous verrez que ce nouveau projet organise les fichiers d’une facon g.= src

différente. Dés qu’un projet devient un peu grand on a facilement 50 ou .5 geometrie
100 fichiers. On ne peut pas les laisser « en vrac » dans le méme répertoire. @ ... cadre.cpp
Comme souvent en informatique on préfere ranger sous forme @ . coords.cpp
d’arborescence : on va mettre tous nos fichiers sources dans un sous- @ - matrice.cpp
répertoire src/ puis dispatcher les sources dans des répertoires par théme. = - transformation.cpp
Il ne s’agit que d’une proposition. Voir capture ci-contre => - graphisme
----- couleur.cpp
Les fichiers .h ne sont pas montrés ici mais ils partagent les méme @ - svgtest.cpp
répertoires avec les .cpp (coords.h et coords.cpp sont tous les 2 dans =& maillage
src/geometrie, voir avec ’explorateur)’. maillage.cpp
----- sommet.cpp
Vous ne trouverez pas les fichiers des répertoires src/maillage et @ triangle.cpp
src/page : C’est normal, c’est & vous de compléter ces codes ! En principe =& page
vous avez terminé le TD/TP précédent donc vous avez vos classes Maillage = calque.cpp
Sommet Triangle et leurs .h et .cpp correspondants. Copier ces fichier dans =B svg
le répertoire src/maillage puis les ajouter au projet (dans Code::Blocks clic e | svgfile.cpp
droit sur le projet puis Add files...) Remplacer le main fourni par celui que 'B util .
i util.cpp

vous aviez. Le répertoire thématique page contiendra plus tard (peut-étre)
une classe Page. Dans ce TP on y mettra juste une classe Calque : un calque
aura vocation a regrouper plusieurs maillage (et une page plusieurs calques).

----- main.cpp

Noter que les chemins d’acces aux includes doivent étre modifiés. On utilise .. pour remonter
d’un niveau relatif et /rep pour redescendre. Exemple pour include coords.h dans sommet.h on fera
#include "../geometrie/coords.h". Modifier en conséquence tous vos include jusqu’a obtenir un
projet qui compile et qui marche de la méme facon que précédemment (en principe je n’ai pas
introduit d’élément incompatible dans la nouvelle version).

3. Modifier votre menu pour reprendre la main apreés startAutoCin

Pour rappel, appeler par exemple util::startAutoCin("test1.txt", 50); avant votre menu permet
d’automatiser le fait d’entrer des infos en simulant des frappes au clavier : le fichier testl.txt
contient les « entrée » qu’un utilisateur pourrait donner. Le parameétre 50 sert a régler la vitesse de
frappe simulée... L’intérét est bien siir d’accélérer les tests qui peuvent étre longs et fastidieux pour
une application orientée console (et ne disposant pas encore de chargement de fichiers).

Le probleme c’est que pour I’instant soit vous tapez tout a la main, soit vous lancez autoCin
mais dans ce dernier cas vous ne pouvez pas reprendre la main pour tester interactivement. L’idéal
serait de pouvoir commencer a tester interactivement apreés avoir mis un maillage en place
automatiquement (comme un chargement depuis un fichier en somme). Ce n’est pas trés compliqué,
il suffit d’ajouter un case spécial dans votre menu, avec une valeur qui veut dire « fin autocin » et
qui sera mise a la fin du fichier de script. Editer testl.txt (par exemple depuis Code::Blocks File
Open...) pour mettre -10 a la fin a la place de 0, et ajouter le code suivant a votre menu. Tester.

case -10: /// Spécial, fin de script autoCin
util::stopAutoCin();
afficherMenu();
break;

1 1l est souvent conseillé de séparer d’un coté les .cpp dans src/ et de 1’autre les .h dans une arborescence paralléle
dans include/. Ce conseil est valable pour des codes matures et/ou qui deviennent des bibliothéques. Pour 1’instant
notre base de code est immature et risque d’étre déménagée, il est préférable de ne pas avoir a maintenir séparément

2 arborescences paralléles. Voir https://stackoverflow.com/a/2924217 et https://stackoverflow.com/a/31581208

Robin Fercoq / ECE 2/9 TD/TP 7 : Map, set, copies complexes

https://stackoverflow.com/a/31581208
https://stackoverflow.com/a/2924217r

4. Travailler avec la cocotte en presque temps réel (expérimental)

De méme remplacer 0 par -10 dans cocotte.txt et vérifier que vous pouvez bien reprendre la
main apres avoir « chargé » la cocotte, par exemple ajouter un point et un triangle a la cocotte.
Notez qu’il est un peu fastidieux de devoir a chaque opération taper 1 en console pour redessiner la
scéne, basculer sur le navigateur et faire Ctrl+r pour recharger output.svg. Nous allons essayer
d’améliorer ¢a, mais c’est expérimental et ¢ca peut ne pas marcher (dans ce cas rester sur le
protocole de rechargement manuel).

D’abord pour ne pas avoir a taper 1 pour dessiner la scene a chaque opération on peut ajouter
ce code a la fin de la boucle de menu :
/// Dessin automatique a chaque opération

{
Svgfile::s_verbose = false;
Svgfile svgout;
svgout.addGrid();
calqueCourant->dessiner(svgout, styleDessin);
}

Ensuite, le fichier index.html fourni (qui n’est pas un modele de code javascript...) fait un
auto-reload toutes les secondes : ouvrez index.html dans votre navigateur favori et si il ne
marche pas pour la suite testez un autre navigateur. Normalement déja vous devez voir la cocotte
qui était encore dans output.svg, avec un compteur qui s’incrémente automatiquement 1 fois par
seconde. Re-testez 1’ouverture de la cocotte avec votre appli et mettez cote a cote 1’appli avec le
navigateur. Ajoutez un sommet, un triangle... normalement I’affichage coté navigateur doit suivre
automatiquement (avec un léger délais d’une seconde au plus). Si ca coince essayez de faire un
reload manuel sur le navigateur (ce qui devrait remettre le compteur a 0). Certains navigateurs (IE)
peuvent faire des saccades a chaque reload ce qui est agacant. Firefox est nickel mais décroche
parfois. Chrome, Safari... non testés.

5. Les conditions sont réunies, il est temps de muter des cocottes !

Ci dessous le menu « final » a obtenir. Ce n’est pas le projet. Le projet sera plus ouvert. Mais
réaliser tout ou partie de ces fonctionnalité sera stirement un bon investissement. Pour 1’instant on
va se concentrer sur les options 40 41 et 42. Voir résultat page suivante.

B CAECE\cpphtdtp_7wmaillage_v3\bin\Debugimaillage_v3.exe

cene
s sommets

sommets selection
Supprimer triangles selection
Supprimer sommets isoles
/ Selectionner 1 sommet
/ Deselectionner 1 sommet
/ Selectionner tous les sommets
3/ Deselectionner tous les sommets
/ Nouvelle selection par cadre
/ Ajouter selection par cadre
20/ Translater selection
/ Rotation selection
/ Homothetie selection
Symetrie selection
Choisir maillage actif
Nouveau maillage vide
E Nouveau maillage clone
33/ Nouveau maillage clone selection
Nouveau maillage separer selection
Fusionner avec autre maillage
36/ Supprimer maillage
’ Selection aleatoire
[Muter couleur selection
/ Muter positions sommets selection
Choix menu :

« .

Robin Fercoq / ECE 3/9 TD/TP 7 : Map, set, copies complexes

Voila ce que ¢a peut donner. La sélection aléatoire utilise une nouvelle fonction aléatoire
disponible dans util.h, surcharge de alea au domaine des réels :
/// Cette fonction retourne un réel aléatoire dans [min...max[
double alea(double min, double max);
Pour réaliser une action selon un ratio (0.8 => 80% de chance)
if (util::alea(®.0, 1.9) < ratio)

1onner
ctionner 1 sommet
ionner tous les sommets
ctionner tous les sommets
Nouvelle selection par cadre
' Ajouter selection par cadre
' Translater selection
' Rotation selection
' Homothetie selection
' Symetrie selection
' Choisir maillage actif
" Nouveau maillage vide
" Nouveau maillage clone
33/ Nouveau maillage clone selection
' Nouveau maillage separer selection
" Fusionner avec autre mailla
' Supprimer maillaee
' Selection aleatoire
" Muter couleur selection
' Muter positions sommets selectiop
Choix menu : 40
Saisir ratio de selection [0 ... 1]
Choix menu : 41
Saisir amplitude de mutation [@ ...
Choix menu : 42
Saisir amplitude de deplacement

1
ge

40 : On voit sur I’exemple que 80 % des sommets ont aléatoirement été choisis pour étre
sélectionnés (une précédente sélection aurait d’abord été vidée => tous les attributs sélection des
sommets a false). Naturellement a chaque fois qu’on identifie un besoin comme ca on fait une
méthode ! On en profite pour compléter le menu avec 2 nouvelles options pas difficiles 12 et 13.

41 : On sélectionne des sommets, pas des triangles. Pour des opérations sur les triangles on
considere qu’un triangle est sélectionné si ses 3 sommets sont sélectionnés. Une nouvelle méthode
bool getSelection(); dans la classe Triangle retournera Vrai si les 3 sommets sont sélectionnés. De
cette facon la méthode de Maillage qui mute les couleurs (des Triangles) est propre.

42 : La classe Coords fournie propose une nouvelle méthode pour avoir des Coords aléatoires
qui peuvent servir de vecteur de translation aux sommets sélectionnés a « muter » en position. Il est
évidemment préférable de tout de suite prévoir une méthode muterPosition dans la classe Sommet.
Ensuite il ne reste plus qu’a appeler cette méthode, pour les sommets sélectionnés, depuis une
méthode de la classe Maillage.

void Sommet::muterPosition(double amplitude)

{
}

m_position = m_position + Coords::aleatoire(amplitude);

Note : la méthode Coords::aleatoire est particulieére, c’est une méthode « static » qui ne
part pas d’un objet cible, on met le nom de la classe suivi de :: pour I’appeler. Ceci pour éviter des
ambiguités de constructeurs surchargés...

Robin Fercoq / ECE 4/9 TD/TP 7 : Map, set, copies complexes

6. Transformations affines de morceaux de cocottes

La fonction transfoTest (main.cpp) vous a montré comment utiliser la classe Transformation.
Vous allez pouvoir appliquer ces transformations aux coordonnées des sommets sélectionnés.
20 : Commencer par la translation. Prévoyez tout de suite une seule et méme méthode pour toutes
les transformations dans Maillage : void selectionTransformer(const Transformation& trans);

Supprimer sommets selection
election
e

Supprimer triangles s
Supprimer sommets isol
Selectionner 1 sommet
Deselectionner 1 sommet
Selectionner tous les sommets
Deselectionner tous les sommets
Nouvelle selection par cadre
Ajouter selection par cadre
Translater selection
Rotation selection
Homothetie selection
Symetrie selection
Choisir maillage actif
Nouveau maillage vide
Nouveau maillage clone
Nouveau maillage clone selection
Nouveau maillage separer selection
Fusionner avec autre maillage
Supprimer maillage
Selection aleatoire
Muter couleur selection
Muter positions sommets selection
Choix menu : 1@
Saisir indice sommet a selectionner : 6
Choix menu :
Vecteur translation : Veuillez saisir x et y SVP :

21 : Rotation, il faut un centre et un angle. Et si vous voulez transformer la cocotte entiére,
commencer par sélectionner tout grace a 12 ...

CAECE\cppitdtp_7T\maillage_v3\bin\Debug\maillage_v3.exe

" Supprimer sommets
" Supprimer triangles
" Supprimer sommets isol
" Selectionner 1 sommet
" Deselectionner 1 sommet
' Selectionner tous les sommets
" Deselectionner tous les sommets
" Nouvelle selection par cadre
5/ Ajouter selection par cadre
" Translater selection
" Rotation selection
' Homothetie selection
' Symetrie selection
" Choisir maillage actif
" Nouveau maillage vide
" Nouveau maillage clone
" Nouveau maillage clone selection
" Nouveau maillage separer selection
" Fusionner avec autre maillage
" Supprimer maillage
' Selection aleatoire
" Muter couleur selection

Centre de rotation
Angle de rotation

22 et 23 : Homothétie et symétrie sur le méme principe...

Robin Fercoq / ECE 5/9 TD/TP 7 : Map, set, copies complexes

7. Clonage de cocottes

Le point difficile. D’abord pour cloner des cocottes il faut savoir ou va atterrir le clone. Pour
’instant notre application ne gere qu’un seul maillage a la fois. Il va falloir mettre en place une
nouvelle classe qui sera une collection de maillages. Je propose une classe Calque, qui ira se ranger
dans le répertoire Page (une page sera composée de plusieurs calques. Plus tard). L’attribut principal
de calque sera un vecteur de pointeurs sur Maillage. Elle aura une méthode dessiner qui déléguera
I’appel aux maillages qu’elle contient (pour chaque Maillage sur le calque, appeler sa méthode
dessiner). Elle aura aussi une méthode ajouterMaillage et enleverMaillage (pas forcément le
détruire, il faudra voir, selon ’usage). Et peut-étre d’autres méthodes utiles selon les besoins.

Mettre en place cette classe Calque et modifier le menu de 1I’éditeur pour autoriser le travail
avec plusieurs maillages, choix 30 et 31 et 36. Vérifier.

|w GRASF |G how t |w Visitor | | 5 displa; ﬂ 30/ Choisir maillage actif
1/ Nouveau maillage vide
Q & | filey//C/ECE/cpp/t " Nouveau maillage clone
33/ Nouveau maillage clone selection
' Nouveau maillage separer selection

' Fusionner avec autre maillage
' Supprimer maillage
' Selection aleatoire
" Muter couleur selection
" Muter positions sommets selection
Choix menu : 37
Choix menu :
Veuillez sai
Choix menu :
Veuillez saisir x et v S
Choix menu :
Veuillez saisir x et y S
Choix menu : 4
Saisir 3 indices sommets : @ 1 2
Veuillez saisir rouge vert et bleu SVP : 2
Choix menu :
Saisir numero de maillage : @
Choix menu : 12
Choix menu : 22
Centre d'homothetie : Veuillez saisir x et y SVP :
Rapport d'homothetie : 5

Enfin nous pouvons travailler avec plusieurs maillages simultanément, ca veut dire qu’on peut
cloner des Maillages : le clone pourra atterrir dans le méme Calque que 1’original. Mais comment
cloner, je vous ai dit que c’est difficile ! Pas tant que ca... a condition d’organiser 1’opération au
niveau de la classe composite Maillage et avec I’aide des composants...

On va déclarer et définir le constructeur par copie de Maillage :

Maillage(const Maillage& src);

Il recoit une référence au Maillage original. Dés le départ du constructeur I’objet this existe,
mais ses collections sont vides. Il va falloir remplir ses collections sommets et triangles avec des
copies de ceux des originaux, mais en transposant les adresses des sommets dans le nouveau
contexte. Pour ca nous allons déclarer localement un conteneur associatif, une map (nous y voila)

/// Associer a chaque adresse sommet de la source l'adresse de son clone
std: :map<Sommet*, Sommet*> transpose;

On va d’abord cloner les sommets de I’original vers la copie en cours de construction, directement,
avec le constructeur par copie implicite de Sommet : Sommet(const Sommet&) = default;

Robin Fercoq / ECE 6/9 TD/TP 7 : Map, set, copies complexes

Lors de ce clonage on utilisera bien new pour re-fabriquer des adresses vers de nouveaux
objets sommets. On remplira au fur et a mesure la map transpose avec map[adresse de sommet
de I’original] = adresse de sommet du clone

Ensuite on copiera les Triangles en prenant bien soin de faire en sorte que chacune des
3 adresses vers sommet de I’original soit remplacée par 1’adresse vers sommet du clone :

triangle clone adresse vers sommet 1 = transpose [triangle original adresse vers sommet 1]

etc... de telle sorte que les références aux sommets de I’original soient « transposées » vers des
références aux sommets du clone. Et voila !

Le clone apparait au méme endroit que 1’original. Pour bien le distinguer de 1’original il va
falloir le translater. Je suggere que le clone devienne le nouveau Maillage actif automatiquement et
que tous ses sommets soient sélectionnés afin de faciliter cette opération de dégagement.

Ajouter triangle
/ Supprim sommets selection
Supprimer triangles selection
/ Supprimer sommets isoles
/ Selectionner 1 sommet
Deselectionner 1 sommet
/ Selectionner tous les sommets
3/ Deselectionner tous les sommets
Nouvelle selection par cadre
/ Ajouter selection par cadre
Translater selection
/ Rotation selection
/ Homothetie selection
ymetrie selection
/ Choisir maillage actif
ouveau maillage vide
ouveau maillage clone
ouveau maillage clone selection
ouveau maillage separer selection
/ Fusionner avec autre maillage
E upprimer maillage
40/ Selection aleatoire
41/ Muter couleur selection
42/ Muter pi ons sommets selection
Choix menu
Choix menu
Vecteur translation : Veuillez saisir x et y SVP : 250 250
Choix menu : -18
Choix menu :

4 1,

-
—
= B tdtp_5
® B tdtp 6
2B tdtp_7
=B maillage_v3
@ B bin
= B obj

8. Fusion des cocottes, séparation et chirurgie ablative

Les autres opérations peuvent étre implémentées plus facilement avec un peu de soin

0/ Quitter 20/ Translater selection
1/ Dessiner scene 21/ Rotation selection
2/ Afficher tous sommets 22/ Homothetie selection
3/ Ajouter sommet 23/ Symetrie selection
4/ Ajouter triangle 30/ Choisir maillage actif
5/ Supprimer sommets selection 31/ Nouveau maillage vide
6/ Supprimer triangles selection 32/ Nouveau maillage clone
7/ Supprimer sommets isoles 33/ Nouveau maillage clone selection
10/ Selectionner 1 sommet 34/ Nouveau maillage separer selection
11/ Deselectionner 1 sommet 35/ Fusionner avec autre maillage
12/ Selectionner tous les sommets 36/ Supprimer maillage
13/ Deselectionner tous les sommets 40/ Selection aleatoire
14/ Nouvelle selection par cadre 41/ Muter couleur selection
[15/ Ajouter selection par cadre] 42/ Muter positions sommets selection

Robin Fercoq / ECE 7/9 TD/TP 7 : Map, set, copies complexes

La suppression des sommets isolés peut se faire efficacement avec un conteneur ensembliste
en parcourant les triangles : une méthode de triangle regoit en parameétre par référence ce set et y
ajoute les adresse des 3 sommets qu’il utilise.
/// Ensemble des sommets effectivement référencés
std: :set<Sommet*> utilises;

L’opération d’effacement des sommets isolés facilite 1’opération de séparation. Pour ces
opérations il est commode de pouvoir sélectionner avec des cadres. Jetez un coup d’ceil a la classe
Cadre (répertoire geometrie) qui peut aider. Sur la figure ci-dessous on a bien 2 maillages sur le
calque.

" Deselectionner tous les sommets
" Nouvelle selection par cadre
" Ajouter selection par cadre
" Translater selection
" Rotation selection
" Homothetie selection
Symetrie selection
Choisir maillage actif
Nouveau maillage vide
" Nouveau maillage clone
" Nouveau maillage clone selection
" Nouveau maillage separer selection
" Fusionner avec autre maillage
" Supprimer maillage
" Selection aleatoire
" Muter couleur selection
" Muter positions sommets selection
Choix menu : 14
Saisir cadre de nouvelle selecti
Coords haut gauche
Veuillez saisir x et y SVP :
Coords bas droite
Veuillez saisir x et y SVP : 556
Choix menu
Choix menu : 21
Centre de rotation : Veuillez saisir x et y SVP :
Angle de rotation : 20

[NV

o]

9. L'attaque des cocottes mutantes

En combinant et en répétant des clonages, des translations, des fusions, des mutations, on obtient
des scénes de simulation de combat dignes des meilleurs films de science-fiction.
Voir page suivante.

Robin Fercoq / ECE 8/9 TD/TP 7 : Map, set, copies complexes

	TD/TP 7 Facultatif (complément au TD/TP 6)
	Objectifs, méthodes
	1. Télécharger le projet de départ, tester, comprendre la structure
	2. Intégrer le code que vous aviez fait dans la nouvelle architecture
	3. Modifier votre menu pour reprendre la main après startAutoCin
	4. Travailler avec la cocotte en presque temps réel (expérimental)
	5. Les conditions sont réunies, il est temps de muter des cocottes !
	6. Transformations affines de morceaux de cocottes
	7. Clonage de cocottes
	8. Fusion des cocottes, séparation et chirurgie ablative
	9. L'attaque des cocottes mutantes

